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Abstract: With the fast development of magnetic coupling resonant-dynamic wireless power transfer
(MCR-DWPT), it is more likely that high-efficiency wireless charging between unmanned ground
vehicles (UGVs) will be practically realized, especially in desolate places that are far away from a
city center or charging depot and always experiencing large load fluctuations, varying operating
conditions, and complex working targets. Based on this, the wireless charging of UGVs demands
higher reliability and efficiency. This paper reviews the MCR-DWPT system of UGVs, and the
basic structure and key technologies are introduced. Then, the key technologies, which include the
coupling device design, compensation topology design, and system control strategy, are discussed
in detail. After that, by considering the current research, the main challenges of the MCR-DWPT of
UGVs are investigated and its developing prospects are explored.

Keywords: unmanned ground vehicle; magnetic coupling resonant-dynamic wireless power transfer;
coupling device; compensation topology; control strategy

1. Introduction

With the development of artificial intelligence and automatic control technology, out-
standing achievements regarding electric drives, electromagnetic weapons, and protection
have increasingly been applied in unmanned ground vehicles (UGVs), which have an
urgent demand for a reliable means of power transmission [1]. Based on the vehicles’
integrated power systems, UGVs are likely to realize information interaction and power
sharing [2].

Magnetic coupling resonant-dynamic wireless power transfer (MCR-DWPT) is a
type of wireless power transfer (WPT) technology that is able to transmit and receive
power wirelessly with higher transmission and power efficiency at the meter level. As
a non-contact power transmission technology realized by the near-field coupling of an
electromagnetic field, MCR-DWPT has the ability to effectively improve the drawbacks
existing in traditional wired power transmission, including wire aging, plug damage,
electric arcs when plugging and unplugging, potential electric accidents, high maintenance
costs, and weak environmental adaptability. Compared to static wireless charging at a
specified position, MCR-DWPT technology can realize “charging while moving”, which
meets the requirements of the UGV charging system [3].

Currently, MCR-DWPT technology has made outstanding progress in electric vehi-
cles [4], consumer electronics [5], medical devices [6], wireless sensor networks [7,8], and
other civilian fields [9]. For MCR-DWPT of UGVs, most studies focus on the operating envi-
ronment of city roads and factory transportation with the purpose of realizing MCR-DWPT
of UGVs with transmitters buried in the ground. In desolate places of operation such as
hillside, forest, and desert, there has been insignificant research progress in MCR-DWPT
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between UGVs due to the transmission power level, operating conditions, and working
environment.

In order to promote MCR-DWPT of UGVs in desolate operating environments, the
literature about MCR-DWPT in the last five years has been referred to, and papers of great
reference and application value for the key technologies of MCR-DWPT have been quoted.
Based on this, the paper first introduces the research background of MCR-DWPT and
focuses on the specific requirements of UGVs operating in desolate places. Then, the key
technologies of the MCR-DWPT system, such as the coupling device design, compensation
topology design, and system control strategy, are reviewed in detail. Finally, the main
challenges of the MCR-DWPT of UGVs are summarized, which provides a reference for
the future research of the MCR-DWPT of UGVs in desolate environments.

2. MCR-DWPT of UGVs
2.1. Basic Structure of MCR-DWPT of UGVs

Figure 1 shows a general structure of the MCR-DWPT of UGVs. There is a type-I
platform, which acts as a power supplier, while a type-II platform acts as a power receiver.
The DC networks of these two platforms, UI and UII, are connected by a subsystem that
realizes the WPT between the type-I and type-II platforms. The transmitter of the MCR-
DWPT system is placed on the type-I platform, while the receiver is placed on the type-II
platform. The high-frequency inverter of the transmitter inverts the DC of the type-I
platform network into high-frequency AC. After reactive power compensation and power
transmission in the electromagnetic field of the WPT subsystem, the aforementioned AC
is rectified into DC by the high-frequency rectification circuit at the receiver and then
transmitted into the type-II platform network. Finally, the WPT between the two platforms
is realized.
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2.2. Characteristics of MCR-DWPT of UGVs

Although many research results have been achieved in the civilian field of MCR-
DWPT, such as in urban electric vehicles (EVs) [10], unmanned aerial vehicles (UAVs) [11],
and so on, the characteristics of the UGV MCR-DWPT system are different because of the
difficult operating conditions, which are listed below:

1. Random relative position and fluctuating load.

Different from urban EVs, the movement of UGVs in desolate places is more random,
which leads to a random relative position between UGVs and an inconstant coupling coef-
ficient. Moreover, the various working conditions cause changes in the load characteristics
and the fluctuation of circuit parameters [12]. Therefore, a coupling device with stronger
anti-offset performance, compensation topologies with better adaptability, and control
strategies with better reliability are essential.

2. Complex working conditions and difficult desolate situations.
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The working conditions of UGVs are selected by considering the driving environ-
ments and situations. During normal operation, the transmission efficiency is of particular
importance inside an MCR-DWPT system. However, the transmission power is mostly
considered during off-road driving. Therefore, the transmission characteristics of the MCR-
DWPT system have to be accurately analyzed to maintain a high transmission power and
efficiency under various operating and driving conditions [2].

3. Harsh environments and high requirements for reliability.

The MCR-DWPT system of UGVs has higher requirements for reliability, safety, and
electromagnetic compatibility. More importantly, it is necessary to maintain the transmitter
and the receiver of the MCR-DWPT system with a normal working status, regardless of
communication. Furthermore, the wireless charging should be able to be automatically
stopped for safety reasons in the case of an unknown object existing between the transmitter
and the receiver. Finally, when multiple targets are being charged, the MCR-DWPT system
should be able to distribute the charging power to several objects to improve the overall
charging efficiency [13].

3. Key Technologies of MCR-DWPT of UGVs

The key technologies of MCR-DWPT mainly include the coupling device design,
compensation topology design, and system control strategy, which are introduced below.

3.1. Optimization Design of Coupling Devices

For MCR-DWPT systems of UGVs, different structures of coupling device have differ-
ent anti-offset performance. Many scholars have designed various structures of coupling
devices to improve the device performance under different operating conditions [14–17].
In this section, the impact of spatial motion on WPT is analyzed. Then, the main research
results of the above structures are summarized and classified to provide ideas for the future
design of coupling devices.

3.1.1. Impact of Spatial Motion on WPT

In the case of two coupling devices, there are mainly four types of spatial motion
modes in WPT, which are axial offset, horizontal offset, horizontal turnover, and horizontal
rotation along the symmetry axis, which are shown in Figure 2.
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The effects of the coupling device spatial motion are analyzed as follows.
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When an axial offset occurs, the flux density between the devices decreases with
an increase in the distance between them, and the coupling coefficient and transmission
efficiency of the WPT system decrease gradually.

When a horizontal offset occurs, in terms of the flux density between the coupling
devices, the coupling coefficient, and the transmission efficiency of the WPT system, they
either remain constant or slightly increase within a certain offset range according to the
different structures of the coupling devices. When the offset distance is too large, the flux
density between the coupling devices gradually weakens with an increase in the offset
distance; therefore, the coupling coefficient and transmission efficiency of the WPT devices
gradually decrease.

When one coupling device turns horizontally, it creates an angle with the other cou-
pling device. In this case, there are two situations, including the planar coupling device
and the spatial coupling device. For the planar coupling device, the flux density between
the coupling devices is gradually weakened with an increase in the turning angle so that
the coupling coefficient and the transmission efficiency of the WPT system are gradually
reduced [14]. For the spatial coupling device, since the original design was to improve the
ability to resist angle offset, the flux density between most spatial coupling devices is not
sensitive to a change in the flip angle, so there is a slight change in the coupling coefficient
and the efficiency of the WPT system device [15].

When the coupling device rotates along the symmetry axis, different device structures
have different magnetic field changes. For a disc-shaped coupling device, the magnetic field
does not change because the disc-shaped coupling device rotates along the symmetry axis.
Therefore, the coupling coefficient and the transmission efficiency of the WPT system do
not change [16]. For a non-disk coupling device, the magnetic field between the coupling
devices changes with the rotation of the device when the device rotates along the symmetry
axis. The coupling coefficient and transmission efficiency of the WPT system also change
accordingly [17].

In general, the practical spatial motion of the coupling device is always the integration
of the above motions. As a result, coupling devices with different structures should be
designed according to different operating conditions.

3.1.2. Structural Design of Coupling Devices

There are two main groupings of UGVs, which are the carrier type and the formation
type [18]. According to the different groupings, the structure and anti-offset performance
requirements of the coupling device are also different. The carrier type is mainly applicable
to a situation where a large platform carries several small platforms to a target area and
then unloads the small platforms to jointly operate. The coupling device is installed on
the bottom of the small platform and on the floor in the cabin of the large platform to
realize WPT during the carrying condition, but the coupling device is required to have good
horizontal offset resistance. The formation type is mainly applicable to UGVs with similar
vehicle types, so the coupling device is usually installed on one side of the vehicle’s body.
The coupling device is required not only for resisting horizontal offset but also for realizing
the efficient transmission of power, especially when the distance and the horizontal flip
angle between the transmitter and the receiver changes.

In order to minimize the size and improve the horizontal offset resistance of the WPT
device, many studies have been conducted focusing on the receiver, which includes the
circular pad (CP) [16], the double-D pad (DDP) [19], the bipolar pad (BPP) [20], and the
double-D quadrature pad (DDQP) [21], as shown in Figure 3.

At the transmitter, it can be either the same as the receiver or adopt other structures,
for instance, the long guide rail type or the segmented guide rail type, to improve the
effective transmission area. Current research results of coupling devices are presented in
Table 1. The Korean Academy of Science and Technology made a significant advance on
the long guideway coupling device and consequently successfully proposed the E-type,
U-type, W-type [22], I-type [23], S-type [24], and dq-type [25] device structures. There is
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only one launch rail in the long guideway coupling device; therefore, the system voltage
fluctuation is small and the control requirements are low, but the launch rail inductance and
device resistance are large, the power loss is large, and the system transmission efficiency
is low.
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Classifications Research institutions Structures Size Performance
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Table 1. Cont.

Classifications Research institutions Structures Size Performance
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The University of Auckland [26], Paris-Saclay University [27], China Electric Power
Research Institute [28], Southeast University [29], and other institutions have designed a
variety of segmented guideway coupling devices. Compared to the long guide rail type, the
structure of the segmented guide rail type coupling device is similar to that of the coupling
device of static WPT. The system’s efficiency is significantly improved by applying several
independently working transmitters and dynamically controlling the output power of
each transmitter. However, there are frequent voltage fluctuations at the receiver when
switching transmitters, which strongly demands a precise control system for WPT.

There have been fewer studies on the WPT of formation-type UGVs. In [30], a mechan-
ical structure was proposed to control the spatial position of the coupling device so that the
transmitter and the receiver maintain alignment when moving in space, which improves
the efficiency of WPT. However, the proposed mechanical structure has to consider extra
factors, such as the structure’s life and the control mode, which makes the whole system
more complex. The prototype of the coupling device with a mechanical structure is shown
in Figure 4. In [31], new coreless Tx coils with a conductive magnetic shield were proposed.
They generate a planar rotating magnetic field to realize WPT between the transmitter and
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the receiver in the case of relative horizontal reversal. However, the transmission power is
small, and the efficiency is low.
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3.2. Topology Design of the Compensation Circuit

The topological structure of the compensation circuit was designed to improve the
instability caused by coupling coefficient changes and load fluctuations. Under dynamic
conditions, system output characteristics such as a constant-voltage/current output, sys-
tem power regulation, and efficiency maximization are maintained using an appropriate
compensation topology. In addition, the compensation topology also helps to reduce the
reactive power and improve the efficiency of the UGV MCR-DWPT system.

In this section, the design requirements of the UGV MCR-DWPT compensation circuit
topology are first summarized. Then, the research results are classified into various compen-
sation topologies and parameter design methods, such as the coupling-independent type,
the load-independent type, the coupling-load-independent type, and the reconfigurable
type. This information is presented to provide inspiration for designing a compensation
circuit topology for the MCR-DWPT system of the UGV.

3.2.1. Specifications of the Topology Design

According to the operating conditions of the UGV, the compensation circuit topol-
ogy of the MCR-DWPT system is specified by the following instructions to improve the
adaptability and reliability of the system:

1. Constant voltage/current output of the MCR-DWPT system.

The system should be able to provide a constant-voltage/current output that is not
influenced by the load. The receiver of the MCR-DWPT system is used to charge the
battery and other power storage components, while the load characteristics of these power
storage components are prone to change during the charging process. By adopting a
good compensation topology that realizes a constant-voltage/current output, the charging
process is better controlled and the charging efficiency is improved [32].

2. Constant current output of the transmitter.

The transmitter should be able to output a load-independent constant current, in which
case the current is not influenced by the changing impedance of the receiver. Subsequently,
this protects the transmitting devices from an overload current in the case of an open circuit
at the receiver [33].
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3. Zero phase angle (ZPA) of input impedance.

During the operation of the MCR-DWPT system, the problems of large leakage induc-
tance of the coupling device, high reactive power, and reduced efficiency of the system may
occur due to the large air gap between the transmitter and the receiver device. Therefore,
an appropriate compensation topology needs to be designed to keep the input voltage and
current at the transmitter terminal in phase and make the input impedance of the system
pure resistance, which helps to realize the input impedance to meet the ZPA condition and
reduce the reactive power of the system [34].

4. Zero Voltage Switching (ZVS).

The high-frequency inverter circuit at the transmitter inverts the input DC power into
high-frequency AC power, which produces switching losses and reduces the efficiency
of the system at the same time. Current research makes the transmitter input impedance
weakly inductive by adjusting the transmitter compensation parameters and making the
voltage phase ahead of the current phase by one phase angle to achieve ZVS and reduce
switching losses [35].

Considering that the operating condition is mainly desolate places, the transmitters
and the receivers are in a weak coupling condition. The compensation circuit topology is
essential to keep the output voltage, current, power, and efficiency of the system stable
while the coupling coefficient and load conditions are changing. For the compensation
circuit topologies discussed below, the default system input is a constant voltage source
and the internal resistance of the device is ignored, unless otherwise specified. The fre-
quency bifurcation phenomenon under strong coupling conditions [36] and the unilateral
compensation topology with fewer application components used in low-power application
scenarios [37] are not considered.

3.2.2. Topology Design of Load-Independent Compensation Circuits

The load resistance, inductive reactance, and capacitive reactance of the MCR-DWPT
system change due to different operating conditions. The following section describes
the MCR-DWPT system with a pure resistance load, a resistance–inductance load, and a
resistance–capacitance load.

For an MCR-DWPT system with a constant pure resistive load, scholars have designed
a variety of compensation circuit topologies, including the basic compensation topology,
the high-order compensation topology, and the hybrid compensation topology, to achieve a
system output independent of the load.

Although the four basic compensation topologies of S/S, S/P, P/S, and P/P are able to
realize a constant-voltage or constant-current output independent of the load, they cannot
meet the requirements of the MCR-DWPT system because of weak adaptability to mutual
inductance changes [3]. The structures of the mentioned basic compensation topologies
are shown in Figure 5. In the diagrams of the circuits, Uin is the input high-frequency AC
voltage generated by the inverter. CP and CS are the compensating capacitors. L1, L2, and M
are the transmitter self-inductance, receiver self-inductance, and mutual inductance of the
coupling devices, respectively. RL is the resistance of the load. The S/S-type and S/P-type
compensation topologies can achieve a constant-current or constant-voltage output by
adjusting the parameters, but there is a risk of overcurrent because the input impedance
is only the parasitic resistance of the transmitter device under a light load or no load.
An additional protection circuit is needed to prevent the system from being damaged
due to an excessive offset between the transmitter and the receiver. The P/S-type and
P/P-type compensation topologies are only applicable to an MCR-DWPT system whose
input power supply is a current source because there is no DC blocking capacitor on the
transmitter of the compensation topology, and the AC component of the input current leads
to the saturation of the magnetic core in the coupling mechanism, which makes the system
ineffective.
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Figure 5. Four basic compensation topologies: (a) S/S; (b) S/P; (c) P/S; and (d) P/P.

The traditional high-order compensation topologies such as the LCL/LCL type and
the LCC/LCC type are able to realize a load-independent constant-current output. The
LCC/LCC type retains the advantage over the LCL/LCL type that the output current is
independent of the load resistance and proportional to the coupling coefficient, and the
system design freedom is increased. The disadvantage is that the number of compen-
sation devices is large. In [38], an LC/S-type constant-current-output load-independent
compensation circuit topology was proposed. This topology requires fewer compensation
devices. However, most of the loads are voltage-type loads, so it is necessary to design a
load-independent compensation circuit topology with a constant-voltage output. In [35],
a novel LCC/S-type compensation topology based on a T-type resonant network was
proposed. This topology has the advantages of constant gain, near-zero reactive power,
the easy realization of ZVS, and high efficiency. In [39], a passive component optimization
method based on an S/LCC-type compensation topology was proposed. This method is
used to charge a group of electric bicycles at the same time with a high-frequency inverter.
Using the optimization method, the number of components is reduced, and the optimized
topology can still achieve a constant-current and a constant-voltage output. The overall cost
of the system is reduced accordingly. The high-order compensation topologies mentioned
above are shown in Figure 6.
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For an MCR-DWPT system with a resistance–inductance load, a resistance–capacitance
load, or variable load resistance, most of the current studies use the basic compensation
topology to identify the load parameters. The calculation speed and the accuracy of the
load identification are low for the high-order compensation topology because of the high
order of the mathematical model and the size of the calculation. In [40], for the S/S-
type compensation topology, a load parameter identification method based on a genetic
algorithm was proposed. The method uses the transmitter sampling data to calculate the
parameters, and the system load degree is low. However, the method only estimates the
load resistance. In [32], for an LCC/LCC-type compensation topology, an identification
method for battery load parameters based on measured transmitter circuit parameters was
proposed. This method accurately estimates a battery’s state of charge.

3.2.3. Topology Design of Coupling-Independent Compensation Circuit

Due to the relative motion between the transmitter and the receiver of the MCR-
DWPT system, the coupling coefficient of the system changes. The traditional way of
compensating for the self-inductance or leakage inductance of the device causes the system
parameters to change with the coupling coefficient, which affects the stability of the system.
A variety of algorithms are used to design the parameters of the compensation capacitor
and the inductance, which makes the compensation topology insensitive to changes in
the coupling coefficient and improves the stability of the system. In [41], a design method
for compensation topology parameters based on a particle swarm optimization (PSO)
algorithm was proposed, and the parameters of an S/CLC-type compensation topology
were designed. The experimental results show that the method significantly reduces the
ripple voltage change in the system when the coupling coefficient and load change. In
addition, the power transmission efficiency of the WPT system is improved. In [42], a
multi-objective optimization method for the power fluctuation factor and the reactive
power component based on a genetic algorithm (GA) was proposed, and the parameters of
a T-type compensation topology were designed. The experimental results show that the
method effectively reduces the power factor fluctuation caused by changes in the coupling
coefficient due to changes in the device gap in the process of DWPT in electric vehicles.

3.2.4. Topology Design of Reconfigurable Compensation Circuits

In order to adapt to different working conditions, scholars have proposed a variety
of reconfigurable compensation circuit topologies that adapt to various output modes by
switching the topology and greatly improve the flexibility of the MCR-DWPT system.

In [43], a reconfigurable compensation circuit topology based on the receiver of the
LCL-type compensation topology was proposed. The automatic switching method of
the constant-current and constant-voltage charging mode is completed by switching the
parameters of the receiver resonance compensation network. This method does not need
wireless communication between the transmitter and the receiver and does not need
to change the input voltage or frequency of the transmitter. The switching process is
stable. In [44], based on the equivalent detuning S/S-type compensation topology, a
reconfigurable compensation circuit topology and its parameter design method were
proposed. By establishing the power-coupling coefficient (P-k) curves of two compensation
topologies, the system is able to operate in the top regions of the P-k curves by switching
from one topology to another, which helps to improve the system’s efficiency. In [45], a
reconfigurable compensation circuit topology based on a capacitor matrix was proposed.
This topology is able to ensure the impedance matching of the variable frequency system
by controlling the switch to dynamically connect the specific capacitor in order to realize
the encryption of the DWPT system for a cluster of electric vehicles. Figure 7 shows the
structures of the three reconfigurable compensation circuits mentioned above.
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Figure 7. The structures of the three reconfigurable compensation circuits: (a) a reconfigurable
compensation circuit topology based on the receiver of the LCL-type compensation topology; (b) a
reconfigurable compensation circuit topology based on the equivalent detuning S/S-type compensa-
tion topology; and (c) a reconfigurable compensation circuit topology based on a capacitance matrix
(capacitance matrix section).

3.3. Strategy Research of System Control

The control strategy of the MCR-DWPT system is to improve the transmission power or
efficiency of the system on the premise of maintaining stability under dynamic conditions as
well as to make the system operate quickly and stably when switching operating conditions.
The MCR-DWPT system control mode can be divided into four types: transmitter control,
receiver control, bilateral open-loop control, and bilateral closed-loop control [3]. Four
control structures of the MCR-DWPT of UGVs are shown in Figure 8.
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3.3.1. Transmitter Control

The transmitter control of the MCR-DWPT system includes the frequency conversion
and the phase shift control of the high-frequency inverter as well as the duty ratio control
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of the transmitter DC-DC converter. In [46], a proportional–integral (PI) controller was
used to control the phase shift angle of a phase-shifted full-bridge circuit, which realized
constant-voltage and constant-current control without communication with the receiver.

The transmitter-side control does not need to communicate with the receiver and rely
on the load, but it is unable to adjust the load output and achieve the maximum efficiency.

3.3.2. Receiver Control

The transmitter control of the MCR-DWPT system includes the phase shift control of
the high-frequency rectifier, load control, the impedance matching of the receiver DC-DC
converter, and so on. In [47], a power fluctuation suppression strategy based on a buck–
boost circuit was proposed for the DWPT of electric vehicles with a single transmitter and
a receiver. In [48], by realizing the double-closed-loop control of an outer-loop constant-
current mode and an inner-loop saturation constant-voltage mode of a DC/DC circuit on
the vehicle side, the transmission efficiency of the system was improved and the high-
frequency inverter on the ground side was ensured to work in a soft switching state. In [49],
by establishing the state-space model of the buck circuit at the power receiver, a constant-
current control method combining a Kalman filter and a model of predictive control was
proposed. This method is able to significantly improve the speed of constant-current control
at the receiver of the MCR-DWPT system and has strong robustness during changes in
mutual inductance.

The receiver control does not require data communication with the transmitter and
achieves a constant-voltage, constant-current, or maximum-efficiency output on the load
side. However, the receiver cannot achieve a wide range of control due to the inability to
control the parameters of the transmitter.

3.3.3. Bilateral Open-Loop Control

The bilateral open-loop control of the MCR-DWPT system controls the transmitter
and the receiver without communication. The transmitter and the receiver are able to be
closed-loop-controlled independently. Because there is no communication between the
transmitter and the receiver, the whole system is in open-loop control. In [50], a bilateral
non-communication control strategy was proposed. In this strategy, the disturbance and
observation method is used to shift the phase of the inverter in the transmitter to track the
system with maximum efficiency. The PI control is used to adjust the phase-shifting angle
in the receiver to achieve a constant-current output.

Bilateral open-loop control is able to simultaneously achieve maximum power control
in the transmitter and maximum efficiency control in the receiver. However, due to the lack
of communication between the transmitter and the receiver, there are control conflicts in
the system, which reduce the stability of the system.

3.3.4. Bilateral Closed-Loop Control

The bilateral closed-loop control of the MCR-DWPT system is mainly to control the
transmitter and the receiver as a whole system under the condition of communication. The
data exchange between the transmitter and the receiver is the premise of bilateral closed-
loop control. There are three common communication modes: short-distance wireless
communication, dual-channel transmission, and shared-channel transmission. According
to the different types of communication modules, short-range wireless communication
can be divided into Wi-Fi, ZigBee [51], Bluetooth, infrared, 4G, and 5G, etc. Dual-channel
transmission is divided into the magnetic-field eccentric type [52], the magnetic-field
coaxial type [53], and the electric-field type [54], according to the nature and location of
the data transmission channel. The shared-channel transmission mode is divided into the
amplitude-modulation type [55], the tuning type [56], the time-division multiplexing (TMD)
type, and the frequency-division multiplexing (FMD) type [57], according to the different
data injection methods. The advantages and disadvantages of various communication
modes are shown in Table 2.
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Table 2. The advantages and disadvantages of various communication modes [52–59].

Means of
Communication Classifications Advantages Disadvantages

Wireless
communication

Wi-Fi Wide range coverage Vulnerable to electromagnetic
interference

ZigBee Low power consumption
Low complexity

Weak communication stability
Short transmission distanceBluetooth

Infrared
Communication Good confidentiality Weak anti-offset ability

4G/5G
High bandwidth and

transmission rate
Low transmission delay

Requirement of
communication stations

Dual-channel
transmission

Magnetic-field
eccentric type

Low crosstalk
High data transmission rate

Large volume
Sensitive to angle offset

Magnetic-field
coaxial type

Small volume
High data transmission rate

High crosstalk
Complicated implementation

Electric-field type Low crosstalk
High data transmission rate

Complex system
Weak anti-offset ability

Shared-channel
transmission

Amplitude-
modulation type

Simple principle
Easy implementation

Poor anti-noise property
High bit error rate

Tuning type High anti-noise property
Full duplex data transmission

Output power greatly affected by the
operating frequency

TMD type Simple principle
Low communication rate

Complicated control system
Low reliability

FMD type
High data transmission rate

High anti-noise property
Easy implementation

Complicated design of data injection,
extraction circuit, and filter circuit

In [58], an optimal impedance control strategy based on an active single-phase rectifier
(ASPR) was proposed. Two closed loops are applied to regulate the equivalent resistance
and reactance of the ASPR to make sure that not only the receiver side is resonant but
also the equivalent resistance of the load is close to the optimal one. Another closed
loop is dedicated to regulating the output voltage/current by adjusting the input voltage.
The measured output voltage V0 is transferred to the transmitter-side controller via a
wireless communication link. A PI controller is employed to regulate the output voltage
by adjusting the pulse-width α of the inverter. In [51], a DWPT control system based
on an LCC/S-type compensation topology was proposed. In this system, the duty ratio
of the DC/DC converter is controlled by PI controllers in both the transmitter and the
receiver, and the mutual inductance of the devices can be estimated quickly to realize a
stable output and maximum-efficiency tracking under dynamic conditions. In [59], based
on the LCL/S-type compensation topology, a method of dynamically searching for the
optimal operating frequency related to the load was proposed. This method does not rely
on the estimation of the load or the coupling coefficient. The system’s efficiency can be
improved by dynamically changing the pulse width of the transmitter’s high-frequency
inverter according to the circuit parameters of the transmitter and the receiver.

Bilateral closed-loop control is able to realize the control of multiple output modes
because of the data exchange between the transmitter and the receiver, but the real-time
performance of the system is poor because of the communication delay.

4. Key Challenges in MCR-DWPT of UGV

Although a large number of research achievements have been made in the field of
MCR-DWPT, there are still many challenges to be investigated, which are listed as follows:

1. The anti-offset performance of the coupling device has to be improved.

At present, the proposed structure of the MCR-DWPT device on UGVs generally has
the shortcomings of a complex device structure, large mass and volume, and a large ferrite
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core, which increases the cost of the device and limits the application scenarios of the device.
Coupling devices with resistance to horizontal offset are highly required for the carrier-type
grouping of UGVs, and anti-angle-offset coupling devices are of great use to the system of
the formation-type grouping of UGVs. In addition, in order to realize the “charging while
driving” of the UGVs, it is necessary to design a coupling device to meet the requirements
of high power and efficiency. Further studies are needed related to the aspects of the
transmission power level, transmission efficiency, and electromagnetic shielding.

2. The topology of the compensation circuit has to be optimized.

Current research on the topology of the compensation circuit is fruitful, and various
compensation topologies and parameter design methods have been proposed to reduce
the reactive power of the system and improve the stability of the system’s output. How-
ever, due to the relative motion of UGVs, the coupling device of the transmitter and the
receiver dynamically change their relative position and the working conditions often switch
according to the operating situation. Therefore, the requirements for the adaptability of
compensation topology parameters to changes in coupling coefficients and load character-
istics continue to increase. The future research directions of compensation circuit topology
will mainly focus on the optimization algorithm design of compensation circuit parameters,
dynamic system modeling, reconfigurable compensation topology design, and so on.

3. The system control strategy has to be improved.

The current research on the control strategy of the MCR-DWPT system mainly has
the difficulties of poor real-time control, the low accuracy of dynamic parameter identi-
fication, the complex structures of detection and control circuits, and so on. As for both
the carrier-type and the formation-type grouping of UGVs, the priority of power and
efficiency is a question to be answered in the design of system control strategy. Moreover,
simultaneous wireless power and data transfer for real-time control, intelligent algorithms
to estimate the coupling coefficient and load characteristics of the MCR-DWPT system,
and a simplified design of the control system need to be further researched to enhance the
MCR-DWPT system.

In addition to the three challenges mentioned above, the MCR-DWPT system of UGVs
also has many disadvantages related to electromagnetic compatibility (EMC), foreign object
detection (FOD), and environmental adaptability that need to be studied further.

5. Conclusions

In this paper, the research status of the MCR-DWPT technology of UGVs is reviewed,
including the aspects of the coupling device, compensation circuit topology, and system
control strategy. The basic structure and characteristics of the MCR-DWPT system of UGVs
are summarized, the key challenges to be investigated are reviewed, and future research
directions are proposed. With the development of key technologies mentioned above, MCR-
DWPT systems are increasingly applied to both the carrier-type and the formation-type
groupings of UGVs in the near future. As for the carrier-type grouping of UGVs, MCR-
DWPT systems are hopefully reaching short-distance (less than 50 cm) MCR-DWPT with
an efficiency of more than 90 percent and an anti-offset distance of up to tens of centimeters.
Moderate-distance (about one meter to several meters) MCR-DWPT with tens of kilowatts
of power and an efficiency of about 70 percent has the opportunity to be realized in the
formation-type groupings of UGVs. Although MCR-DWPT technology still has many issues
to be advanced, as a convenient, safe, and environmentally adaptable power transmission
mode, it has great research prospects in both UGVs and other industrial fields.

Author Contributions: Conceptualization, F.X. and D.Y.; methodology, S.W.; software, J.L.; valida-
tion, F.X., S.W., and J.L.; formal analysis, D.Y.; investigation, S.W.; resources, D.Y.; data curation,
J.L.; writing—original draft preparation, F.X.; writing—review and editing, J.L.; visualization, F.X.;
supervision, J.L.; project administration, D.Y.; funding acquisition, S.W. All authors have read and
agreed to the published version of the manuscript.



Electronics 2023, 12, 1506 15 of 17

Funding: This research was funded by the Industrial Bureau of China (grant number 20222020161).
The APC was funded by Dong Yuan.

Data Availability Statement: This study did not include any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, J.; Wei, S.; Liao, Z.; Zang, K. Review on the development of all-electric key technologies for land warfare platforms. J. Ordnance

Eng. 2021, 42, 2049–2059.
2. Ma, X.; Yuan, D.; Xiang, Y.; Wei, S. Research on integrated power system of land warfare platform and its key technologies.

J. Ordnance Eng. 2017, 38, 396–406.
3. Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless Power Transfer for Vehicular Applications: Overview

and Challenges. IEEE Trans. Transp. Electrific. 2018, 4, 3–37. [CrossRef]
4. Chen, K.; Cheng, K.W.E.; Yang, Y.; Pan, J. Stability Improvement of Dynamic EV Wireless Charging System with Receiver-Side

Control Considering Coupling Disturbance. Electronics 2021, 10, 1639. [CrossRef]
5. Lee, E.S.; Sohn, Y.H.; Choi, B.G.; Han, S.H.; Rim, C.T. A Modularized IPT With Magnetic Shielding for a Wide-Range Ubiquitous

Wi-Power Zone. IEEE Trans. Power Electron. 2018, 33, 9669–9690. [CrossRef]
6. Dinis, H.; Mendes, P.M. A Comprehensive Review of Powering Methods Used in State-of-the-Art Miniaturized Implantable

Electronic Devices. Biosens. Bioelectron. 2021, 172, 112781. [CrossRef]
7. La Rosa, R.; Livreri, P.; Trigona, C.; Di Donato, L.; Sorbello, G. Strategies and Techniques for Powering Wireless Sensor Nodes

through Energy Harvesting and Wireless Power Transfer. Sensors 2019, 19, 2660. [CrossRef]
8. Li, Y.; Ni, X.; Liu, J.; Wang, R.; Ma, J.; Zhai, Y.; Huang, Y. Design and Optimization of Coupling Coils for Bidirectional Wireless

Charging System of Unmanned Aerial Vehicle. Electronics 2020, 9, 1964. [CrossRef]
9. Afonso, J.A.; Duarte, H.G.; Cardoso, L.A.L.; Monteiro, V.; Afonso, J.L. Wireless Communication and Management System for

E-Bike Dynamic Inductive Power Transfer Lanes. Electronics 2020, 9, 1485. [CrossRef]
10. Shi, K.; Tang, C.; Long, H.; Lv, X.; Wang, Z.; Li, X. Power Fluctuation Suppression Method for EV Dynamic Wireless Charging

System Based on Integrated Magnetic Coupler. IEEE Trans. Power Electron. 2022, 37, 1118–1131. [CrossRef]
11. Mohsan, S.A.H.; Othman, N.Q.H.; Khan, M.A.; Amjad, H.; Żywiołek, J. A Comprehensive Review of Micro UAV Charging
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