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Abstract: In the research field of small object detection, most object detectors have been successfully
used for pedestrian detection, face recognition, lost and found, and automatic driving, among other
applications, and have achieved good results. However, when general object detectors encounter
challenging low-resolution images from the TinyPerson dataset, they will produce undesirable
detection results because of the dense occlusion between people and different body poses. In order
to solve these problems, this paper proposes a tiny object detection method TOD-YOLOv7 based
on YOLOv7.First, this paper presents a reconstruction of the YOLOv7 network by adding a tiny
object detection layer to enhance its detection ability. Then,we use the recursive gated convolution
module to realize the interaction with the higher-order space to accelerate the model initialization
process and reduce the reasoning time. Secondly,this paper proposes the integration of a coordinate
attention mechanism into the YOLOv7 feature extraction network to strengthen the pedestrian object
information and weaken the background information.Additionally, we leverage data augmentation
techniques to improve the representation learning of the algorithm. The results show that compared
with the baseline model YOLOv7, the detection accuracy of this model on the TinyPerson dataset
is improved from 7.1% to 9.5%, and the detection speed reaches 208 frames per second (FPS). The
algorithm of this paper is shown to achieve better detection results for tiny object detection.

Keywords: object detection; YOLOv7; recursive gated convolution; tiny object detection layer;
coordinate attention mechanism

1. Introduction

Pedestrian detection is a crucial research area in computer vision, and thanks to
advancements in deep learning technology, it has made unprecedented progress in recent
years. Its application prospects have become more extensive, covering many fields, such
as assistant driving, intelligent robots, intelligent transportation, rescue operations, and
motion analysis [1,2]. However, the detection of tiny people objects (i.e., a single-person
image less than 20 pixels [2,3]) requires thorough study, due to the significant challenges
posed by dense occlusion between people and diverse poses [4]. There are two types of
dense occlusion: inter-class occlusion, such as when people are blocked by cars, trees, or
other objects, leaving only a tiny part of the human body exposed, and intra-class occlusion,
where people walking on the street block each other. When people are reduced in proportion
due to these types of occlusion, the background is enlarged, resulting in a scene with the
dense occlusion of tiny people. In this case, the detection system may misjudge due to
the huge and complex background, which can seriously impact the performance of the
pedestrian detector [5]. Pedestrian detection generally requires a complete pedestrian object
within the detection anchor. However, the human body is a non-rigid object that can adopt
a range of postures, such as lying, sitting, and standing. This necessitates the network to
identify the human body with different postures and provide an accurate full-body anchor;
selecting the appropriate anchor is a significant research challenge.
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Existing pedestrian detection datasets, such as CityPersons [6], mainly target short or
medium distances, while INRIA primarily focuses on upright pedestrians’ data, making
them unsuitable for people for scenes with large areas and very long distances or for
meeting the features of different pedestrian postures. The TinyPerson dataset aims at
search and rescue scenes at sea or on the beach. The images in this dataset have the two
significant difficulties mentioned above. Unlike objects of normal scale, tiny objects are
more challenging to detect due to their small proportion in the image. Additionally, during
the transmission process, the picture’s or video’s resolution may reduce and blur after the
encoding and decoding process, causing the tiny objects to mix with the background. This
requires a high computational power GPU (graphics processing unit) and much time to
train [2], adding several challenges to producing qualified models.

This paper comprehensively considers the applicability and real-time performance
of the object detection model in more scenarios and based on the features of quick and
easy deployment of the one-stage algorithm YOLO (You Only Look Once) series [7] model
reasoning. The speed and accuracy of YOLOv7 exceed all known object detectors from 5FPS
to 160FPS [8]. This paper proposes an improved TOD-YOLOv7 model, which introduces
the recursive gated convolution module to reduce the reasoning time by performing higher-
order spatial interaction through gated convolution and recursive design [9]. Then, it
reconstructs the network structure and adds a tiny object detection layer [10] to enhance
the feature extraction network’s ability to detect tiny objects. This paper further integrates
a coordinate attention mechanism (CA) into the YOLOv7 feature extraction network to
strengthen the information on pedestrian objects. This paper trains the TOD-YOLOv7
model from scratch using only the TinyPerson dataset and utilizes data augmentation
methods, such as Mixup and Mosica, to improve the algorithm’s representation learning.
Compared with YOLOv7, this method achieves better object detection performance in
ultra-low resolution images and outperforms it in detection tasks. The comparison of the
effects is shown in Figure 1.

(a)

(b)

Figure 1. Intuitive examples on TinyPerson dataset [2] demonstrate the differences before and after
the algorithmic improvements. (a) In the original YOLOv7 detection, many objects are missed in the
enlarged detail. (b) This paper’s improved algorithm TOD-YOLOv7 can detect more objects.
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In summary, this article has the following contributions:

• This paper comprehensively analyzed the difficulties in the detection of tiny people,
and proposed a network object detection scheme based on YOLOv7 to detect the ob-
jects in the TinyPerson image proposed in the context of rapid rescue at sea, providing
a reference for new research.

• This paper reconstructed the YOLOv7 network by adding a tiny object detection
head and combined it with recursive gating to explore its prediction potential with a
self-attention mechanism. This reduces the reasoning time and improves the accuracy
of the model. This paper also introduced a coordinate attention mechanism to ad-
dress misdetections in tiny object detection, and combined the convolution attention
mechanism and self-attention mechanism [11] to optimize the features.

• The proposed TOD-YOLOv7 improves the detection performance of the most ad-
vanced detector YOLOv7 by a significant improvement (2.4%).

2. Related Work
2.1. Dataset Description and Processing

Pedestrian detection is a popular algorithm in the field of computer vision and has
widely been used [1]. Therefore, to achieve accurate and detailed results, it is necessary to
have a pedestrian dataset with rich scenes, a large scale, and more detailed and accurate
annotations for training and testing. Common datasets used for this purpose include MIT-
CBCL, USC, Caltech-USA [12], DukeMTMC, INRIA [13], CityPersons [6] and Daimler [14].
The availability of these datasets promoted the development of pedestrian detection tech-
nology, and the continuous updating of these datasets reflects the desire for better datasets.
However, many of these datasets are collected in urban scenarios and have high-resolution
images with pedestrian objects occupying a large proportion, which is not conducive to
training a model that can detect tiny objects. The TinyPerson dataset addresses this limi-
tation, as it contains smaller-sized images with multiple poses and viewpoints, bringing
greater complexity and making detection more difficult. Its most prominent feature is the
presence of a deficient foreground-to-background object ratio with dense objects, with a
person represented by a low-resolution object of fewer than 20 pixels in complex scenarios,
such as a beach or the sea. Although this poses a challenge to the detection model, this
diversity enables the model trained on the TinyPerson dataset to be well extended to more
scenarios, leading to better performance in other systems.

Due to the small size of the object dataset used and the tiny size of the person objects
being detected, to reduce the problem of too few samples and prevent over-fitting, this
paper uses data augmentation. Currently, MixUp and Mosaic are considered effective
data augmentation methods for image tasks in deep learning. An example of the data
augmentation effect is shown in Figure 2. MixUp is carried out by interpolation, and
the core idea is to randomly mix two training samples and their labels in a particular
proportion.

(a) Origin (b) MixUp (c) Mosaic

Figure 2. Results of different data augmentation methods.

This hybrid method can increase sample diversity, smooth the transition of different
types of decision boundaries, reduce the misrecognition of complex samples, improve
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model robustness, and increase training stability. Mosaic combines multiple images into
one image in a particular proportion. Similar to FMix [15], it belongs to the CutMix data
augmentation algorithm. The resulting mosaic image has a higher level of detail and more
labels, and training on it is equivalent to training on multiple tiny images, which allows
the model to recognize objects in a smaller range and improve the detection performance
of tiny objects.

2.2. Object Detection

The object detection algorithm typically samples numerous regions in the input image
and then evaluates whether these regions contain objects of interest. The algorithm then
adjusts the region boundary to more accurately predict the true boundary box of the
object. At present, the commonly used object detection technology can be divided into
two categories: anchor-based and anchor-free. The anchor-free algorithm directly predicts
the location and size of the target through intensive prediction. However, this approach
generates a large number of candidate boxes on the feature map, most of which are
background boxes without the target. This increases the computational complexity and
false detection rate. Moreover, small targets are challenging to detect because their size is
very small. If the receptive field of the network is too large, it becomes difficult to obtain
an accurate feature representation of small targets in the high-level feature map, which
leads to a decrease in detection accuracy. The anchor-free algorithm is not suitable for
detecting tiny objects in this paper, so the anchor-based algorithm is chosen. It can be
further divided into two categories: one-stage and two-stage algorithms. The two-stage
algorithm generates anchors with different sizes and proportions at each point of the
feature map and then filters the anchors through a region proposal network (RPN) [16],
such as Mask R-CNN [17], Faster R-CNN [16], Cascade R-CNN [18], etc. This approach
provides high accuracy. On the other hand, the one-stage algorithm divides the original
image into several grids and then obtains anchors of different sizes in each grid through
a clustering method. It then determines the intersection over union (IOU) between the
actual anchor and the predicted bounding box to obtain the training object, which is
faster. Common one-stage algorithms include YOLO [19], YOLO9000 [7], YOLOV3 [20],
YOLOV4 [21], YOLOV5, SSD [22], RetinaNet [23], etc. It is worth mentioning that although
YOLOv5 has shown excellent performance in many scenarios, the YOLO official team
has not published relevant papers on YOLOv5. Since its introduction in 2016, YOLO has
widely been used in real-time systems for object recognition and positioning based on
deep neural networks. With continuous iteration and improvement, the YOLO team
has made significant strides in balancing speed and accuracy, making it the mainstream
technology for object detection. YOLOv5 is considered a classic version, while YOLOv7
introduced model re-parameterization into the network architecture based on YOLOv5
and proposed a new efficient aggregation network architecture, ELAN (efficient long-range
attention network), along with a training method that includes an auxiliary head [8,24].
This approach made YOLOv7 the most advanced object detector in the range of 5 FPS to
160 FPS. Therefore, this paper chose YOLOv7 as the baseline network in this research.

3. Tiny Person Detection Network
3.1. TOD-YOLOv7

The main network structure of TOD-YOLOv7 is depicted in Figure 3. The architecture
consists of three parts: backbone, neck, and head. First, this paper continues to use the
efficient aggregation network structure ELAN [8,24] in the backbone network to facilitate
the network in learning more features and improving its robustness by controlling the
shortest and longest gradient path. Building on this, this paper attempts to replace part
of the ELAN structure with the recursive gated convolution (gnConv) module [9], which
implements gnConv based on convolution and avoids the secondary complexity of self-
attention. The design of gradually increasing the channel width during the execution of
spatial interaction also enables us to achieve high-order interaction with limited complexity.
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Given that the foreground objects in TinyPerson data are typically ultra-low pixels, this
study reconstructed the YOLOv7 network. Specifically, this paper incorporated a tiny
object detection module [25,26] in the neck layers and added an extra tiny object detection
header to improve the detection performance of the algorithm for tiny objects. Additionally,
this paper integrated a coordinate attention module, which encodes the feature maps
obtained from the upstream input separately and outputs them as a pair of directional
perception and location-sensitive attention maps. These attention maps can be applied to
the downstream input feature maps to enhance the network’s ability to accurately locate
and identify objects of interest.

Figure 3. The network structure of TOD-YOLOv7. The red dotted box in the figure represents the
extra detection head that this paper added to the model. The lower part of the figure illustrates the
structural schematic diagram of specific components.

3.2. gnConv

In the field of tiny object detection, there are numerous instances where the size
of the datasets needs to be increased to enhance the model’s expression ability during
training. This presents a challenge for the network model whose training dataset is not
large enough. Among the features of a model, there can be complex and high-level
interactions between any two spatial positions [9]. When this interaction is explicitly
modeled in the model, it will improve the expression ability of the model. The success of self-
attention [11] in visual transformer [27] proves this point. The idea of explicitly modeling
higher-order spatial interaction is applied to CNN (convolutional neural network) so that
neural networks can also complete higher-order spatial interaction. The recursive gated
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convolution (gnConv) module implements this concept by combining the recursive strategy
and gated convolution (gConv); it is constructed using standard convolution through
linear projection and element multiplication and performing spatial information interaction
between the volume integration layer and full connectivity layers. This approach enhances
the model’s expression ability, which is crucial for successful detection in minuscule scenes.
If this paper sets the upstream input feature as x ∈ RHW×C, the output of the basic operation
gConv in gnConv can be expressed as

[pHW×C
0 , qHW×C

0 ] = φin(x) ∈ RHW×2C,

p1 = f (q0)� p0 ∈ RHW×C,

y = φout(p1) ∈ RHW×C,

(1)

In Equation (1), f is the depth convolution layer, φin and φout represent the linear pro-
jection’s input and output operations, complete information interaction between adjacent
features through element-wise multiplication, and output through linear projection. Here,
this paper can express the first-order interaction between the feature p(i)0 (such as area A in

Figure 4a) and its surrounding adjacent area q(j)
0 (such as area B in Figure 4a) as

p(i,c)1 = ∑
j∈Ωi

wc
i→jq

(j,c)
0 p(i,c)0 , (2)

where Ωi is the current local window with i as the central coordinate, and w is the weight
of depth convolution f . Each p0 only interacts with adjacent feature q0 once. In the same
way, it is easy to achieve information interaction between long-distance and higher-order
space and combine the features of each level in the adjacent areas around the object features
to obtain [qHW×C0

0 , ..., qHW×Cn−1
n−1 ], it is can let the {qk}n−1

k=0 = [qHW×C0
0 , ..., qHW×Cn−1

n−1 ], so

[pHW×C0
0 , qHW×C0

0 , ..., qHW×Cn−1
n−1 ] = [pHW×C0

0 , {qk}n−1
k=0 ] = φin(x) ∈ RHW×(C0+ ∑0≤k≤n−1 Ck). (3)

Then let the gated convolution gConv proceed recursively:

pk+1 =
fk(qk)� gk(pk)

α
, k = 0, 1, ..., n− 1, (4)

In Equation (4), fk is a set of deep convolution layers, gk is used to match the number
of channels in each recursive process, and α is the scaling factor. In order to maintain the
stability of training, divide the result by α to scale. In this paper, we give the calculation
method of gk:

gk =

{
Identity, k = 0,

Linear(Ck−1, Ck), 1 ≤ k ≤ n− 1.
(5)

When k=0, gk is a certain value related to the specific network model. Ck sets the
channel dimension of each order in the form of exponential decrement to reduce the
excessive computational overhead in the process of higher-order information interaction.
The calculation formula is as follows:

Ck =
C

2n−k−1 , 0 ≤ k ≤ n− 1. (6)

To obtain the gnConv output, the result qn from the last recursive calculation in
Equation (3) is fed into the linear projection layer φout. The recursion proceeds for n
iterations, during which k is incremented by 1 for each iteration, and pk is updated to pk+1
as specified in Equation (4). This enables the n-order information interaction between a
feature of the middle layer and its surrounding adjacent region features to be realized. As
shown, Figure 4b recognizes the third-order information interaction between the feature
and surrounding regions. To improve the calculation efficiency, this paper can compute
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the combined adjacent feature qk
n−1
k=0 using a deep convolution module f on the GPU for

simplified implementation, instead of computing it n times using Equation (4). According
to the experiment of paper [9], gnConv shows very competitive performance for COCO
object detection [28], ImageNet-1K image classification [29] and ADE20K semantic segmen-
tation [30], which proves the effectiveness of this module. The experimental results in this
paper demonstrate that incorporating the gnConv module into the backbone network of
YOLOv7 significantly enhances the model’s expression ability without adding additional
parameters.

Figure 4. gnConv module realizes spatial information interaction of any stage. (a) Object key feature
(area A) and adjacent feature (area B). (b) Three-order information interaction is realized through
element multiplication and recursive operation between the target research area and adjacent features.

3.3. Tiny Object Detection Module

Considering that the TinyPerson dataset features ultra-low pixels of foreground ob-
jects, which appear at a long distance and a large background, training the model can
be difficult and may impact the final detection results. To address this issue, this paper
added an additional up-sampling module in the neck layer to improve image resolution
and output the result to the fourth detector, which can detect tiny objects on the beach
or sea. Furthermore, this study added one detector head and combined it with the other
three detector heads to achieve multi-scale detection, while reducing the negative impact
of object size changes and making the model more stable. This allows both large and tiny
image models to adapt and reduce the negative impact caused by severe object size changes,
such as the accurate recognition and positioning of objects. As shown in Figure 3, this
paper added an additional up-sampling structure at the end of the sampling structure on
the feature pyramid of the neck layer to generate a more expressive feature map. Similarly,
to maintain scale matching, this paper added a downsampling structure in the PANet
structure [31] to transfer back the more robust positioning features at the lower level to
maintain scale matching. This enhances the effect of the multi-scale fusion of features
and improves the robustness of the detection scale without significantly increasing the
amount of computation. This paper demonstrates that incorporating these modifications
into the YOLOv7 backbone network significantly improves the detectability of the model
for tiny objects.

3.4. Coordinate Attention

It is well established that the expressiveness of a model is positively correlated with the
number of parameters it possesses. Deeper networks tend to be more expressive [32] but
also require storing more information during the computation process. YOLOv7 achieves
excellent performance and generates a large amount of information for calculation, which
may lead to information overload. Therefore, it is necessary to let the network focus on
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the area of interest, namely the object area. Attention modules have been widely used
in deep learning for this purpose. By focusing on the information that is critical to the
task at hand, reducing attention to other information, and even filtering out irrelevant
information, the problem of information overload can be addressed, leading to improved
efficiency and accuracy of task processing. The coordinate attention module is a plug-and-
play module with little computational overhead (see Figure 5 for the network structure
diagram). Compared to the transformer method that converts the feature tensor into a
single feature vector through two-dimensional global pooling in channel attention [33], the
coordinate attention module splits the channel attention into two parallel one-dimensional
feature coding processes, effectively integrating spatial coordinate information into the
generated attention map.

Figure 5. Network structure of coordinate attention mechanism.

As shown in Figure 5, where C represents the number of channels, and r represents
the downsampling ratio used to control the size of the module, the CA module can be seen
as a computing unit that enhances the expressive power of the network. It takes the tensor
with intermediate feature P = [p1, p2, ..., pC] ∈ RHW×C as input to generate the enhanced
representation Q = [q1, q2, ..., qC] ∈ RHW×C in the same dimension as P. After the residual
block [34,35] processing, respectively subject the inputs X and Y to one-dimensional global
pooling operation (X represents horizontal direction, Y represents vertical direction), and
encode the position information of each channel during the pooling process, then obtain
the output fh at the c-th channel with the height h as shown in Formula (7) and output fw
at the c-th channel with width w as shown in Formula (8). The calculation formula is as
follows:

fh =
1

W ∑
0≤i≤W

zc(h, i), (7)

fw =
1
H ∑

0≤i≤H
zc(j, w). (8)

where z refers to the encoding operation that saves the position information in the generated
attention map, then splices fh and fw proceed with the convolution of 1× 1 to obtain the
intermediate feature map G in the horizontal and vertical directions. Then, it carries out
the normalization and nonlinear transformation operation on G to encode the spatial
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information in the vertical and horizontal directions to obtain G′, finally cuts G′ back to the
two independent directions of h and w, proceeds with the convolution operation of 1× 1 to
obtain the same number of channels as the input feature map, and finally, the normalization
operation is weighted to obtain the final attention weight [36]. This attention operation
can distinguish the spatial direction (i.e., coordinates) and generate the coordinate sensing
feature map. In short, it not only captures the cross-channel information but also captures
the direction sensing and position-sensitive information, which helps the model more
accurately locate and identify the objects of interest. By integrating the CA module into
the improved YOLOv7, this paper focuses the model’s attention on the object area, which
improves the model’s performance. Specifically, the YOLOv7 MP-2 module is improved to
the MP-CA module. For more details, please refer to Figures 3 and 6.

Figure 6. CA focuses on key information by participating in the calculation in MP module.

4. Experiments
4.1. Experimental Setting

The TinyPerson dataset is designed for detecting tiny people and comes from collecting
high-resolution videos from different websites, and then collecting images every 50 frames
in the video and deleting some repetitive images [2]. The dataset is divided into two parts,
including 1610 tagged images and 759 unmarked images, with a total of 72,651 tags. During
the training process, adjustments to the model’s hyperparameters are typically made using
the model’s performance on the verification set as a feedback signal. To optimize the
performance of the model and prevent overfitting caused by information leakage, this
study increased the proportion of the verification set for the TinyPerson dataset. The results
of this paper show that a partition closer to 1:1 yields significantly better performance than
the traditional 8:2 or 9:1 partition. This study focuses on 1610 tagged images, of which 794
are used as training sets, and the other 816 are used as verification sets and also test sets.
To differentiate between people in the water and on land, this paper categorizes the human
objects as “sea person” and “earth person”. During training, this paper sets the initial
learning rate to 0.01, and due to the relatively small size of the user-defined datasets, this
paper uses the adaptive moment estimation algorithm (Adam) as the optimization function,
which automatically adjusts the learning rate. As training tiny objects requires more time,
after testing and comprehensive consideration of training time and GPU memory, this
paper sets the number of epochs and batch size to 1000 and 32, respectively. It can be seen
from Figure 7 that the model converges after 1000 rounds of training. This paper conducts
ablation experiments to improve YOLOv7, using the pre-trained model provided on the
official website since many modules of the improved network architecture are the same as
the layers in the original YOLOv7 module. This approach saves time and cost and does not
significantly affect the experiment’s accuracy. The environment used in this experiment
is PyTorch 1.10.0, Intel (R) Xeon (R) Platinum 8255C CPU@2.50GHz, and the training and
reasoning of all models are conducted on NVIDIA RTX 3090 GPU.

4.2. Evaluation Index

In this paper, the rating indicators choose include AP (average accuracy rate), P
(accuracy rate), R (recall rate), and Parms (parameter quantity). Set the following rules:
TP = “Positive samples are correctly identified as positive samples”, TN = “Negative sam-
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ples are correctly identified as negative samples”, FP = “Negative samples are incorrectly
identified as positive samples”, and FN = “Positive samples are incorrectly identified as
negative samples”. We have the following formula:

P =
TP

TP + FP

R =
TP

TP + FN
.

(9)

In Formula (9), P represents the proportion of positive correctly predicted samples
to all predicted samples, and R represents the proportion of positive correctly predicted
samples to all actual samples. IOU is the intersection ratio, which represents the ratio of
the intersection area between the detection anchor and the real anchor to their combined
area. Its numerical value indicates the accuracy of the object detector’s positioning ability.
AP25, AP50, and AP75 represent the average accuracy of IOU thresholds at 0.25, 0.5, and
0.75, respectively. Generally, AP@50:5:95 is used as the primary metric [37] to evaluate
the model’s performance. For ease of reference, it is expressed as AP in this paper, which
means that the IOU threshold is taken from 0.5 to 0.95 in steps of 0.05, and then the AP
mean value under these IOUs is calculated.

(a) (b)

(c) (d)

Figure 7. Training curve of TOD-YOLOv7 model. (a) is the curve of precision. (b) is the curve of
recall. (c) is the curve of AP@50. (d) is the curve of AP@50:5:95.
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4.3. Ablation

This paper analyzed the significance of each component change in the process of
improving YOLOv7. Subsequently, this paper conducted local testing of the model after
training after each change to verify the impact of adding the gn Conv module, tiny object
detection head, and coordinate attention module on detection performance. All ablation
experiments in this paper were carried out on the TinyPerson dataset. The details are
shown in Table 1. Each module is added to the baseline network YOLOv7 using gradual
improvement. To measure the impact on improving performance, this paper quoted three
indicators, parameter quantity, AP50, and AP, for comparison. It can be seen from Table 1
that the gnConv module reduced the number of parameters, and the tiny object detection
head and coordinate attention module increase the number of parameters, all of which
improved the performance.

Effect of gnConv module. The baseline network was modified in the backbone, and
the number of parameters was reduced by replacing the two-part efficient architecture
network ELAN. This did not bring about a performance reduction, which showed the
effectiveness of the gnConv module. The addition of this module increased AP50 by 1.9%,
while reducing the number of parameters by 1.1 M, and increasing AP by 1.1%, proving its
effectiveness.

Effect of coordinate attention module. The coordinate attention module enables the
network to focus on critical areas. Although it adds some parameter quantity, it does
not result in additional calculations. The impact on speed is ignored, and the effect of
parameter quantity is balanced. After adding the coordinate attention module, the AP
value of the network increased by 0.6%, improving the overall model. This shows that
the module enables the network to more accurately locate and identify the objects of tiny
people of interest.

Effect of extra prediction head. The addition of the tiny object detection module
increased the number of parameters by 2.6M in the model, as the length of the neck layer
was increased by 50%. The addition of an upsampling module allowed the model to
calculate the image at a higher resolution. This was more effective for the data of most
foreground objects, such as TinyPerson, that were less than 20 pixels. It is evident from
Table 1 that the increase reached a maximum of 2.6% in the case of AP50.

Table 1. Ablation experiments on the TinyPerson datasets.

Methods Parms (M) AP50 (%) AP (%)

Baseline 34.8 24.9 7.1
+gnConv 33.7(−1.1) 26.8 (+1.9) 8.2 (+1.1)

+ CA 35.3(+1.6) 27.4 (+0.6) 8.8 (+0.6)
+ Head 38(+2.7) 30 (+2.6) 9.5 (+0.7)

4.4. Contrast Experiment

This paper uses the principle of control variables to conduct comparative experiments.
Specifically, this paper trains the same dataset using different models to ensure consistency
of training parameters and initial hardware training environment. The effectiveness of
this work is verified by comparing the final models on the TinyPerson datasets. For the
detection task at long distances, this paper selected TPH-YOLOv5, a variant of YOLOv5,
to participate in the comparative experiment. TPH-YOLOv5 is designed to operate under
the flight conditions of an unmanned aerial vehicle (UAV), where images are captured at a
small scale and from far away from the target [25]; this results in blurred and low-resolution
images [38]. Furthermore, the UAV captures images with high-density objects that may
occlude one another, similar to the scene used in this experiment because the objects it
detects already contain pedestrians. Therefore, selecting TPH-YOLOv5 as a model for
comparison enables a more accurate evaluation of the performance of the models in this
paper. The detailed experimental results are presented in Table 2. As shown in this table,
this paper improved the YOLOv7 model, which outperforms other classic one-stage and
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two-stage models in terms of AP value under multiple IOU threshold conditions, while
having a lower number of parameters. This suggests that the improved network model is
more suitable for the scenario of tiny object detection.

Table 2. The comparison of the performance with mainstream object detectors on TinyPerson dataset.

Methods Image Parms (M) P (%) R (%) FPS AP25 AP50 AP75 AP (%)Size (%) (%) (%)

SSD 6402 34 24.3 27.6 24 2.4 3.7 1.5 1.8
Faster R-CNN 6402 40 15 13.2 15 7.4 15.1 3.2 5.8

YOLOv5 6402 6.7 46.2 21.2 86 20.3 20.7 18.2 7.4
TPH-YOLOv5 [25] 6402 43.3 48.4 27.4 31 25.1 25.5 20.7 8.2

YOLOv6 6402 17.2 45.1 28.3 32 15.2 18.9 3.7 6.8
YOLOv7 6402 34.8 47.7 27.5 256 23.6 24.9 22.3 7.1

TOD-YOLOv7 (Ours) 6402 38 50.1 32.2 208 28.7 30 27 9.5

5. Conclusions

The TinyPerson dataset used in this paper presents a significant challenge for object
detection networks due to its ultra-low pixel objects with less than 20 pixels, long distance,
large background, and dense population. To address these challenges, this paper improved
upon the most advanced object detector, YOLOv7, by replacing some ELAN modules in
the backbone network with recursive gated convolution, adding a tiny object detection
module to improve the detection accuracy of small objects, incorporating a coordinate
attention mechanism to focus the improved model on critical areas, and utilizing data
augmentation during training to enhance performance. Based on these improvements, this
paper proposes the TOD-YOLOv7 model with more robust performance in the field of
tiny-person detection, which demonstrates significantly superior performance compared
to existing mainstream object detectors, achieving an AP of 9.5% in the TinyPerson task.
Compared with the original network YOLOv7, the algorithm of this paper exhibits high
detection accuracy and robustness, making it feasible for rapidly detecting tiny people in
remote and large background scenes through object detection. We hope that this experiment
will assist researchers in gaining better insights into the study of tiny people.
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