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Abstract: The task of identifying anomalous users on attributed social networks requires the detec-
tion of users whose profile attributes and network structure significantly differ from those of the
majority of the reference profiles. GNN-based models are well-suited for addressing the challenge
of integrating network structure and node attributes into the learning process because they can effi-
ciently incorporate demographic data, activity patterns, and other relevant information. Aggregate
operations, such as sum or mean pooling, are utilized by Graph Neural Networks (GNNs) to combine
the representations of neighboring nodes within a graph. However, these aggregate operations
can cause problems in detecting anomalous nodes. There are two main issues to consider when
utilizing aggregate operations in GNNs. Firstly, the presence of anomalous neighboring nodes may
affect the representation of normal nodes, leading to false positives. Secondly, anomalous nodes
may be overlooked as their representation is flattened during the aggregate operation, leading to
false negatives. The proposed approach, AnomEn, is a robust graph neural network developed for
anomaly detection. It addresses the challenges of false positives and false negatives using a weighted
aggregate mechanism. This mechanism is designed to differentiate between a node’s own features
and the features of its neighbors by placing greater emphasis on a node’s own features and less em-
phasis on its neighbors’ features. The system can preserve the node’s original characteristics, whether
the node is normal or anomalous. This work proposes not only a robust graph neural network,
namely, AnomEn, but also specific anomaly detection structures for nodes and edges. The proposed
AnomEn method serves as the encoder in the node and edge anomaly detection architectures and
was tested on multiple datasets. Experiments were conducted to validate the effectiveness of the
proposed method as a graph neural network encoder. The findings demonstrated the robustness
of the proposed method in detecting anomalies. The proposed method outperforms other existing
methods in node anomaly detection tasks by 5.63% and edge anomaly detection tasks by 7.87%.

Keywords: anomaly detection; attributed network embedding; social networks; graph neural-
network-based encoder; graph neural networks

1. Introduction

Attributed networks can be utilized to depict social connections, where the graph
nodes denote individuals and the edges between them signify their relationships. At-
tributed networks provide a wealth of attributes in addition to network topology. Anomaly
detection is the process of identifying patterns or data points that do not conform to the
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expected or normal behavior of a system or dataset. It involves analyzing data to find un-
usual patterns, behaviors, or events that could indicate a potential problem or opportunity
for further investigation. Anomaly detection in attributed networks aims to identify users
whose characteristics deviate significantly from the norm, and has applications in areas
such as detecting social spammers, bots, and fake accounts [1].

In a social network, the norm refers to the typical behavior of users with a particular set
of attributes, such as the frequency of posting updates, the number of followers, or the topics
they usually discuss. Anomaly detection techniques aim to identify users whose behavior
deviates significantly from this norm, indicating that they may be engaged in suspicious or
malicious activities, such as spamming, phishing, or spreading false information.

The study of methods for social network anomaly detection is presently gaining
popularity. Graphs are classified as non-Euclidean data because they neither follow a grid
pattern nor do they obey Euclidean geometry [2]. Unlike traditional data, which are often
represented in a tabular format, graphs can have complex structures, and relationships
between nodes can be non-linear and non-transitive. As a result, traditional data analysis
techniques may not be suitable for analyzing social network data. Anomaly detection is
one such technique that involves identifying unusual patterns or behaviors in a network
that deviate from normal or expected behavior.

2. Related Work

Recently, a number of methods for using machine learning to find anomalies in graphs
have been suggested [3–5]. The use of machine-learning-based algorithms in anomaly
detection on graphs can be challenging. It often involves manual feature selection, which is
unsuited for large networks with many features [6,7]. The rich and essential information
that resides in graphs is beyond what can be grasped by analyzing individual nodes or
structure information alone [7,8]. When examining isolated data points, it may be difficult
to see complicated relationships or patterns that exist in a graph or network. It might be
possible to gain important insights or reach conclusions by looking at the graph’s structure
as a whole that cannot be obtained by looking at individual components separately. The use
of matrix decomposition and matrix factorization techniques has been used for anomaly
detection [9,10], but with large graphs they do not perform well. The detection of graph
anomalies has recently been studied using deep learning architectures [11–13].

In order to expand CNN techniques to non-Euclidean data, authors M. Henaff et al. [14]
and Niepert et al. [15] suggested models for applying convolutional neural networks to
graph data. A model put forth by Niepert et al. places nodes in relation to structural
factors such as betweenness centrality and the number of neighbors. It then gives a set
of adjacent nodes with a fixed size and a sequence of nodes with a fixed length. CNNs
can be applied to the graph using the model, which assigns node numbers using graph
labeling methods. However, as pointed out in the citation Zhang et al., 2019 [16], this
method heavily depends on the structure of the graph and might need to generalize to a
wider variety of applications.

A type of neural network referred to as a graph neural network (GNN) is designed to
operate on graph-structured data, which represents a group of entities (known as “nodes”)
and their interconnections (known as “edges”) using mathematical techniques.

To create node embeddings for node classification, Max Kipf introduced the Graph
Convolutional Network (GCN), a graph-based neural network [17]. It creates a node’s
representation in the network by gathering its neighbors’ attributes, and creates node
embeddings by presenting each node as a combination of its neighbors’ features. Kaize Ding
(2019) [18] proposed a methodology that makes use of autoencoders for anomaly detection
in light of this work. A total of two GCN layers are used in this work’s autoencoder
architecture for anomaly detection.

In their study, Zhang et al., 2022 [19] introduced a novel fraud detection system
called eFraudCom, which utilizes a competitive graph neural network (CGNN) to identify
fraudulent activities on an e-commerce platform. The CGNN system is based on graph
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convolutional networks (GCN) and graph autoencoders (GAE). While this approach may
be effective for detecting fraud in e-Commerce applications, the approach is not robust to
the presence of anomalous nodes, which can affect the system’s accuracy in detecting fraud
or other anomalies.

2.1. Limitation of the Existing Methods

Graph neural network (GNN)-based approaches have shown promise for anomaly
detection in graphs. However, these methods face two primary challenges.

Firstly, the latent representation of nodes in the graph can be significantly impacted by
the presence of anomalous nodes in their immediate neighborhood. This effect can lead to
the incorrect classification of normal nodes as anomalous, compromising the accuracy of
the anomaly detection approach. This issue arises due to the nature of GNNs, where the
representation of a node is determined by aggregating the representations of its neighboring
nodes. As a result, the presence of anomalous nodes can significantly influence the latent
representation of a node, leading to false positives.

Secondly, anomalous nodes may not be detected by GNN-based approaches since their
representations are normalized by the aggregate of genuine nodes in their neighborhood.
This means that anomalous nodes may be masked by the presence of numerous normal
nodes in their immediate vicinity. As a result, such nodes may not be effectively flagged as
anomalous, leading to a failure of the anomaly detection approach.

2.2. Contributions of This Paper

The extended version of the paper presents a novel architecture for edge anomaly
detection that integrates the encoder proposed in the original conference paper [20]. While
the original paper focused solely on node anomaly detection, the extended version includes
an evaluation of the proposed encoder on edge anomaly detection. The results indicate that
the proposed encoder outperforms current GNN encoders for detecting edge anomalies.
Additionally, the proposed edge anomaly detection architecture, when used in combination
with the proposed encoder, outperforms existing edge anomaly detection methods.

The proposed model, Anomaly Encoder (AnomEn), addresses the issue of accurately
reflecting a node’s inherent characteristics by balancing the weight assigned to a node’s
own features and its neighbors’ features. The proposed AnomEn method differs from
DOMINANT [18] in that it balances the weight between a node’s own features and its
neighbors’ features during the aggregation process to obtain the latent representation.

In summary, the primary contributions of this paper are:

• Proposal of a new network-embedding technique called Anomaly Encoder (AnomEn)
for anomaly detection. The method weights the self-features and neighborhood
features of the node to create a representation of the node. This representation is then
used as an encoder in an anomaly detection framework that aims to identify anomalies
in the network.

• Proposal of a framework for attributed networks based node anomaly identification.
The system employs the proposed encoder, AnomEn, to generate latent represen-
tations of nodes, and two decoders: a structure reconstruction decoder and an at-
tribute reconstruction decoder. The framework aims to identify node anomalies in
attributed networks.

• Introduction of an edge anomaly detection architecture built on an auto-encoder that
makes use of the AnomEn encoder presented in this work. The architecture aims to
detect edge anomalies in attributed networks.
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3. Notations and Problem Statement

This section provides a formal definition of frequently used notations and the problem
under study. Table 1 summarizes the notations used in the paper.

Table 1. Summary Statistics for the Datasets.

Matrix/Dataset Twitter Enron Amazon

Adjacency matrix 2050 × 2050 13,533 × 13,533 1418 × 1418
Feature matrix 2050 × 15 13,533 × 18 1418 × 21
Ground truth 2050 × 1 13,533 × 1 1418 × 1

Anomalies 100 700 70

Consider the network with node attributes G = (V, E), where V is the set of nodes and
E is the collection of edges.

Problem: Given an input of an attributed undirected network ‘G’, the goal is to
identify all anomalous nodes that deviate significantly in terms of their structure and
attribute information from the majority of the nodes.

4. Methodology

The Anomaly Encoder (AnomEn) is a proposed graph neural network that serves
as an encoder that takes in a high-dimensional adjacency matrix and feature matrix and
outputs a low-dimensional vector representation. The generated vector representations
of the nodes can be used as input to machine learning models that can classify nodes as
normal or anomalous.

The low-dimensional vector produced by AnomEn can be used for both node anomaly
detection and edge anomaly detection tasks. The proposed architecture for these tasks
utilizes the AnomEn encoder to extract relevant information from the input data and
perform anomaly detection.

4.1. Proposed Graph Neural Network: AnomEn

The AnomEn encoder takes inspiration from the GCN model. The GCN model is a
graph neural network that uses convolutional operations to generate a latent representation
of the graph data. To form a representation of the central node, this process aggregates
the features of the neighboring nodes. The GCN model has a weakness in that it may be
impacted by anomalous neighboring nodes. The representation of normal nodes may be
affected, leading to false positive detections. Additionally, the representation of anomalous
nodes may be flattened by the aggregate operation, which can lead to false negatives and
cause them to go undetected. These limitations highlight the need for a more robust and
effective approach to graph representation learning, such as the AnomEn encoder, which
balances the contribution of the node’s self features and attributes of its neighbors to create
a more accurate representation of the graph data as shown in Algorithm 1.

The proposed encoder is inspired by the Graph Convolutional Network (GCN)
model [21], which generates latent representation by aggregating the features of neigh-
boring nodes. GCN is not immune to the existence of anomalous nodes, though. So,
as illustrated in Algorithm 1, a weighted sum of a node’s self-features and those of its
neighbours is proposed.

As illustrated in the algorithm, the feature matrix of each node forms its initial representation.

h0
v ← Xv, ∀v ∈ N(v)
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Neighbors send messages to each other. Every node receives messages from its
neighbors as shown below.

hk
N(v) ← AGGREGATE(hu

k−1, ∀u ∈ N(v))

A node then combines its features with its neighbors’ features and gives greater weight
than its neighbors’ features as shown below. Here N(v) represents the set of neighbors of
vertex v in a graph.

hk
v ← σ(Wk.COMBINE(β ∗ hk−1

v , (β− 1) ∗ hk
N(v)))

In this method, each node has a latent representation that reflects its characteristics
and is less affected by anomalous neighbors.

Algorithm 1: Weighted Neighbourhood Aggregation Procedure
Input : Adjacency matrix A, Feature matrix X
Output : Vector representations Zuu ∈ V

h0
v ← Xv, ∀v ∈ N(v)

foreach K do
foreach v ∈ ν do

hk
N(v) ← AGGREGATE(hu

k−1, ∀u ∈ N(v))

hk
v ← σ(Wk.COMBINE(β ∗ hk−1

v , (β− 1) ∗ hk
N(v)))

end
hk

v ← NORMALIZE(hk
v, ∀v ∈ ν)

end

4.2. Node Anomaly Detection Task

A viable method to identify anomalies is to make use of the discrepancy between the
input and reconstructed data, as suggested by methods [17,21,22]. The related node is con-
sidered anomalous when the difference between the input and reconstructed data exceeds
a predetermined threshold. Nodes that do not follow the patterns set by other nodes cannot
properly reconstruct the original data. A deep autoencoder creates the latent representation
of the input and uses it to reconstruct the original data in an unsupervised way.

The proposed encoder, AnomEn, is utilized to introduce a new architecture for the
purpose of detecting node anomalies. This architecture is called NodeAnomEn, and it is an
end-to-end framework for learning joint representations to detect anomalies in attributed
networks, as depicted in Figure 1. The approach is based on an unsupervised learning
mechanism that utilizes an autoencoder. Autoencoders consist of an encoder and a decoder
and are primarily used for reconstructing input data. In this case, the encoder takes the
network structure and attribute information as input and generates a node embedding.
The decoder then uses this node embedding to reconstruct the network structure and
attribute information. Any discrepancies between the reconstructed information and the
input network are considered anomalies. The NodeAnomEn structure is composed of
three elements. Firstly, the AnomEn encoder serves as a starting point, building a reliable
latent representation of nodes using network structure and attribute data [20]. Secondly, an
attribute reconstruction decoder reconstructs the node attribute data. Thirdly, a structural
decoder reconstructs the network structure data. By calculating the difference between the
reconstructed and actual data, anomalies in a dataset can be identified.
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Figure 1. The Proposed Framework for Node Anomaly Detection (NodeAnomEn) in Attributed Networks.

4.2.1. Network Encoder

In total, two convolutional layers are used to map the input to node embeddings,
which can be formulated as follows:

Z̃E = Relu(D−1/2(A(1− β) + Iβ)D−1/2(X)TW(0)) + b(0)) (1)

ZE = Relu(Z̃ED−1/2(A(1− β) + Iβ)D−1/2W(1)) + b(1)) (2)

where W(0) is the weight matrix in the first layer and W(1) is the weight matrix in the
second layer.

The adjacency matrix and feature matrix’s dot product is used to compute the aggre-
gate of neighbouring nodes’ features during convolution. An identity matrix, or “I” is
added to the adjacency matrix in order to include a node’s self-features. The terms Iβ and
A(1− β) indicate the different weights given to the node’s self-features and neighbours,
respectively. The letter “D” stands for the diagonal matrix of A. The adjacency matrix is
calculated in the preprocessing phase as (A(1− β) + Iβ), where β denotes the weights given
to the features of the node and its neighbours.

4.2.2. Structure Reconstruction Decoder

The node embeddings produced by the encoder are fed into the decoder for structure
reconstruction, which then reconstructs the original network structure.

Arec = sigmoid(ZE(ZE)T) (3)

It is possible to calculate the likelihood that an edge will appear between any two
possible node pairs by computing the inner product between embeddings. Subsequently,
the reconstruction error is calculated using the following formula:

Aloss = A− Arec (4)

4.2.3. Attribute Reconstruction Decoder

To reconstruct node attributes, an additional convolutional layer is utilized to predict
the input node attribute in the following manner:

Xrec = Relu(ZED−1/2(A(1− β) + Iβ)D−1/2W(2) + b(2)) (5)

The reconstruction error is computed using the following procedure:

Xloss = X− Xrec (6)
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4.2.4. Loss Function

The objective of NodeAnomEn algorithm is to minimize the following function:

Lloss = (1− α)Aloss + αXloss (7)

Here, the term Aloss represents the error in reconstructing the network structure, while
Xloss denotes the error in reconstructing the node attributes.

4.2.5. Anomaly Detection

The node’s anomalous score is determined by adding the structure reconstruction
error and the attribute reconstruction error.

anomaly_score(vi) = (1− α)||a− âi||2 + α||Xi − X̂i||2 (8)

The anomaly score for each node is determined by a balance between the attribute
error and adjacency matrix reconstruction error, controlled by the parameter α. Nodes with
higher anomaly scores are identified as anomalies, and every node is ranked according
to their computed anomaly score. This approach is influenced by techniques that aim to
detect anomalies in a node feature subspace, as discussed in [3].

4.3. Edge Anomaly Detection Task

Edge anomaly detection is based on the following principle. The opposite of outlier
edge identification is the detection of missing edges which is also known as link predic-
tion [22]. The aim is to find the missing edges between pair of nodes in the graph.

The goal of the algorithm is to calculate the anomaly score for each edge in the graph.
The score is based on the similarity between nodes. Edges with low similarity between
the two end nodes are more likely to be outliers. The algorithm calculates the anomaly
score for each edge by measuring the similarity of the nodes (as illustrated in Algorithm 2).
After the model is trained, it predicts the label (positive or negative) for each possible
edge in the graph. A positive label indicates the presence of an edge between two nodes,
while a negative label signifies the absence of an edge. Ideally, the graph should only
contain positive edges. If any negative edges are present, they are considered anomalies
and indicate deviations from the normal patterns in the network.

This section introduces the proposed Edge Anomaly Encoder (EdgeAnomEn) for edge
anomaly detection using the proposed methodology. The proposed architecture is shown
in Figure 2. EdgeAnomEn employs an unsupervised learning mechanism based on auto
encoder. It consists of: (i) Two layers of AnomEn in encoder. (ii) One dot product decoder.

Algorithm 2: Edge anomaly detection procedure
Input : Adjacency matrix A, Feature matrix X, existing edge labels Le
Output : Set of anomalous edges A

h0
v ← Xv, ∀v ∈ N (v);

Z̃E = Relu
(

D−1/2(A(1− β) + Iβ)D−1/2(X)TW(0) + b(0)
)

;

ZE = Relu
(

Z̃ED−1/2(A(1− β) + Iβ)D−1/2W(1) + b(1)
)

;

edge_predict = ZE(ZE)T ;
edge_label = generate_labels()
foreach Edge do

if edge_predict == ’Negative’ and edge_Label != ’Negative’ then
Issue alert for anomalous edge;

end
end
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Figure 2. The Proposed Framework (EdgeAnomEn) for Edge Anomaly Detection in Attributed Networks.

Network Encoder

A total of two convolutional layers are used to map the input to node embeddings,
ZE, which can be formulated as follows:

Z̃E = Relu(D−1/2(A(1− β) + Iβ)D−1/2(X)TW(0)) + b(0)) (9)

ZE = Relu(Z̃ED−1/2(A(1− β) + Iβ)D−1/2W(1)) + b(1)) (10)

where W(0) is the weight matrix in the first layer and W(1) is the weight matrix in the
second layer.

In this equation, D is the diagonal degree matrix of the graph, A is the adjacency
matrix, I is the identity matrix, X is the input feature matrix, β is a hyper parameter that
balances the importance of the adjacency matrix and the identity matrix, Relu is the rectified
linear unit activation function, W(0) is the weight matrix of the first convolutional layer,
and b(0) is the bias term of the first convolutional layer.

The encoder creates the node embeddings using the network structure and attribute
information as input. The decoder then uses the input of these node embeddings to
reconstruct the network topology. Decoder predicts the label for all possible edges as either
positive edge or negative edge. Positive edge means the edge between the respective nodes
are present in the graph. Negative edges means that the edge between the respective two
end nodes is very unlikely.

Subsequently, the predicted edge label is compared with the existing edge label. If the
predicted label and existing label bear a difference in an edge, then that edge is considered
as anomalous.

5. Experimental Setup

This section describes the experiments performed on real world attributed networks
to empirically evaluate the proposed method. The proposed graph representation learning
methodology is examined on both node and edge anomaly detection tasks.

5.1. Experimental Setup for Node Anomaly Detection Task

The method has been proven to yield performance enhancements in both scenarios,
and was evaluated on the Twitter [23], Enron, and Amazon datasets during the study. The
number of nodes, attributes, and anomalous nodes used for each dataset can be found
in Table 2. The witter dataset includes 1950 human accounts that have been verified
and 3000 fake accounts, which were procured from websites that specialize in selling
such accounts. However, only 100 fake accounts were ultimately included in the dataset,
which represents roughly 5% of the authentic user base. Additionally, the dataset contains
anomalous nodes equivalent to 5% of the regular nodes. The architecture employed in this
study features two convolutional layers, with the first layer having a size of 256. Table 3
presents the AUC values for various embedding dimensions of the second layer. The Enron
and Amazon datasets have a learning rate of 0.0005, while the learning rate for the Twitter
dataset is 0.0133 multiplied by 0.001. The β value used for all three datasets is 0.8.
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Table 2. AUC scores of NodeAnomEn (proposed ) vs. DOMINANT [18].

Layer Size Twitter Enron Amazon
DMNT RAD DMNT RAD DMNT RAD

256 0.5737 0.5757 0.710 0.7661 0.626 0.634
128 0.6074 0.6119 0.7310 0.7310 0.626 0.643
64 0.630 0.6401 0.7310 0.7722 0.626 0.6343
32 0.6283 0.6308 0.7310 0.7680 0.626 0.6344
16 0.6376 0.6394 0.7310 0.7680 0.626 0.6344
8 0.5987 0.6000 0.7310 0.7310 0.626 0.6349

Table 3. Base method vs. EdgeAnomEn comparison: accuracy and AUC for edge anomaly detection
on PolitiFact and GossipCop datasets.

Model
Politifact Gossipcop

Accuracy AUC Accuracy AUC

GNN CL 0.6018 0.7257 0.9339 0.9509
GCN FN 0.8597 0.9020 0.9638 0.9636

UPFD (GCN-Encoder) 0.8235 0.8842 0.9045 0.9153
UPFD (GAT-Encoder) 0.8100 0.8937 0.9241 0.9343

UPFD (SAGE) 0.8462 0.8859 0.9723 0.9722
EdgeAnomEn (proposed) 0.9129 0.9388 0.9798 0.9796

The following methods are used for comparison:
LOF [24]: “Identifying Density-Based Local Outliers” presents a novel approach for

detecting local outliers in datasets using density-based clustering techniques. The authors
propose a metric called the Local Outlier Factor (LOF), which measures the degree of
outlierness of a data point with respect to its local neighborhood. The LOF metric is based
on the concept of the local density of a data point relative to the densities of its neighbors.

DOMINANT [18]: The paper “Deep Anomaly Detection on Attributed Networks”
proposes a method for detecting anomalous behavior in attributed networks using deep
learning techniques. The authors use a two-stage approach that first learns a node embed-
ding using a Graph Convolutional Network (GCN) and then uses an Autoencoder to detect
anomalies in the learned embedding.

Scan [25]: A structural clustering algorithm for networks by Xu et al. (2007) presents
a novel algorithm for clustering nodes in complex networks based on their structural
properties. The algorithm, called SCAN (Structural Clustering Algorithm for Networks),
is designed to identify clusters that exhibit high internal connectivity and low external
connectivity, known as “communities” in the network analysis literate.

AMEN [26]: Scalable Anomaly Ranking of Attributed Neighborhoods by Perozzi and
Akoglu (2016) proposed a new method for detecting anomalies in attributed networks.
The method is based on the observation that anomalies often manifest themselves as
neighborhoods in the network that have unusual patterns of attributes (such as node
features or edge weights). The authors’ approach involves first selecting a set of “anchor
nodes” that are representative of different parts of the network. For each anchor node, they
then construct an attributed neighborhood consisting of the node itself and its neighbors
within a certain distance. They use a dimensionality reduction technique (specifically,
Singular Value Decomposition or SVD) to transform the high-dimensional attribute vectors
of the nodes in each neighborhood into a lower-dimensional space.

5.2. Experimental Setup for Edge Anomaly Detection Task

The proposed EdgeAnomEn architecture, which competes with the existing ap-
proaches, makes use of the proposed encoder Anom-En that was introduced in part II.
Here, first layer and second layer have used layer size of 128 and 64, respectively.
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GNN-CL [23]: This method presents a graph neural network (GNN) with continual
learning for detecting fake news from social media. The proposed framework leverages
both node and edge information in the social network and achieves state-of-the-art per-
formance on two publicly available datasets. The approach is robust to concept drift,
and the authors suggest that it has the potential to be applied to other tasks in social
network analysis.

The proposed architecture has produced the best results when compared to the current
approaches as shown in Table 3. The proposed method is compared with the existing
methods UPFD-GCN [17], GCN-FN [27], GNN-CL [23], UPFD-GAT [28], UPFD-SAGE [29].
GNN-CL is a GNN developed specifically for graph classification which encodes the
news propagation graph. Profile information and textual embeddings of comments are
considered user features.

6. Performance Evaluation & Results

Kaize Ding et al. [18] reported the AUC scores for various anomaly detection methods,
including LOF [24], SCAN [25], AMEN [26], Radar [30], Anomalous [31], and Domi-
nant [18], on the ’BlogCatalog’ dataset. The AUC scores for these methods were 0.4915,
0.2727, 0.6648, 0.7104, 0.7281, and 0.7813, respectively. It is evident that the Dominant
method outperformed all other methods, and thus, it was selected as the reference method
for comparison. Table 3 illustrates the AUC scores for the proposed method and reference
methods on the Twitter, Enron, and Amazon datasets.

The performance of the proposed method and the baseline method on the Twitter
dataset was compared in Figure 2 for various embedding vector sizes (8, 16, 32, 64, 128, and
256). The results showed that the proposed method achieved the best AUC value of 0.6401,
while the baseline method achieved an AUC value of 0.630 when the dimensions of the first
and second layers were set to 256 and 64, respectively. The proposed method consistently
outperformed the baseline method across all other layer dimensions, as indicated by
Figure 2.

Figure 3 presents the comparison of the proposed method and the baseline method
on the Enron dataset for the same embedding vector sizes. The best AUC value of 0.7722
was obtained for NodeAnomEn, while the AUC value for DOMINANT was 0.7310, when
the dimensions of the first and second layers were set to 256 and 64, respectively. The
proposed method showed superior performance to the baseline method across the Enron
dataset, as illustrated by Figure 3. Based on the AUC values obtained from the experi-
ments, the proposed method outperforms the baseline methods on the Enron dataset by
approximately 5.48%.

Figure 3. NodeAnomEn vs. DOMINANT.

Similarly, Figure 4 compares the proposed method and the baseline method on the
Amazon dataset for embedding vector sizes of 8, 16, 32, 64, 128, and 256. The results
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demonstrated that the proposed method outperformed the baseline method, achieving the
best AUC value of 0.6344 compared to the AUC value of 0.6260 for DOMINANT, when
the first and second layer dimensions were set to 256 and 32, respectively. Figure 5 shows
that the proposed method consistently outperforms the baseline method across all other
layer dimensions.

Therefore, the proposed method outperforms the baseline method on all three datasets
for the node anomaly detection task.

Figure 4. NodeAnomEn vs. DOMINANT.

Figure 5. Comparison of base methods and proposed method EdgeAnomEn in terms of accuracy
and AUC for edge anomaly detection on PolitiFact and GossipCop datasets. The figure displays the
performance trend of the different methods, with higher values indicating better performance.

Table 3 presents the performance evaluation results of various models, specifically
on two datasets—Politifact and Gossipcop. The evaluation metrics used in this study are
accuracy and area under the curve (AUC).

For the Politifact dataset, the results show that the proposed model, EdgeAnomEn,
outperforms all other models, achieving the highest accuracy score of 0.9129 and AUC
score of 0.9388. The next best performing model is UPFD(SAGE), achieving an accuracy
score of 0.8462 and AUC score of 0.8859.

For the Gossipcop dataset, the proposed model, EdgeAnomEn, again performs the
best, achieving the highest accuracy score of 0.9798 and AUC score of 0.9796. The second-
best performing model is UPFD(SAGE), achieving an accuracy score of 0.9723 and AUC
score of 0.9722.

The results suggest that the proposed model, EdgeAnomEn, is highly effective for
both datasets and outperforms the other models in all evaluation metrics. UPFD(SAGE)
also performs well on both datasets, but falls short of EdgeAnomEn in terms of accuracy
and AUC scores.
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It is evident that EdgeAnomEn exhibits superior performance as compared to all the
baseline models.

7. Conclusions

The task of identifying anomalous users on attributed social networks is a challenging
problem that requires the integration of network structure and node attributes. Graph
Neural Networks (GNNs) are well-suited for this task. However, the use of aggregate
operations in GNNs can lead to false positives and false negatives. The AnomEn approach, a
robust graph neural network developed for anomaly detection, addresses these challenges
using a weighted aggregate mechanism that places greater emphasis on a node’s own
features and less emphasis on its neighbors’ features. The proposed AnomEn method
serves as the encoder in node and edge anomaly detection architectures and outperforms
existing methods in both tasks. The findings demonstrate the effectiveness and robustness
of the proposed method in detecting anomalies on attributed networks.
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