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Abstract: Studies on the real-time detection of connected components in graph streams have been
carried out. The existing connected component detection method cannot process connected com-
ponents incrementally, and the performance deteriorates due to frequent data transmission when
GPU is used. In this paper, we propose a new incremental processing method to solve the problems
found in the existing methods for detecting connected components on GPUs. The proposed method
minimizes the amount of data to be sent to the GPU by determining the subgraph affected by the
graph stream update and by detecting the part to be recalculated. We consider the number of vertices
to quickly determine the connected components of a graph stream on the GPU. An asynchronous
execution method is used to shorten the transfer time between the CPU and the GPU according to
real-time graph stream changes. In order to show that the proposed method provides fast incremental
connected component detection on the GPU, we evaluated its performance using various datasets.

Keywords: connected component; GPU; graph stream; incremental processing

1. Introduction

A graph is a data structure that represents multiple relationships through vertices
and edges [1,2]. With the advancements in big data and artificial intelligence technology,
graphs are widely used to process and analyze various relationships between objects [3,4].
Recently, with the advancements in real-time application services and convergence services,
graph streams have been created in which the vertices and edges that comprise the graph
change continuously [5,6]. These graph streams are used in fields such as social media
analysis, anomaly detection, fraud detection, and content recommendation [7,8]. Social
media platforms such as Facebook, Twitter, and Instagram use graph streams to model
human relationships and content usage histories, analyze real-time change characteristics,
and recommend information.

Many studies have developed methods for quickly and accurately analyzing graph
streams, in which numerous changes occur in real time [9–11]. Connected component (CC)
detection is one of the most basic algorithms used in graph analysis [12–16]. A CC must
have paths that can connect all vertices to each other in an undirected graph and must
not have paths connected to vertices belonging to other CCs. A method that can detect
CCs efficiently in a large graph is needed for various applications that use CCs [17,18].
For example, when computing graph clustering, a CC is used as a sub-algorithm, and CC
algorithms are frequently called to perform computations. As the size of graphs used in the
internet of things, on the web, and in social media has increased, methods for processing
large-scale graphs have been developed [19–22]. Additionally, a distributed processing
method has been proposed for detecting CCs in large graphs [23–26].
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Applications have a characteristic whereby only some of the vertices and edges that
constitute the graph change [3,4]. Therefore, methods have been proposed to detect CCs
incrementally using partially changed vertices and edges in the graph stream [27]. In
general, the incremental method can detect CCs faster than the static method, but it has a
limitation when processing large graphs. Graph processing techniques using a graphics
processing unit (GPU) have been proposed to perform fast parallel processing on large-scale
graph data [17,28–30]. The GPU employs a single instruction, multiple threads (SIMT)
architecture to support a high level of parallel processing using multiple cores [31–36].
However, it must perform synchronization when the processing of different thread blocks
has finished, and it has limited memory. If the method of processing graph streams using a
central processing unit (CPU) is applied as is to a GPU, problems such as memory access
and load imbalance will occur. Therefore, an algorithm for the parallel processing of a
graph on a GPU with simple computing devices and little memory is needed.

Various methods have been proposed to detect CCs in a GPU for graph streams.
GPU-based packed-memory array (GPMA) [30] is a technique used for maintaining the
dynamic graph structure in the memory of a GPU according to the packed memory array
(PMA) designed for the CPU [37]. Evolving Graph (EvoGraph) [29] employs static and
incremental processing methods selectively to compute CCs. GPU-specific ConnectIt
(GConn) [17] uses various static and incremental algorithms that can be applied to the GPU
for CC computation. GPMA requires more memory than typical arrays and takes more
time to build as the size of the update batch increases. In particular, GPMA uses a lock-
based approach and has performance degradation when the processing is performed on a
single GPU, owing to thread collisions that occur when a large update batch is processed.
EvoGraph can detect CCs by employing user functions, but no technique has been proposed
for the efficient computation of CCs in the GPU structure. GConn manages disjoint sets
based on the union-find data structure to support various types of incremental processing
of CCs. However, GConn assumes that all processing is possible on the GPU, whose limited
memory characteristics are not considered.

When a large graph is processed on a GPU, a large amount of data transfer between
the CPU and the GPU is required. As the GPU is mounted on a Peripheral Component
Interconnect Express (PCI Express) socket, it is not physically connected to the CPU or the
main memory. To process a graph on a GPU, it is first necessary to copy data from the CPU
to the GPU memory to perform the computation and then copy the computation results
back to the CPU. Data exchange between the CPU and GPU is performed through PCI
Express, and the number of data transfers must be minimized because the data transfer time
is longer than the data processing time. However, to detect CCs for a dynamic graph that
changes in real time, data must be transferred to the GPU for each processing batch, which
causes the problem of frequent data transfers. This paper proposes a method of GPU-based
efficient incremental CC detection in a graph stream. The proposed method applies the
size to the component labels using a weighted quick-union algorithm to compute CCs
quickly and reduce the amount of data transferred to the GPU. We propose a method of
transferring the minimal information needed to recalculate the CC to the GPU. Furthermore,
the performance degradation caused by the data transfer time is minimized by sending data
from the CPU to the GPU while the GPU performs computations through the asynchronous
execution method.

The remainder of this paper is organized as follows: Section 2 describes the previously
proposed methods; Section 3 explains the proposed method for processing graph streams
efficiently on a GPU; Section 4 presents the results of various performance evaluations; and
Section 5 concludes the paper.

2. Related Work

The simplest method for detecting CCs in an undirected graph is to search each vertex
sequentially via the depth-first search (DFS) or breadth-first search (BFS) algorithms [38–40].
The time complexity of DFS and BFS is O(n + m), where n = |V| and m = |E|, because



Electronics 2023, 12, 1465 3 of 18

each vertex must be visited and each edge must be traversed. The union-find algorithm
was proposed to improve the DFS and BFS methods. It uses a disjoint set structure that
stores components partitioned into subsets that do not overlap with each other [41,42].
Each vertex initializes the disjoint set that contains only itself and visits the edge to form
the union of the sets, to which two vertices—the endpoints of the edge—belong. If the data
structure of the disjoint sets is implemented as an array, the time complexity of union-find
is O(n), and if it is implemented as a tree, union-find is faster than O(n). Weighted quick-
union is a technique that always connects a smaller tree to a larger tree when performing a
union to reduce the time taken to search for the root in union-find [43,44]. In quick-union,
when connecting two trees with each node connected to an edge, a large tree may be
connected to a small tree. If a larger tree is connected to a smaller tree, the average time for
which each node of the entire tree explores the root node increases because the time taken
for a node of the larger tree to explore the root node of the smaller tree increases. Weighted
quick-union detects CCs by always connecting a smaller tree to a larger tree. Therefore, it
reduces the average time taken to reach the root node of the tree from each node.

GPMA is a GPU-based dynamic graph storage method for high-speed analytic pro-
cessing on GPUs [30]. GPMA maintains the sorted components partially by leaving gaps
where the GPU can quickly apply graph changes at a limited gap ratio according to the
PMA structure. The update batch is sorted, and the sorted batch is partitioned again. Each
partitioned part belongs to the tree’s single node. The update is performed according to
the size of each partitioned part in the constructed tree. GPMA allows sorted components
to access adjacent components quickly and sends the neighborhood of the continuously
changing graph to the graph analytics module. Graph analytics perform the query tracking
task while interacting with the active graph structure. Meanwhile, the graph stream buffer
module performs batch processing of graph streams coming in from the CPU and periodi-
cally sends a batch to the graph update module. The graph update module updates the
active graphs stored on the GPU with the received batch. The active graph is saved in the
PMA-based structure of GPMA and can access adjacent components quickly.

EvoGraph [29] selectively performs static processing and incremental processing for
CC detection. If the graph update affects only a small part of the graph, incremental
processing is efficient. Conversely, if the graph update affects most subgraphs, it is more
efficient to recalculate the entire graph. Therefore, EvoGraph selects a processing method
by determining whether static processing or incremental processing is more efficient when
an update occurs in the graph. Traditional GraphIn [27] is applied to the GPU to build
an inconsistency list by detecting vertices that are affected by the update when an update
occurs. Whenever an update batch affects vertices in the graph, the affected vertices are
added to the inconsistency list, and the computation is performed again. In the case of a CC,
when an update occurs in which an edge is inserted, the endpoints of the inserted edge are
checked, and if they are in another CC, the pertinent vertices are added to the inconsistency
list. The inconsistency list is built to incrementally compute only the parts affected by
the update, and Property Guard is applied to determine whether static or incremental
processing is advantageous according to the input graph or the graph algorithm.

GConn [17] was developed for the GPU version of ConnectIt [12], which was proposed
to compute the CCs of a graph on multi-core CPUs, and it manages disjoint sets using
the union-find data structure. Its purpose is to implement various static and incremental
computation algorithms for CCs to determine the effect of algorithm selection on perfor-
mance and identify the best-performing CC. In incremental CC detection, when a new
edge is inserted into a CC, it is processed through the incremental connection algorithm
after static GConn processing. The static GConn first initializes each vertex’s label with
its own ID through InitLabel. The static CCs are then computed through the sampling
phase and finish phase presented in ConnectIt. The root’s label is assigned to each vertex
through finalization to complete the static computation. If an edge is inserted into the CC,
the update is processed by performing the finish phase for the incremental processing of
the inserted edge. In the finish phase, several variant methods of the union-find algorithm
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are used to implement the optimal algorithm, whereby the final component labels are
determined. Union-find performs tracking for each disjoint set to allow the CC of each set
to have the same label, and it supports three operations: make set, union, and find.

Incremental Gather-Apply-Scatter (iGAS) was proposed, which uses a cost model
in the CPU environment to selectively perform static and incremental processing for
graph streams [3]. It analyzes the graph processing history to predict the detection and
processing costs of the recalculation part and then performs incremental processing if this
is advantageous over static processing. PowerGraph’s GAS model was transformed to
enable incremental processing in the graph stream. The caching technique is used to save
the subgraphs that have been read once and the computation results, while the adjacent
vertices are pre-patched to increase the incremental processing efficiency.

3. GPU-Based Incremental Connected Component Detection
3.1. Overview

Methods for determining connected components in graph streams have been used to
analyze the relationship between various information generated by the internet of things
and social network services in real time. When the graph stream is processed only by the
CPU, it is difficult to determine the connected components in real time due to the amount of
computation. Recently, methods using GPUs have been proposed for processing connected
components in large graph streams [17,29,30]. GPMA consumes more memory than typical
arrays, and as the size of update batches increases, performance degrades due to the time it
takes to rebuild PMA and GPMA. In particular, GPMA as a lock-based approach causes
performance degradation when processing on a single GPU due to the collision of threads
during large update batch processing. EvoGraph builds an Inconsistency List to gradually
calculate only the parts affected by the update and determines based on the input graph or
graph algorithm whether gradual processing is beneficial or static processing is beneficial
by applying the Property Guard. However, EvoGraph puts a heavy burden on developers
by allowing users to specify user functions to compute connected components, and no
techniques have been proposed to compute efficient connected components in the structure
of GPUs. GConn has proposed a variety of static and incremental algorithms that can be
applied on GPUs for efficient connected component computation. However, GConn does
not take into account the low-capacity memory size of the GPU and requires an optimized
technique to minimize memory latency on the GPU.

The existing CC detection methods have a performance degradation problem, either
because the CC is not processed incrementally or because data is exchanged frequently
between the GPU and the CPU. When a GPU is used to detect a CC for a graph stream, the
following two cases should be considered. The first is the data exchange between the GPU
and the CPU. The data must be copied from the main memory and delivered to the GPU
to perform computational operations on the GPU. Changes occur in the graph stream in
real time, and data must be copied to the GPU frequently to compute the updates. When
a large amount of data is transferred, the memory capacity of the GPU is exceeded, and
data are copied more frequently. Second is the case of the core idle state, in which the GPU
or the CPU is in an idle state without performing operations. The CPU does not perform
operations while the CPU transfers data to the GPU, but the GPU does perform operations.
When the GPU transfers data to the CPU, neither the CPU nor the GPU performs operations.
The GPU and the CPU are different devices, and they can achieve more efficient processing if
the asynchronous execution structure is used. In this paper, we propose a novel incremental
CC computation technique to solve the problem of processing graph streams using the GPU.
To reduce GPU computational costs and CPU-GPU communication costs, we determine the
regions affecting existing CC results in the input graph stream and gradually determine CC.
In addition, it uses a weighted quick union method to quickly calculate CC. The overall
processing performance is improved by reducing the idle time of the CPU through the
asynchronous processing method.
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In this paper, we deal with and undirected graph streams Gt = (Vt, Et) without weight
for detecting CCs, where t represents the input time of G, Vt represents the set of vertices
at time t, and Et represents the set of edges at time t. A graph stream may have both
vertices and edges added and deleted. Insertion and deletion of isolated vertices that are
not connected to other vertices do not affect the determination of connected components. It
is the insertion and deletion of edges that affect the actual connected components in the
graph stream. If an edge is deleted, it is easy to determine whether the CC is changed
by calculating whether a path exists with neighboring vertices within the CC where the
starting and ending vertices of the deleted edge are the same. However, when an edge is
inserted, the vertices constituting the CC may be combined with other CCs in addition to
increasing. As a result, it is the insertion of edges that requires a lot of computational cost
to determine the progressive connected components of CCs in the graph stream. Therefore,
we describe the processing process of the proposed method, focusing on the insertion of
edges rather than the deletion of edges.

Figure 1 shows the processing architecture of the proposed incremental CC detection
method performed on the GPU. The proposed method incrementally updates the CC results
by identifying the edges that affect the previous CC results when a new graph stream is
input and an existing generated CC result exists. When the first graph stream is input, the
incremental processing cannot be performed because the initial CC result does not exist.
The dual path execution determines whether a CC result calculated through a graph stream
exists and determines whether static or gradual processing exists. If no CC result exists,
the initialization phase generates the first CC result using the existing static method. The
first CC result is assigned a component label, and then stored on the CPU as a connected
component-labeled graph (CCLG). As the graph changes over time for the graph stream,
the region of the graph that requires recalculation is determined according to the change. In
the computation for an update, the entire graph is not computed again each time the graph
changes, and the part that is affected by the update is determined through the recalculation
part identification (RPID). RPID compares the update batch with the CCLG to determine
the region where recalculation is required, generating a recalculation list (RL), which is then
sent to the Graph Update module of the GPU. The Graph Update module performs the
CC update computation for the RL and constructs and sends Result_L—the computation
result—to the CPU. The transferred Result_L is merged with the existing saved CCLG to
finish the update process.
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A typical synchronization-based GPU processing method involves transferring all
the graphs that need to be processed from the CPU to the GPU, which uses multicore
to work in parallel, terminating all the operations it is currently working on, and then
initiating a new task. Therefore, the synchronization technique results in latency when
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the CPU does nothing while the GPU performs operations, and the workload allocated
to the GPU is unbalanced. In addition, the synchronization technique generates frequent
communication between the GPU and the CPU to transmit the results of the performance
performed by the GPU and the subgraph to be performed next. In particular, sending all
the edge lists to the GPU to recalculate CC in the graph stream increases the amount of data
transmission and increases the amount of unnecessary computation in the GPU. To solve
these problems, asynchronous structural processing is required to reduce unnecessary data
transmission and allow GPUs and CPUs to perform tasks simultaneously. The proposed
method first identifies the edge affecting the existing CC results when a graph stream is
input to reduce the communication cost to be transmitted between the CPU and the GPU
and unnecessary computation on the GPU, and then transmits only the related RL to the
GPU. In the synchronization technique, the CPU analyzes the newly entered graph stream
and generates RL in advance while the GPU performs the operation to solve the problem
that the CPU cannot perform the operation until the GPU finishes the operation.

Figure 2 shows an example of asynchronous execution of the proposed method. The
proposed method checks for stored graphs in the first double-path run when a graph stream
is inserted. If CCLG does not exist, the initial CCLG is constructed by computing the first
CC by sending the entire input graph to the GPU, since the proposed method is to process
the first input graph. In addition, if we have previously stored CCLGs, we configure them
to determine the areas affected by the update due to the graph stream inserted through the
RPID module and to send RLs to the GPU. The RL is transmitted to the GPU to perform
incremental processing. When a new graph stream is input after transmitting RL from the
CPU to the GPU, the CPU asynchronously performs RPID before receiving the updated
CC result to configure the new RL. The GPU updates CC via the Graph Update module
according to the RLs received, and the CPU sends the new RLs to the GPU. When the CC
update is completed in the GPU, Result_L is sent to the CPU. The CPU merges with the
existing CCLG, and at the same time, the GPU updates CC through the new RL frame and
transmits the Result_L to the CPU.
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3.2. Component Label Management

The CC results calculated in the initialization phase are managed by the CCLG table
to determine the recalculation area according to the graph stream input. When the CCs are
first computed, the graph stored in the edge list structure is changed and stored in the form
of the vertices’ unique numbers and component labels. Figure 3 shows the CCLG table
containing the initially computed CC results, where ID is the vertex identifier included in
the CC and the component label is the identifier of the CC. As shown in Figure 3a, when
CCs exist, Figure 3b is a table that manages information about vertices, and Figure 3c is
a CCLG table. In Figure 3c, the component label is an identifier for the CC containing
each vertex, which means that vertices with the same component label have paths that
connect to each other through edges and have no connecting paths with vertices belonging
to other CCs. The initial component label is set to the label of the calculated CC of the first
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input graph stream. If the connectivity of the previous graph is changed by the insertion
of the graph stream, the CCLG table is checked to determine where the CCs must be
computed again.
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If the graph structure changes due to the input of the graph stream, the component
label of the existing CCLG table is changed to quickly determine the recalculation area
of the CC. When a graph change such as the insertion of an edge occurs, the part that
affects the CC is determined, and the CC is recalculated. Here, a representative vertex is
selected to send only the information required for computation to the GPU. When there
are n CCs in graph G, the CC set is denoted as C = {Ci|i ∈ n}. Each CC are represented
as Ci = {Ei1, Ei2, . . . , Eim}, where m is the number of vertices belonging to each CC. The
representative vertex Ri of each Ci is the first element of Ci is the root vertex of Ci, which is
defined as Ei1 ∈ Ci and Ei1 = Ri. To distinguish a particular vertex from a regular vertex if it
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is a representative vertex of CC, the proposed method sets the number of vertices contained
in CC in the component label as negative. If a particular vertex is not a representative
vertex of CC, it sets the ID of the representative vertex in the component label.

Figure 4 shows the CCLG table changed to the component label storage form after the
initialization phase. In the CCLG table, the representative vertex of each CC is updated
with a negative number, and the remaining vertices have the ID of the representative vertex.
For example, when there are four CCs in the entire graph, the root vertices of the CCs are
v1, v5, v8, and v11. The representative vertex of the CC containing v1, v2, v3, and v4 is v1.
The component label v1 has a value of −4, as the number of vertices contained in the CC is
4. The component labels of the non-root vertices v2, v3, and v4, with the exception of v1,
have a value of 0.
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3.3. Incremental Computation

For the determination of the update part, the part that needs to be computed is
ascertained and sent to the GPU when a graph stream is entered. In the case of static
computation, when an update occurs, the CCs are computed again for the entire graph.
If the entire graph is recalculated, a large amount of data must be managed in the GPU
memory. Therefore, if a large graph is entered, the memory capacity of the GPU will be
exceeded. In this case, the graph is transferred multiple times, which is inefficient because
the transfer time is long. Therefore, we need a process for determining the part affected by
the update and then constructing an RL to be sent to the GPU. The update of a graph stream
is defined as an edge list insertion (vs, vd), where vs is the starting vertex of the inserted
edge, and vd is the destination vertex of the inserted edge. When an edge is inserted, the
parts for which recalculation will be performed are determined. Here, the determination
criterion is that recalculation must be performed when the CCs of the vs and vd of each
inserted edge are different. If the vertices vs and vd of the inserted edge belong to the same
CC, the CC does not change, implying that there is no need to perform a recalculation.
However, if the vs and vd of the inserted edge belong to different CCs, a path between the
different CCs is generated, changing the CCs. If the CCs are changed, a recalculation is
required, because the component labels must be updated.

Figure 5 shows an RL generated using RPID, which determines the part affected by
the update when an updated graph stream is input. First, when a new edge list is inserted,
the component labels of vs and vd are checked in the previously constructed CCLG. If the
component labels differ, they are added to the RL. The purpose of RPID is to minimize
the amount of data to be transferred to the GPU for CC recalculation. A root-based RL
is built to minimize the amount of data to be transferred to the GPU. The proposed data-
transfer minimization method finds the root label of the component label in the CCLG if the
component label in the RL is not a representative vertex and then changes the label value
in the RL to the value of the root label. If the vertex of the CCLG is not the representative
vertex, the root vertex of the CC can be found quickly because the stored label of the
pertinent vertex is the representative vertex’s ID. The root’s ID is also added to the RL so
that the CC can be recalculated on the GPU and the updated CC can be applied quickly
on the CPU. Figure 5a shows an example of edges (v4, v6) and (v8, v12) inserted into the
graph of Figure 4. If two edges are inserted, the component labels of vs and vd in each edge
list are found in the CCLG. The v4 and v6 labels are v4,L = 0 and v6,L = 4, respectively. The
component labels of an edge (v8, v12) are determined in the same way. Figure 5b shows an
example of building an RL. If the component label found is not a negative number, it is not
the root label. Therefore, the vertices that have the same IDs as the component labels 0 and
4 of v4 and v6 in the CCLG are found (v1, v5), and the label values of the CC are replaced
with the labels (−4, −3) of the pertinent vertices to build a final RL to be sent to the GPU.
The constructed RL is the table on the right in Figure 5b. The RL constructed through the
proposed RPID sends only the root ID and the component labels to the GPU, providing
minimal information for computing the CC on the GPU. By transferring minimal data, a
large update can be performed efficiently in parallel processing with the limited memory
of the GPU.

When the RL is transferred to the GPU, a Graph Update is performed, which efficiently
changes the component labels. The absolute value is compared via weighted quick-union
for the component label of the root vertex in the RL constructed to calculate the CC
efficiently. The larger component label is defined as the large component (LC), and the
smaller component label is defined as the small component (SC). Figure 6 shows the process
of changing component labels on the GPU. As the component labels of the root ID 0 and
the root ID 4 are −4 and −3, respectively, the root ID 0 is the LC, and the root ID 4 is the SC.
To change the component labels of LC0 = −4 and SC4 = −3, the value of SC4 is added to
the value of LC0, and the value of LC0 becomes −7. After the value of SC4 is transferred
again to the CPU, it is changed to 0—the ID value of LC0—to update the values of the
CCs of SC4 in the CCLG to SC4 = 0. The root IDs 7 and 10 are computed in the same way.
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As the component labels of root IDs 7 and 10 are −3 and −2, respectively, the results of
comparing the sizes are LC7 = −3 and SC10 = −2. The computation results of adding the
smaller component label to the larger component label are LC7 = −5 and SC10 = −7. The
result of changing the values of the LC and SC is reflected in Result_L, i.e., the result table
of the graph update process. After Result_L is constructed, it is sent back to the CPU for
merging with the original graph.
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Figure 6. Example of a CC update.

3.4. Result Merging

As graph streams are continuously input, new RLs are constructed, and the result of
updating the RL should be reflected in the labels of the CCLG to indicate the part to be
changed. Result_L—the computation result in the Graph Update module—is merged with
the original graph and sent to the CPU to perform the merging process with the CCLG
stored on the CPU. The component labels to be changed can be accessed quickly through
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the root ID in Result_L. To merge the result, an ID in the CCLG that matches the root ID
of Result_L is found, and the component label of the pertinent ID is changed to that of
Result_L. In the case where the component label of the existing CCLG is changed from
a negative number to a positive number, the representative vertex points to another CC,
indicating that the component labels of all vertices contained in the CC to which the root
vertex belongs are changed.

Figure 7 shows the merging process of Result_L and the CCLG, where Result_L is
the CC update result of the two inserted edges {(v4, v6), (v12, v8)}. Figure 7b shows an
example of the result of merging the graphs. First, an ID in the CCLG that matches the root
ID of v4 in Result_L (i.e., 0) is found. The component label of v1 with an ID of 0 in the CCLG
is updated from −4 to −7. Similarly, the component label with an ID of 4 in the CCLG is
updated from −3 to 0. As the component label has updated from a negative number to a
positive number, ID 4 is no longer a representative vertex, and the component labels of all
the vertices of the CC where ID 4 was the representative vertex have become 0. v5, v6, and
v7 belong to the CC where v1 is the root vertex. Similarly, the merge is performed for IDs 7
and 10. After the merge, v5 is contained in the CC of v1, and v11 is contained in the CC of
v8, indicating that the CCs have been changed owing to the update.
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4. Performance Evaluation

The superiority of the proposed method was demonstrated by evaluating its perfor-
mance in comparison with the existing methods. We implemented performance evaluation
using the Python 3.8.12 (CPU) and CUDA 11.2 (GPU) languages on an Intel(R) Core(TM)
i7-9700 CPU @ 3.6 GHz and a GeForce RTX 3060 device. The proposed method determines
the incrementally connected components in the graph stream. For experimental evaluation,
we performed it using two real graph datasets, soc-Pokec and soc-Live Journal1, which
have dynamic change characteristics in the form of graph streams among the actual graph
datasets provided in SNAP [45]. Table 1 shows the characteristics of the dataset used in
performance evaluation. The experimental data comprised a dataset of 1.6 M vertices and
a dataset of 30.6 M edges. The random dataset was used to test the performance in an
environment with many CCs. In the case of the random dataset, a portion of the dataset
was used for the initial graph, and random sampling was performed in batches. In the
performance evaluation, the data in the form of an edge list was inserted as a stream. At
certain time intervals, the update batch was inserted by changing the batch size between 50
and 13,000,000, and the size of the inserted batch was set according to the purpose of the
performance evaluation. Furthermore, tests were performed in which the percentage of
the update batch was varied to measure the performance change according to the percent-
age of the graph stream. The part that performed the initialization phase of CCs, which
is the preprocessing step of the proposed incremental process, was implemented using
cuGraph—a RAPIDS application programming interface (API).

Table 1. Dataset.

Datasets # of Vertices # of Edges

Random 1.60 M 30.6 M
soc-Pokec 1.60 M 85.70 M

soc-LiveJournal1 4.85 M 30.6 M

Figure 8 shows the ratio of the CC processing time, data transfer time, and GPU kernel
launch time for the datasets. We measured the average processing time for 5000 updates
for an edge list with an update batch size of 50. We measured the percentages of the
processing time, kernel launch time, and data transfer time by setting the total processing
time to 100%. The data transfer time was the average of the sum of the data exchange
times between the CPU and the GPU. The processing time was the sum of the time for
building and merging the RL on the CPU and the time for computing CCs for the update
batch on the GPU. GPUs perform the same kind of operations in parallel across multiple
cores based on the single instruction, multiple thread (SIMT) model. When a specific task
is performed on the CPU, the requested task is divided into several partitions, and the
GPU kernel is launched. GPU kernel launch is the total latency to run the kernel, which
is the initialization overhead required to start the kernel to perform the graph stream on
the GPU. In experimental evaluation, GPU kernel launch is measured only once, when a
graph stream request is first delivered. The random dataset, soc-LiveJournal1 dataset, and
soc-Pokec dataset accounted for 37.78%, 33.82%, and 17.20% of the processing time and
5.08%, 5.33%, and 4.00% of the data transfer time, respectively. The GPU kernel launch
times were 56.13%, 60.85%, and 78.8% for the random dataset, soc-LiveJournel1 dataset, and
soc-Pokec dataset, respectively. GPU kernel launch time accounts for a large proportion of
small dataset processing but a relatively small proportion of large graph stream processing
since it is performed only once when processing initial graph streams. The performance
evaluation results indicated that the CC computation time varied depending on the dataset.
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The processing time of the proposed method on the GPU and the data transfer time
between the CPU and the GPU were evaluated. Figure 9 shows the incremental CC
computation time on the GPU, the GPU kernel launch time, and the data sending and
receiving time between the CPU and the GPU. The random dataset was used, the update
batch size was set to 50, and the experiment was performed with inputs of 5000 update
batches in 5 s intervals. GPU processing refers to the time taken for the update module to
process incremental CCs on the GPU. Data transfer refers to the time required to transfer
RL from the CPU to the GPU and the time required to transfer Result_L from the GPU
to the CPU. Kernel refers to the time that the kernel was first started on the GPU. GPU
Kernel execution time was mostly constant regardless of the size of the data, and when
processing large graph streams, kernel execution time was only processed once, so it did
not account for a large percentage. However, when processing small graph streams, GPU
kernel execution time used most of the total processing time.
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In the case of computing CCs in a graph stream environment, there is static and
incremental computation. The processing time was compared between the existing static
computation method and the incremental computation method according to the size of
the update batch. The random dataset was used, of which 50% was used for initial graphs
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to generate graph streams for CC computation, while the remaining 50% was inserted by
setting the percentages according to the criteria. Among the static processing methods, a CC
detection method using a sequential, parallel approach was implemented on the CPU, while
the GPU method used the RAPIDS cuGraph API to compute the CC. Figure 10 shows the
results of comparing the total processing time between static computation and incremental
computation. The performance evaluation time of the proposed method includes the
preprocessing time on the CPU. In the case of static computation, the processing time
increased as the batch size increased because the CCs had to be computed again every time
an update occurred on the GPU. In the case of the proposed method, the preprocessing time
for finding the representative vertices to reduce the amount of data to be sent from the CPU
to the GPU and constructing the proposed structure was included in the processing time.
Therefore, the proposed method took slightly longer than the existing static computation
method the first time a graph stream was input, but even when the proportion of the
update batch size increased, there was almost no impact on the processing time. The total
processing time of the proposed method was reduced by 3086% and 358% compared with
that when static computations were performed on the CPU and the GPU, respectively. The
performance evaluation results confirmed that the size of the update batch affected the
performance. The total processing time was improved by 92%, 461%, 445%, and 445% when
the batch size was 20%, 50%, 70%, and 90%, respectively. This confirms that incremental
processing outperforms static processing as the batch size increases. Therefore, even if
the batch size is large, the proposed incremental processing method facilitates efficient
CC detection.
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Figure 11 shows the results of comparing the performance of the proposed method
with the existing static processing method on the GPU by measuring only the update
processing time on the GPU for the batch sizes shown in Figure 10. For the existing
GPU-based static processing method, we measured only the time required to process the
update on the GPU, which did not include the preprocessing time for merging the update
batch into the original graph. The proposed method exhibited an average improvement of
229% compared with the existing GPU-based static processing method. The improvements
were 206%, 230%, 237%, and 243% when the batch sizes were 20%, 50%, 70%, and 90%,
respectively. As the static method processes a graph by adding an updated batch to the
original graph, the processing time is proportional to the batch size. Since the proposed
method performs the update by determining only the recalculation part, there is little
change in the processing time, even if the size of the inserted batch increases.
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Figure 11. Incremental processing time per batch.

The graph stream processing time was measured for the incremental CC computation
to compare its performance with that of the existing method. Figure 12 shows the processing
times of the existing and proposed methods for incremental CCs where an update batch
of 50 is inserted. The processing times of the existing EvoGraph method [29] and the
proposed method were compared for an update batch of a certain size. The incremental
processing time per batch exhibited an average improvement of 337% compared with the
static computation time. The criterion for selecting static or incremental processing was
as follows: if the sum of two root component labels in the RL was ≥1.06 times the largest
root component label in the entire graph, static processing was performed; otherwise (i.e.,
<1.06 times), incremental processing was performed. For 10,000 edge sets of the random
dataset, 5000 update batches were inserted. The proposed method exhibited an average
processing time improvement of 128%.
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5. Conclusions

In this paper, we propose an efficient incremental CC detection method in graph
streams using a GPU. In the proposed method, the size is applied to component labels to
manage CCs efficiently. When a graph stream is input, the RPID module identifies the
part affected by the graph and generates an RL for the part that requires CC recalculation.
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An RL is built, and asynchronous data transfer is performed to reduce the data transfer
time between the GPU and the CPU. In a performance evaluation, it was proved that the
performance of the proposed method is superior to that of the method of recalculating
the entire graph on the GPU and the CPU, respectively. In the future, we will conduct
performance comparative analysis with techniques that perform various approaches on
various experimental datasets and conduct research to improve the progressive processing
performance for CC in multiple GPU environments. In addition, we will conduct a study
to apply the proposed method to directional graphs and a study on graph partitioning
techniques to improve GPU parallel processing performance.
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