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Abstract: Denoising is the basis and premise of image processing and an important part of image
preprocessing. Denoising can effectively improve image quality, which contributes to subsequent
image processing such as image segmentation, feature extraction, and so on. In this paper, we propose
a novel image denoising method based on wavelet transform and nonlocal moment mean filtering
approach (NMM). The noisy image is firstly denoised by a wavelet-based soft-thresholding denoising
technique and NMM is then utilized to further eliminate the rest noises. Meanwhile, the fusion of
moment invariants increases the robustness of our denoising algorithm due to the invariance of
image scaling, translation, and rotation of color moments. Experiments show that our algorithm
achieves a better denoising effect compared with some other denoising approaches.

Keywords: image denoising; wavelet transform; color moments; non-local mean filter

1. Introduction

Image is often disturbed by random noise signals in the process of acquisition or
transmission. Common image noises include salt and pepper noise, Gauss noise, Poisson
noise, and so on. These noises reduce the quality of the images, which seriously hinders
the subsequent image processing such as edge extraction, image segmentation, feature
extraction, and so on. For example, Gaussian noise is a kind of noise whose probability
density function obeys Gaussian distribution (i.e., normal distribution). If the amplitude
distribution of noise is Gaussian, and its power spectral density is uniformly distributed,
it is called Gaussian white noise. The effect of Gaussian noise on the image is random,
which is a common noise in the image. The causes of this kind of noise mainly include: the
light not being bright enough or uniform enough when the images are taken; the noise and
interaction of circuit components; the temperature being too high because the sensor works
for a long time. In the image, Gaussian noise is represented by the random change of pixel
value, making the image become blurred or dotted with noise, which will lead to blurred or
distorted details in the image, thus affecting the quality and subsequent image processing.

In order to obtain high-quality digital images, it is necessary to carry on the image
noise reduction processing. Image denoising is a technology that uses context information
of image sequence to remove noise and restore a clear image. It is one of the important
research contents in the field of computer vision, that is, to maintain as much as possible the
integrity of the original information (e.g., the main features) through a certain algorithm,
but also to remove the useless information in the signal, so that the processed image is
clearer. The quality of the image denoising algorithm is directly related to the effect of
subsequent image processing.

Wavelet transform is a local transform of time and frequency domain, so it can extract
information from signal effectively, and carry out a multi-scale detailed analysis of function
or signal through operation functions such as scaling and shifting. It is widely used in
image denoising. Meanwhile, the non-local Means (NLM) algorithm is one of the most
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popular image-denoising algorithms. It uses the redundancy of the natural image itself to
restore the image polluted by noises and takes into account as much similarity-structure
information as possible. At the same time, the denoising method based on the whole block
information can better preserve the image edge and texture features.

In order to make full use of the advantages of the wavelet denoising and NLM method
and improve the denoising effect, a novel hybrid filtering algorithm combining wavelet-
based denoising technique (W) with a nonlocal mean moment filtering approach (NMM)
is proposed (named W-NMM) in this paper. The technique can effectively remove noises
while still retaining enough detailed information.

The remainder of this article is organized as follows: the relevant work is described in
Section 2. Section 3 presents a detailed description of our W-NMM model. The experiments
are displayed in Section 4 and the key issues of this paper are discussed in Section 5. In
Section 6, we make a brief conclusion. A group of abbreviations and the corresponding
nomenclature is shown in Table A1.

2. Related Work

The existence of noise reduces the image quality and hinders the subsequent processing
of the image. In order to remove noise and improve image quality, many scholars have
proposed a variety of image denoising methods including traditional techniques and neural
network-based techniques as shown in Table 1.

The traditional image denoising methods can be divided into two categories: spatial
denoising and frequency denoising. The former includes morphology filtering, mean
filtering, Gauss filtering, morphological filtering, local filtering, non-local filtering, and so
on [1]. The latter includes Wiener filtering, wavelet threshold denoising [2], and so on. For
example, Chen et al. [3] proposed a multi-structural element auto-adapted determination
weight algorithm combining morphology filter of opening and closing operations. Accord-
ing to the different characteristics of images contaminated by different kinds of noises,
a hybrid denoising method was proposed by Guan et al. [4]. Firstly, the local threshold
was used to classify the pixels as those polluted by Gauss noise and salt and pepper noise.
Mean and median filtering approaches were used to denoise them. Hu et al. [5] analyzed
mean filtering, median filtering, and wavelet transform, which are three conventional
methods for image denoising processing. Because median filtering usually results in image
blur, Zhao et al. [6] improved median filtering and put forward a weighted fast median
filtering algorithm and a weighted adaptive median filtering algorithm. Aiming at the
shortcomings of classical soft and hard thresholding methods in denoising, Yin et al. [7]
presented an improved new threshold function, which could satisfy the continuous input-
output curve while the decomposed wavelet coefficients were kept unchanged. Traditional
soft and hard thresholding methods cannot effectively express energy distribution, so it is
necessary to find a balance between denoising and edge information preserving. Zhang
et al. [8] presented an improved threshold function integrating the advantages of the classi-
cal wavelet threshold function and other improved methods. Wang et al. [9] used a wavelet
thresholding method to denoise the COVID-19 CT image, where the threshold function
was obtained by the improved particle swarm optimization. Kazuaki et al. [10] removed
quantum noise from the STEM image with a total variation denoising algorithm, where
they defined an entropy of the STEM image that corresponds to the image contrast and
then determined a hyperparameter to maximize the entropy. Guo et al. [11] presented
a median filtering algorithm based on an adaptive two-stage threshold to improve the
accuracy of CT image noise detection. In the method, an adaptive weighted median filter
image denoising method was put forward based on a hybrid genetic algorithm. Yuan
et al. [12] put forward an edge-preserving median filter and weighted coding with sparse
nonlocal regularization for low-dose CT image denoising. In addition, the classical filtering
algorithm also includes anisotropic diffusion [13], bilateral filtering [14], kernel singular
value decomposition (K-SVD) [15], sparse 3-D transform-domain collaborative filtering [16],
and so on.
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Deep learning, especially convolutional neural network (CNN), has achieved good
results in image recognition and other fields. In recent years, image denoising methods
based on deep learning have also been developed. Wang et al. [17] proposed a multi-scale
feature-extraction-based normalized attention neural network for image denoising. In
the model, they employed a multi-scale feature extraction block to extract and combine
features at distinct scales of the noisy image, and a normalized attention network was
applied to learn the relationships between channels. Ahmed et al. [18] proposed a medical
image denoising system based on the stacked convolutional autoencoder technique. Huang
et al. [19] presented an unsupervised learning approach incorporating a pseudo-siamese
network for image processing, where two independent branches of the network utilize
different filling strategies, namely zero filling and adjacent pixel filling. Wang et al. [20]
used an optimized denoising convolutional neural networks method based on sub-region
processing and transfer learning to denoise the images. Usui et al. [21] compared the
dose-dependent properties of a CNN-based denoising method for low-dose CT with those
of other noise reduction methods on unique CT noise simulation images. They observed
that the CNN model can eliminate noise and maintain image sharpness at these dose levels.
Rajesh et al. [22] developed a differential evolution-based automatic network evolution
model by exploring the fittest parameters. Furthermore, they adopted a transfer learning
technique to accelerate the training process.

Table 1. A list of the literature on denoising methods.

Classification Year Author Methods

Traditional image denoising
methods

2003 Chen et al. [3] Mathematics morphology
2005 Guan et al. [4] Mean and median filtering approaches
2007 Hu et al. [5] Mean filtering, median filtering, and wavelet transform
2011 Zhao et al. [6] Improved median filtering
2018 Yin et al. [7] Improved wavelet threshold
2017 Zhang et al. [8] Threshold with wavelet transform
2022 Wang et al. [9] Wavelet transform combined with improved PSO
2022 Kazuaki et al. [10] Total variation regularization
2022 Guo et al. [11] Adaptive threshold and optimized weighted median filter

2021 Yuan et al. [12] Edge-Preserving Median Filter and Weighted Coding with
Sparse Nonlocal Regularization

1990 Perona et al. [13] Anisotropic diffusion
1998 Tomasi [14] Bilateral filtering
2005 Aharon et al. [15] K-SVD
2007 Kostadin et al. [16] Sparse 3-D transform-domain collaborative filtering

Deep learning approaches

2021 Wang et al. [17] Attention neural network
2021 Ahmed et al. [18] Stacked convolutional autoencoder
2021 Huang et al. [19] Unsupervised pseudo-siamese network
2021 Wang et al. [20] Convolutional neural network
2021 Usui et al. [21] Convolutional neural network
2022 Rajesh et al. [22] An evolutionary block-based network

Although the traditional denoising method is simple, it also has many limitations. For
example, the morphology method, neighborhood average method, and median filtering can
suppress the noise, but also easily cause the image blur phenomenon, which is not suitable
for the image with more details of points, lines, and peaks. The neural network–based
techniques require a large number of training samples, and it is difficult to obtain all kinds
of natural noise samples for training. Based on this, this paper aimed to propose a novel
filtering algorithm based on wavelet and non-local moment mean filtering.

3. Methodology

The algorithm in this paper mainly includes two steps: multi-scale decomposition
denoising and non-local moment mean filtering.
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3.1. Multi-Scale Decomposition Denoising

Wavelet transform (see Figure 1 for a reference) [23] is a time-frequency localization
analysis method in which the size of the window is fixed but its time window and frequency
window can be changed. That is, the low-frequency part has a low time resolution and a
high-frequency resolution, and the high-frequency part has a high time resolution and a
low-frequency resolution, which is suitable for the analysis of non-stationary signals such
as images and the extraction of local features from such signals.
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Wavelet transform is to move a mother wavelet with a displacement τ, and then do
the inner product with the analytic signal x(t) at different scales a.

W ′Tx(a, τ) =

√
a

2π

∫ ∞

−∞
X(ω)ϕ∗(aω)e+jωπdω (1)

a is a scale factor and a > 0. τ reflects displacement. In the frequency domain, it is
expressed as

WTx(a, τ) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− τ

a

)
dt (2)

Discrete Wavelet Transform (DWT) discretizes scale parameters according to power
series, which is often used in multi-resolution analysis and signal decomposition and
reconstruction.

DWTx(m, n) ≤ x(t), ψm,n(t) ≥ 2−
m
2

∫
R

x(t)ψ
(
2−mt− n

)
dt (3)

where the wavelet function is

ψjk(t) = 2−
j
2 ψ
(

2−jt− k
)

(4)

In multi-resolution analysis, for example, orthogonal wavelet transform can be equiv-
alent to a set of mirror filtering processes, i.e., signal S is decomposed through a high-pass
filter and a low-pass filter. The high-frequency component, Di, of the corresponding signal
is called the detail component. The output of the low-pass filter corresponds to the relative
signal Ai, which is called the approximate component, see Figure 1 for a reference.

In the wavelet domain, coefficients corresponding to the effective signal are usually
very large, while those corresponding to noises are very small. At present, the commonly
used threshold-based methods include hard threshold, soft threshold, and so on. The
wavelet coefficients obtained by the soft threshold method have good continuity and no
discontinuity. Here, we adopted the soft-threshold-based method to remove Gaussian
noises.

When the absolute value of the wavelet coefficients is less than a given threshold value,
it is zero; when the wavelet coefficients are larger than the threshold value, the threshold
value is subtracted from the wavelet coefficients.

wλ =

{
[sgn(w)](|w|−λ) |w|≥ λ

0 |w|< λ
(5)
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where sgn(x) returns “+1” if x is a positive value and “−1” otherwise cases. λ is calculated
with [24].

λ = σ
√

2 ln N (6)

here, σ = M/0.6745, and M is the median absolute deviation of detail coefficients at high-
frequency sub-images. N is the length of the signal.

Figure 2 shows several denoising results with the soft threshold-based wavelet denois-
ing method. From Figure 2, we can find that the noisy image was denoised well.
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3.2. Non-Local Moment Mean Filtering

Non-local mean filtering uses all the pixels in the image, and these pixels are weighted
according to some kind of similarity. After filtering, the image clarity is high, and the
details are not lost, so the structural information of the image is better protected [25]. If we
take the noise image v(i) as the sum of the image u(i) and the noise n(i) whose mean value
is 0 without noise contamination, v(i) can be expressed as

v(i) = u(i) + n(i) (7)

For a given pixel i in an image v, the image block N(i) sized n× n is an image block
with i as the block center and N(j) is an image block in the neighborhood of N(i). The
similarity between i and j is measured by Gaussian weighted Euclidean distance between
the image blocks N(i) and N(j). The smaller the distance between N(j) and N(i) is, the
more similar the pixel j is to the pixel i, and the greater the weight given by the pixel j in
cumulative restoration.

Assuming that the denoised image is I(i), for a pixel i, the NLM calculation is as
follows

I(i) =
∑
j∈v

W(i, j)v(j)

∑
j∈v

w(i, j)
(8)

We define v(Ni) as a rectangular neighborhood centered on i, and the similarity
coefficient w(i, j) of the pixels i and j in the image v is as follows:

w(i, j) = exp

−‖v(Ni)− v
(

Nj
)
‖2

2,α

h2

 (9)

where α is the standard deviation of the Gaussian kernel function, ‖v(Ni)− v
(

Nj
)
‖2

2,α
represents the weighted Euclidean distance between two image blocks; h is a filtering
parameter to control the smoothness

‖V(Ni)−V(Nj)‖2 =
1
d2 ∑

i+z∈Ni ,j+z∈Nj

‖v(i + z)− v(j + z)‖2 (10)
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The non-local mean filtering algorithm makes full use of the block information of the
image and can keep the texture and edge of the image well. The filtering effect is better [26].
However, similarity measurement lacks robustness. In this paper, we replace the gray
difference with the moment the difference in the weighted Euclidean distance between two
image blocks and produce a novel denoising method, called the non-local moment mean
denoising method, abbreviated as NMM.

Moments and the related invariants have been extensively analyzed to characterize
the patterns of images in a variety of applications [27].

mpq =
∫ ∞

−∞

∫ ∞

−∞
xp f (x, y)dxdy, p, q = 0, 1, 2, · · · (11)

Hu [24] introduced seven-moment invariants M = {φ1, φ2, φ3, φ4, φ5, φ6, φ7}

φ1 = η20 + η02 (12)

φ2 = (η20 − η02)
2 + 4η2

11 (13)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (14)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (15)

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]

+(3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
] (16)

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+ 4η11(η30 + η12) + (η21 + η03) (17)

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]

−(η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
] (18)

Moment invariants are useful properties of being unchanged under image scaling,
translation, and rotation. In the end, the weighted Euclidean distance between two image
blocks is

‖V(Ni)−V(Nj)‖2 =
1
d2 ∑ ‖v(Ni,M)− v(Nj,M)‖2 (19)

where Ni,M is the moment value of the image block Ni and Nj,M is the moment value of the
image block Nj.

Combined with wavelet-based denoising (W) and non-local moment mean filtering
(NMM), the algorithm W-NMM is described as Algorithm 1.

Algorithm 1: W-NMM filtering

Input: image I to be filtered
t: radio of search window
f: radio of similarity window
h: degree of filtering
1. Take sym8 as the wavelet basis function to decompose the image in two layers.
2. Calculate the soft threshold according to Equation (6) on the high-frequency domains.
3. Denoise image I according to Equation (5) and obtained I’.
4. Symmetric padding I’;
5. For each pixel in I’(i,j) (i = f:M − f, j = f:N − f):
i1⇐ i + f; j1⇐ j + f;
Create objective window: W1= I’(i1 − f:i1 + f, j1 − f:j1 + f);
6. Set the borders of the neighboring window:
rmin⇐max(i1 − t, f + 1); rmax⇐min(i1 + t, m + f);
smin⇐max(j1 − t, f + 1); smax⇐min(j1 + t, n + f);
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Algorithm 1: Cont.

7. For each pixel in W2(r,s):
Set neighboring window: W2 = input2(r − f:r + f, s − f:s + f);

8. Calculate the moments of W1 and W2:
n1 = hu_moments(W1);

n2 = hu_moments(W2);
9. Calculate the similarity of W1 and W2 according to n1 and n2.
10. Calculate the Gaussian weight: w⇐exp − d/h);
11. Find the maximum of w: wmax.

sweight⇐sweight + w;
average⇐average + w × I’(r,s);

end
12. Calculate the accumulation of

average = average + wmax × I’(i,j);
sweight = sweight + wmax;

13. Calculate denoised image Iout:
if sweight > 0

Iout’(i,j) = average/sweight;
else

Iout’(i,j) = I’(i,j);
end

14. end
15. Extract the image Iout with the size same to I from Iout’.

4. Experiment

In order to evaluate the performance of our algorithm, we test it on a set of noisy
images and several examples. The following metrics are utilized for evaluating the per-
formance of image processing approaches Peak Signal to Noise Ratio (PSNR) [28] and
Structural Similarity Index (SSIM) [29].

PSNR is widely used to evaluate image quality and is defined as

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
(20)

where MAXI is the maximum value of an image I, MSE is Mean Square Error, and ex-
pressed as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖I(i, j)− K(i, j)‖2 (21)

Where I and K can be taken as the denoised image and original image, respectively.
The smaller the MSE and the bigger the PSNR, the better the image quality.
SSIM is one of the indicators to measure image quality. Given two images I and K,

their SSIM can be defined as:

SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ
2
I + σ2

K + c2)
(22)

where, µI and µK are the means of I and K, respectively. σ2
I and σ2

K are variances of I and K,
respectively. σIK is the covariance of I and K. c1 = (k1L)2 and c2 = (k2L)2 are constants
keeping things stable. L is the dynamic range of the image pixel value, k1 = 0.01, k2 = 0.03.

The range of SSIM is [0, 1]. The larger the SSIM is, the better the image quality is.
Figure 3 shows the denoising result with our W-NMM algorithm. In Figure 3a–d there are
images with Gaussian white noise with variances 0.01, 0.02, 0.04, and 0.06, respectively.
The first two lines are the corresponding noisy images with their partial histograms, and
the last two lines are the denoised images with their partial histograms. It can be seen
the algorithm removed the noises well. Figures 4 and 5 show the denoising results on the
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original noisy image and the corresponding ones after rotation, scaling, and translation. It
can be seen that the results were similar, which shows the robustness of the method.
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Figure 5. The evaluation of the denoising results of Figure 4 in terms of PSNR and SSIM. a~d refter
to the images a–d in Figure 4.

We compare our W-NMM algorithm with the anisotropic diffusion filter (AD) [13],
bilateral filter (BF) [14], Kernel Singular Value Decomposition (KSVD) [15], and block
Matching and 3D collaborative filtering (BM3D) [16] on a group of CT images [30]. The
visual results are shown in Figure 6, where the noisy CT images are added Gaussian white
noise of variance = 0.02 as shown in Figure 6a–f) are the corresponding denoised results
with AD, BF, KSVD, BM3D, and W-NMM. From Figure 6, we can find that the W-NMM
algorithm has a better effect on Gaussian noise denoising. Compared with the other
denoising methods, our algorithm can produce better results on noisy image denoising.
The three-dimensional (3D) visualizations of the denoising effectiveness are exhibited in
Figure 6 where two images are randomly selected from Figure 7 and their 3D visualizations
are depicted before and after denoising with the proposed method. (a) are the noisy images
and (b) are the corresponding denoised images with W-NMM. It can be observed that the
proposed method removed the sharp noises, and the image regions become smooth while
keeping the edges.
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Figure 7. The 3D visualization of the denoising results of two images in Figure 6 with the WM-
NLM method. (a) show the noisy images with Gaussian white noise, and (b) are the corresponding
denoised results.

We evaluated the denoising methods (AD, BF, NLM, BM3D, and W-NMM) on the
images in Figure 6 in terms of PSNR and SSIM. The results are shown in Table 2. We can
find that our method achieved higher PSNR and SSIM than other methods. We test the
methods on a group of medical images and compare their denoising effect, and the average
results in terms of PSNR and SSIM are displayed in Figure 8. It can be observed that the
W-NMM method is superior to the compared methods.

Table 2. Comparison of different denoising methods evaluated with PSNR and SSIM (The best results
are shown in bold).

Image I1 I2 I3 I4

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

AD 18.48 0.2964 18.38 0.2407 18.42 0.2352 18.27 0.3298
BF 20.37 0.3593 19.95 0.3004 20.21 0.2965 19.71 0.3731

KSVD 22.61 0.5578 22.49 0.3787 23.34 0.5512 22.67 0.5660
BM3D 20.66 0.5479 23.63 0.5736 22.80 0.4603 21.15 0.4830

W-NMM 22.67 0.6219 24.20 0.6798 23.62 0.6557 22.43 0.6714
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Figure 8. Comparison of the denoising performance with different denoising methods in terms of
PSNR, and SSIM.

In order to test the validity of the two stages of filtering, we made an ablation experi-
ment and the result is shown in Figure 9. S1 represents the result in the first stage, that is
the corresponding image is denoised with wavelet filtering. S2 is the result in the second
stage, that is the corresponding image was denoised with the NMM filter. It can be found
that the SSIM was improved after the NMM filtering in the S2 stage.
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Figure 9. Ablation experiment of the W-NMM algorithm.

5. Discussion

In the process of digital image digitization and transmission, it is often affected by
the noise of imaging equipment and the external environment, so that the image quality
will be degraded. Image denoising is the process of reducing the noise in the digital image.
The commonly used image denoising methods are suitable for processing images with low
requirements on image details, that is to say, the loss of tiny details has little impact on the
subsequent processing of image denoising. However, when dealing with medical images,
such small mistakes are not allowed, because every small mistake in medical diagnosis or
treatment can affect the doctor’s treatment and even threaten the patient’s life. So, we need
good denoising techniques that can effectively remove noise while still preserving enough
detail. It can be seen from the experiment that the algorithm proposed in this paper can
effectively smooth the noise information in the image and keep the details of the image.
Effective image denoising can not only help doctors diagnose the condition, but also be
very conducive to the subsequent image segmentation, e.g., lung segmentation, providing
help for computer-aided diagnosis.

Our algorithm achieved good performance on image denoising. However, the cost
time is sometimes high, and the time efficiency is low due to the fusion of moments and
the NLM approach. Our algorithm can generate the highest denoising effect with low
time efficiency while the anisotropic diffusion filter has the highest time efficiency with the
lowest PNSR. Accordingly, we can select suitable methods for different applications.

6. Conclusions

In this paper, we denoised the images with a wavelet-based non-local moment mean
denoising algorithm. The proposed W-NMM algorithm combined frequency domain
denoising with spatial domain denoising, and the introduction of moments increased the
robustness of the denoising algorithm. The average of PSNR and SSIM achieved 23.3 and
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0.66, respectively. In addition, it showed a better-denoised effect compared with several
classical image denoising methods. It contributes to the subsequent image processing, such
as image segmentation, 3D reconstruction, and so on. Nevertheless, the time cost was high
because of the NLM operation. In the future, we will improve the time efficiency of our
algorithm.
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Appendix A

Table A1. List of abbreviations and the corresponding nomenclature.

Abbreviations Nomenclature

W Wavelet
NLM Non-local mean filter
NMM Non-local moment mean filter

AD Anisotropic diffusion filter
BF Bilateral filter

BM3D Block matching and 3D collaborative filtering
KSVD Kernel singular value decomposition
PSNR Peak signal to noise ratio
SSIM Structural similarity index
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