
Citation: Yu, C.; Mei, N.; Du, C.; Luo,

H. Blockchain Data Scalability and

Retrieval Scheme Based on On-Chain

Storage Medium for Internet of

Things Data. Electronics 2023, 12,

1454. https://doi.org/10.3390/

electronics12061454

Academic Editor: Mehdi Sookhak

Received: 13 February 2023

Revised: 6 March 2023

Accepted: 18 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Blockchain Data Scalability and Retrieval Scheme Based on
On-Chain Storage Medium for Internet of Things Data
Caoyi Yu 1,2 , Niansong Mei 1,2,*, Chong Du 1,2 and Haotian Luo 1,2

1 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: meins@sari.ac.cn; Tel.: +86-021-2032-5151

Abstract: The combination of blockchain and internet of things (IoT) technology realizes reliable
storage of IoT data. However, the data stored on the blockchain (on-chain) face the problem of poor
scalability and inefficient retrieval. In this paper, the on-chain data scalability schemes based on
transactions and smart contracts are first proposed. Subsequently, on the basis of the above on-chain
data scalability scheme based on transactions, an on-chain data index based on skip lists is proposed to
improve the retrieval efficiency. The experimental results show that both the on-chain data scalability
schemes achieve on-chain data scalability while reducing storage overhead. Meanwhile, the on-chain
data index based on skip lists has significantly improved dynamic range retrieval efficiency and
reduced the time complexity of single data retrieval to O(log(n)).

Keywords: blockchain; storage medium; on-chain data scalability; on-chain data retrieval; skip list
index; internet of things

1. Introduction

Blockchain has the characteristics of decentralization, non-tampering and transparency.
Compared to centralized systems, systems built on blockchain realize reliable storage of
data and improve the security of the whole system [1]. Therefore, blockchain technology
has attracted widespread attention from industry and academia, especially when combined
with IoT technology [2]. The combination of blockchain and the IoT can be applied in
more fields, such as IoT management [3], smart grids [4] and smart cities [5]. However,
given the generation frequency and timeliness of IoT data, IoT data are extended and
retrieved frequently, which imposes high requirements on the blockchain to store IoT
data [6]. Meanwhile, the growing number of IoT devices generate huge amounts of data;
for example, a typical smart city housing a population of 1 million is expected to generate
200 million GB data per day [7].

Such a huge amount of IoT devices and data rely on the blockchain to achieve reliable
storage, making the blockchain encounter the challenge of inefficient on-chain data scalabil-
ity and retrieval. However, data on the blockchain cannot be tampered with, which is the
main reason why on-chain data are hard to extend [8]. Each node currently participating
in the blockchain needs to back up all the data on the blockchain. When users update
or add data, they need to upload all the data to the blockchain again, so duplicate data
accumulate on the blockchain. Firstly, data redundancy caused by the inability to extend
on-chain data wastes a lot of storage space. Secondly, the increasingly high storage cost
increases the barrier to participation in blockchain projects, making fewer and fewer nodes
in the blockchain. Therefore, lack of on-chain data scalability not only makes the blockchain
defeat the original purpose of decentralization but also reduces the performance of the
whole blockchain system [9]. Furthermore, although the blockchain can be used as a data
storage layer, most current blockchain projects pursue efficient writing speeds and thus
choose LevelDB based on LSM-tree. The LSM-tree structure has efficient write performance,

Electronics 2023, 12, 1454. https://doi.org/10.3390/electronics12061454 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061454
https://doi.org/10.3390/electronics12061454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6066-0383
https://doi.org/10.3390/electronics12061454
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061454?type=check_update&version=1

Electronics 2023, 12, 1454 2 of 12

while its random read performance is not as impressive [10]. In addition, since LevelDB is a
key-value database, there are not many query types that can be supported. However, both
data reading performance and the number of query types affect the retrieval performance
of on-chain data.

On-chain data scalability is currently implemented mainly by editing the on-chain
data or deleting them and resubmitting them to the blockchain. However, all of the above
methods require modifying the blockchain structure and verifying the operation, which is
fatal for already deployed blockchain projects because of the high cost of rebuilding the
project. Meanwhile, there are two types of solutions to improve the efficiency of on-chain
data retrieval: one is based on external third parties and another is based on the blockchain
itself. The former requires verification of the retrieved data.

To solve the above problems, this paper studies and analyzes the on-chain storage
media for the first time. The on-chain data are eventually stored in the local database
in the form of key-value pairs. However, on the blockchain, data are represented in a
different form, such as transaction or smart contract, which are called on-chain storage
media. Through studying on-chain storage media, this paper proposes two on-chain
data scalability schemes, based on transaction and based on smart contract, respectively.
Compared with existing schemes, the two on-chain data scalability schemes proposed in
this paper achieve on-chain data scalability. They can also avoid massive modifications
to the blockchain structure and implement direct compatibility with deployed blockchain
projects. Moreover, in order to improve the retrieval efficiency of on-chain data, this paper
proposes an on-chain data index based on skip lists on the basis of the above on-chain data
scalability scheme based on transactions. By integrating the skip list index with blockchain,
the new index proposed can implement range search and improve the retrieval efficiency
of on-chain data. The main contributions of this paper are as follows:

• The on-chain storage media are studied and analyzed for the first time. According to
the two different on-chain storage media, the on-chain data scalability schemes based
on transactions and smart contracts are proposed to improve on-chain data scalability.

• On the basis of the above on-chain data scalability scheme based on transaction, an
on-chain data index based on skip lists is proposed to implement range searches and
improve the retrieval efficiency of on-chain data.

• The above two on-chain data scalability schemes and on-chain data index based on
skip lists are fully experimented and evaluated on Ganache platform. The experimen-
tal results show that both on-chain data scalability schemes achieve on-chain data
scalability and reduce storage overhead. Meanwhile, the scheme based on transactions
is more efficient than the scheme based on smart contracts in terms of data retrieval;
however, the scheme based on smart contracts is better in terms of functionality. More-
over, the on-chain data index based on skip lists has significantly improved dynamic
range retrieval efficiency and has reduced the time complexity of single data retrieval
to O(log(n)) compared with sequential retrieval and the B+ Tree index.

The paper is organized as follows: Section 2 introduces related works and preliminary
concepts. Section 3 provides details of the on-chain storage media analysis and two on-
chain data scalability schemes. Section 4 provides design details of the on-chain data index
based on skip lists. Section 5 provides experimental verification of the above contents.
Section 6 describes the conclusion and future work.

2. Related Works and Preliminary Concepts
2.1. On-Chain Data Scalability and Retrieval

The on-chain data scalability is currently implemented mainly by editing the on-
chain data or deleting it and resubmitting it to the blockchain. Li, X.C. et al. proposed a
redactable blockchain scheme based on unforgeable signatures, which can quickly confirm
whether on-chain data has been illegally edited [11]. Aslam, S. et al. presented a RESTful
decentralized storage framework that combines blockchain and distributed hash table
(DHT) to enable on-chain data editing [12]. Pan, Y.Y. et al. introduced bilinear pairing into

Electronics 2023, 12, 1454 3 of 12

Chameleon hash and designed a new generation method of Merkle tree based on it for
data editing and validation [13]. Tang, Y.L. et al. proposed a redactable blockchain trust
scheme based on reputation consensus and a one-way trapdoor function, which used SM2
asymmetric cryptography algorithm as the one-way trapdoor function to construct a new
Merkle tree structure, ensuring the legality of data edits and deletions [14]. Feng. H.W.
et al. proposed a collaborative replica deletion algorithm with greediness and established a
replica deletion model based on the replica deletion loss and load state [15]. DMBlockChain
is a deletable and modifiable blockchain scheme based on RVTrees and the multisignature
scheme, which implements block data modification and deletion functions [16]. However,
all of the above methods require modifications to the blockchain structure, which is fatal
for already deployed blockchain projects. Meanwhile, they also require verification of
delete and edit operations to guarantee the legitimacy of these operations, which needs
expensive computational overhead. Improving on-chain data scalability through on-chain
storage media can effectively avoid blockchain data redundancy. Compared with the above-
mentioned schemes, the scheme based on on-chain storage media can avoid modifying the
internal structure of the blockchain while being directly applicable to deployed blockchain
projects.

There are two types of solutions to improve the efficiency of on-chain data retrieval:
one is based on external third parties and another is based on the blockchain itself. The
former exports blockchain data to external databases or cloud service platforms. VQL
provides both efficient and verifiable data query services for blockchain by a cloud-based
middle layer, which extracts on-chain data and efficiently reorganizes them in external
databases [17]. Rahman, M.S. et al. proposed a blockchain-based framework which divides
IoT data into on-chain and off-chain data for providing privacy preserving and verifiable
query services to users [18]. The schemes based on external third parties can provide
efficient retrieval services and rich retrieval methods. However, since third-party cloud
services cannot be trusted, it is necessary to verify the data after retrieval.

The latter realizes efficient retrieval of on-chain data by adding indexes. Due to the
fact that the data are obtained directly from the blockchain, it is unnecessary to validate
the data. Xu, C. et al. proposed an authentication data structure based on accumulators,
which supported dynamic aggregation of arbitrary query attributes and developed two
new indexes to aggregate intra block and inter block data records to achieve efficient query
verification [19]. Yan, D.K. et al. designed a dual-index based on the B+ Tree and the key-
value pair inside blockchain through smart contract to support multiple query operations
and improve query efficiency [20]. Wan, L. constructed the index directory of the BKV
(B-key-value) tree storage structure by modifying the storage of the B-tree and designed
the blockchain structure and query algorithm based on the BKV index directory to improve
the efficiency of the electrical transaction query [21]. SEBDB predefines multiple attributes
for each transaction in the blockchain and constructs a B+ Tree index for each attribute to
query the transaction based on the attribute value [22]. EBTree is similar to SEBDB, but
the difference is that EBTree constructs a B+ Tree index for all blocks in the blockchain [23].
Most of the above schemes improve the efficiency of on-chain data retrieval by adding B+
Tree indexes.

2.2. Ethereum and Smart Contract

In the blockchain 1.0 era, decentralized currency represented by Bitcoin was the main
application. Ethereum is the most dominant distributed application platform after the
development of blockchain technology to 2.0. Programs that run on Ethereum are called
smart contracts, which were first proposed by Nick Szabo. Smart contracts are collections
of code and data designed to execute transactions without relying on trusted third parties.
Since operations are public and reliable on the blockchain, all transactions are traceable and
irreversible. Ethereum is the first blockchain implementation to have a Turing complete
virtual machine built into it, which implies that smart contracts in Ethereum can be used
to perform any computational task [24]. Smart contracts have their own address just like

Electronics 2023, 12, 1454 4 of 12

ordinary accounts, so it is logically consistent to call a smart contract and send transactions
to other accounts [25].

2.3. Skip List

A skip list can be seen as a modified linear list. As opposed to a linear list that has
only one pointer field for a node, a node in a skip list can have multiple pointer fields [26].
The structure of the skip list is shown in Figure 1. When a new node is inserted during the
construction of a skip list, that node is inserted first at the bottom level. Then, it is promoted
to the upper layer with one-half probability by the randomization algorithm and leaves a
copy of the node in the lower layer until the randomization algorithm ends. When data
retrieval is performed in the skip list, the higher-level nodes are retrieved first. If the higher-
level retrieval fails, the lower-level is retrieved until the node is found [27]. Compared with
the traditional index structure B+ Tree, a skip list does not require frequent and complex
rebalancing operations when inserting and deleting data [28]. At the same time, skip list
operations are concise and more suitable for parallel processing. In blockchain, on-chain
data are placed linearly in the form of blocks, and therefore the structure of a skip list index
naturally suits blockchain.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 12

2.2. Ethereum and Smart Contract
In the blockchain 1.0 era, decentralized currency represented by Bitcoin was the main

application. Ethereum is the most dominant distributed application platform after the de-
velopment of blockchain technology to 2.0. Programs that run on Ethereum are called
smart contracts, which were first proposed by Nick Szabo. Smart contracts are collections
of code and data designed to execute transactions without relying on trusted third parties.
Since operations are public and reliable on the blockchain, all transactions are traceable
and irreversible. Ethereum is the first blockchain implementation to have a Turing com-
plete virtual machine built into it, which implies that smart contracts in Ethereum can be
used to perform any computational task [24]. Smart contracts have their own address just
like ordinary accounts, so it is logically consistent to call a smart contract and send trans-
actions to other accounts [25].

2.3. Skip List
A skip list can be seen as a modified linear list. As opposed to a linear list that has

only one pointer field for a node, a node in a skip list can have multiple pointer fields [26].
The structure of the skip list is shown in Figure 1. When a new node is inserted during the
construction of a skip list, that node is inserted first at the bottom level. Then, it is pro-
moted to the upper layer with one-half probability by the randomization algorithm and
leaves a copy of the node in the lower layer until the randomization algorithm ends. When
data retrieval is performed in the skip list, the higher-level nodes are retrieved first. If the
higher-level retrieval fails, the lower-level is retrieved until the node is found [27]. Com-
pared with the traditional index structure B+ Tree, a skip list does not require frequent
and complex rebalancing operations when inserting and deleting data [28]. At the same
time, skip list operations are concise and more suitable for parallel processing. In block-
chain, on-chain data are placed linearly in the form of blocks, and therefore the structure
of a skip list index naturally suits blockchain.

Figure 1. Skip list index structure.

3. Storage Medium and Scalability Scheme
What can be used as storage media in existing blockchains are transactions and smart

contracts. In this section, the characteristics of transactions and smart contracts as storage
media are discussed in detail, and two on-chain data scalability schemes are proposed.

3.1. Transaction
The transaction is the most basic component unit in the blockchain, where every ac-

tion that occurs in the blockchain is stored. Multiple transactions form a block which is
broadcast on the blockchain after being verified by the consensus algorithm. Therefore,
using transactions as storage media to hold data is the most intuitive solution for holding
data in the blockchain. However, a single transaction cannot hold large-scale data due to
storage limitations, so the data must be split and stored in multiple transactions. Accord-
ing to the characteristics of the transaction, an on-chain data scalability scheme based on
transactions is proposed.

If the split data are stored directly in the blockchain through transactions, the blocks
must be scanned one by one to retrieve the data, resulting in poor retrieval efficiency, and

Figure 1. Skip list index structure.

3. Storage Medium and Scalability Scheme

What can be used as storage media in existing blockchains are transactions and smart
contracts. In this section, the characteristics of transactions and smart contracts as storage
media are discussed in detail, and two on-chain data scalability schemes are proposed.

3.1. Transaction

The transaction is the most basic component unit in the blockchain, where every
action that occurs in the blockchain is stored. Multiple transactions form a block which is
broadcast on the blockchain after being verified by the consensus algorithm. Therefore,
using transactions as storage media to hold data is the most intuitive solution for holding
data in the blockchain. However, a single transaction cannot hold large-scale data due to
storage limitations, so the data must be split and stored in multiple transactions. According
to the characteristics of the transaction, an on-chain data scalability scheme based on
transactions is proposed.

If the split data are stored directly in the blockchain through transactions, the blocks
must be scanned one by one to retrieve the data, resulting in poor retrieval efficiency, and
the data already stored in the blockchain cannot be extended. As shown in Figure 2, the
on-chain data scalability scheme based on transaction divides the content of the transaction
into three parts: one part contains the hash value of the previous transaction, which is
ParentHash; one part contains the group number of the data, which is GroupID; and the
last part holds the data. When saving data, the ParentHash field of the first transaction is
filled with all zeros, and the hash of the last transaction is recorded for subsequent data
extensions. The GroupID field is the timestamp when the data was saved or expanded and
is used as the group number for that group of data. When retrieving data, the hash of a
transaction is requested and the data, GroupID and ParentHash are obtained from that
hash. Retrieving is continued according to the ParentHash until the ParentHash obtained
is all zeros. To restore the split data, all the obtained data are merged according to the

Electronics 2023, 12, 1454 5 of 12

GroupID and the order of acquisition. Finally, when extending the data, the previously
recorded hash is used as the content of the ParentHash field to create the transaction. At
the end of the data extension, the hash value of the last transaction is updated.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 12

the data already stored in the blockchain cannot be extended. As shown in Figure 2, the
on-chain data scalability scheme based on transaction divides the content of the transac-
tion into three parts: one part contains the hash value of the previous transaction, which
is ParentHash; one part contains the group number of the data, which is GroupID; and
the last part holds the data. When saving data, the ParentHash field of the first transaction
is filled with all zeros, and the hash of the last transaction is recorded for subsequent data
extensions. The GroupID field is the timestamp when the data was saved or expanded
and is used as the group number for that group of data. When retrieving data, the hash of
a transaction is requested and the data, GroupID and ParentHash are obtained from that
hash. Retrieving is continued according to the ParentHash until the ParentHash obtained
is all zeros. To restore the split data, all the obtained data are merged according to the
GroupID and the order of acquisition. Finally, when extending the data, the previously
recorded hash is used as the content of the ParentHash field to create the transaction. At
the end of the data extension, the hash value of the last transaction is updated.

Figure 2. On-chain data scalability scheme based on transaction.

3.2. Smart Contract
Although it is obvious that the transaction can act as a storage medium, all things on

the blockchain are eventually stored in LevelDB as key-value pairs, so the smart contract
can also act as a storage medium in the blockchain. Since smart contracts are programs
that run on the blockchain, they can provide a wealth of functionalities. After smart con-
tracts are deployed to Ethereum, they are saved as accounts in the local LevelDB. Above
all, the account address corresponding to the contract can be calculated in advance before
the smart contract is deployed on Ethereum. Compared to transactions, smart contracts
can both execute programs to provide various functions and act as accounts to receive
transactions. However, it should be noted that smart contracts can only upload a limited
amount of data to the blockchain due to the limitation of the Ethereum virtual machine.

According to the characteristics of the smart contract, an on-chain data scalability
scheme based on smart contract is proposed. As shown in Figure 3, the main part of the
data is stored in the smart contract. The contract address, which is generated after the
contract is deployed on the blockchain, is used to extend the on-chain data. On-chain data
scalability is implemented by storing extended data through transactions and connecting
transactions to previously generated contract addresses. In this scheme, the transaction is
divided into three parts, namely GroupID, Index and Extended data. The GroupID field
and Extended data field are the same as for the on-chain data scalability scheme based on
transaction. The reason for setting up the Index field is that the data are sliced before being
saved, so the order of the data must be ensured when restored. Smart contracts are both
an on-chain storage medium and a program that runs on the blockchain. Therefore, the
smart contract in this scheme has the following main components: a function to obtain the
data subject and a function to obtain the keywords or summary of the data. As the smart
contract is code, the rest of the components are also represented in the smart contract in
the form of functions, such as the function to encrypt the data.

Figure 2. On-chain data scalability scheme based on transaction.

3.2. Smart Contract

Although it is obvious that the transaction can act as a storage medium, all things on
the blockchain are eventually stored in LevelDB as key-value pairs, so the smart contract
can also act as a storage medium in the blockchain. Since smart contracts are programs that
run on the blockchain, they can provide a wealth of functionalities. After smart contracts
are deployed to Ethereum, they are saved as accounts in the local LevelDB. Above all,
the account address corresponding to the contract can be calculated in advance before
the smart contract is deployed on Ethereum. Compared to transactions, smart contracts
can both execute programs to provide various functions and act as accounts to receive
transactions. However, it should be noted that smart contracts can only upload a limited
amount of data to the blockchain due to the limitation of the Ethereum virtual machine.

According to the characteristics of the smart contract, an on-chain data scalability
scheme based on smart contract is proposed. As shown in Figure 3, the main part of the
data is stored in the smart contract. The contract address, which is generated after the
contract is deployed on the blockchain, is used to extend the on-chain data. On-chain data
scalability is implemented by storing extended data through transactions and connecting
transactions to previously generated contract addresses. In this scheme, the transaction is
divided into three parts, namely GroupID, Index and Extended data. The GroupID field
and Extended data field are the same as for the on-chain data scalability scheme based on
transaction. The reason for setting up the Index field is that the data are sliced before being
saved, so the order of the data must be ensured when restored. Smart contracts are both
an on-chain storage medium and a program that runs on the blockchain. Therefore, the
smart contract in this scheme has the following main components: a function to obtain the
data subject and a function to obtain the keywords or summary of the data. As the smart
contract is code, the rest of the components are also represented in the smart contract in the
form of functions, such as the function to encrypt the data.

Electronics 2023, 12, 1454 6 of 12Electronics 2023, 12, x FOR PEER REVIEW 6 of 12

Figure 3. On-chain data scalability scheme based on smart contracts.

4. On-Chain Data Index Based on Skip Lists
IoT data related to smart cities uploaded to the blockchain need to be acquired and

analyzed in real time to provide convenient services to citizens. The two on-chain data
scalability schemes in the previous section enable on-chain data extension and reduce data
redundancy on the blockchain. However, on-chain data can only be retrieved by travers-
ing the entire blockchain. Consequently, on-chain data retrieval is inefficient. Therefore,
in order to improve the retrieval efficiency of on-chain data, this paper proposes an on-
chain data index based on skip lists on the basis of the above on-chain data scalability
scheme based on transaction.

The on-chain data scalability scheme based on transaction divides the GroupID field
in the transaction and identifies the group number of the data by the GroupID field. The
GroupID field holds the timestamp of when the data were uploaded, so it is also possible
to sort the data according to the time of upload in the GroupID field. As shown in Figure
4, on the basis of the above on-chain data scalability scheme based on transactions, the
skip list structure is introduced. Compared to tree index structure such as B+ Tree, the
skip list index, which is a linear list structure, does not require complex and heavy re-
balancing operations when adding and removing nodes. Furthermore, the skip list index
provides efficient range searches in addition to efficient single data retrieval efficiency.
The GroupID field in the transaction is used as a keyword to create the node in the skip
list index. Through constructing a skip list index on the blockchain and using the GroupID
field as the keywords for on-chain data retrieval, the range search of on-chain data is re-
alized and the retrieval efficiency of on-chain data is improved.

Figure 4. On-chain data index based on skip list.

5. Experiment

Figure 3. On-chain data scalability scheme based on smart contracts.

4. On-Chain Data Index Based on Skip Lists

IoT data related to smart cities uploaded to the blockchain need to be acquired and
analyzed in real time to provide convenient services to citizens. The two on-chain data
scalability schemes in the previous section enable on-chain data extension and reduce data
redundancy on the blockchain. However, on-chain data can only be retrieved by traversing
the entire blockchain. Consequently, on-chain data retrieval is inefficient. Therefore, in
order to improve the retrieval efficiency of on-chain data, this paper proposes an on-chain
data index based on skip lists on the basis of the above on-chain data scalability scheme
based on transaction.

The on-chain data scalability scheme based on transaction divides the GroupID field
in the transaction and identifies the group number of the data by the GroupID field. The
GroupID field holds the timestamp of when the data were uploaded, so it is also possible
to sort the data according to the time of upload in the GroupID field. As shown in Figure 4,
on the basis of the above on-chain data scalability scheme based on transactions, the skip
list structure is introduced. Compared to tree index structure such as B+ Tree, the skip
list index, which is a linear list structure, does not require complex and heavy rebalancing
operations when adding and removing nodes. Furthermore, the skip list index provides
efficient range searches in addition to efficient single data retrieval efficiency. The GroupID
field in the transaction is used as a keyword to create the node in the skip list index.
Through constructing a skip list index on the blockchain and using the GroupID field as
the keywords for on-chain data retrieval, the range search of on-chain data is realized and
the retrieval efficiency of on-chain data is improved.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 12

Figure 3. On-chain data scalability scheme based on smart contracts.

4. On-Chain Data Index Based on Skip Lists
IoT data related to smart cities uploaded to the blockchain need to be acquired and

analyzed in real time to provide convenient services to citizens. The two on-chain data
scalability schemes in the previous section enable on-chain data extension and reduce data
redundancy on the blockchain. However, on-chain data can only be retrieved by travers-
ing the entire blockchain. Consequently, on-chain data retrieval is inefficient. Therefore,
in order to improve the retrieval efficiency of on-chain data, this paper proposes an on-
chain data index based on skip lists on the basis of the above on-chain data scalability
scheme based on transaction.

The on-chain data scalability scheme based on transaction divides the GroupID field
in the transaction and identifies the group number of the data by the GroupID field. The
GroupID field holds the timestamp of when the data were uploaded, so it is also possible
to sort the data according to the time of upload in the GroupID field. As shown in Figure
4, on the basis of the above on-chain data scalability scheme based on transactions, the
skip list structure is introduced. Compared to tree index structure such as B+ Tree, the
skip list index, which is a linear list structure, does not require complex and heavy re-
balancing operations when adding and removing nodes. Furthermore, the skip list index
provides efficient range searches in addition to efficient single data retrieval efficiency.
The GroupID field in the transaction is used as a keyword to create the node in the skip
list index. Through constructing a skip list index on the blockchain and using the GroupID
field as the keywords for on-chain data retrieval, the range search of on-chain data is re-
alized and the retrieval efficiency of on-chain data is improved.

Figure 4. On-chain data index based on skip list.

5. Experiment

Figure 4. On-chain data index based on skip list.

5. Experiment

In this section, the above two on-chain data scalability schemes and on-chain data
index based on skip lists are fully experimented and evaluated on the Ganache platform

Electronics 2023, 12, 1454 7 of 12

5.1. Experimental Setup

All experiments were conducted on the same server with an Intel Core i7-10710U and
16 GB RAM and running Ubuntu 20.04 64-bit operating system. The blockchain system is
Ganache-CLI v6.12.2, an Ethernet emulation network with ten nodes by default. The smart
contract code is written in Solidity 0.8.11, and the index and system are written and built in
Java. Web3j 4.8.7 was used as the middleware for the interaction between the system and
the blockchain. In this section, the scalability overhead and data retrieval performance of
on-chain data scalability schemes based on transactions and smart contracts are first tested,
respectively, and the differences between the two schemes are analyzed. Then, the retrieval
efficiency of on-chain data index based on skip lists, including the efficiency of single data
searches and dynamic range searches, is then tested and compared with sequential retrieval
and B+ tree index.

5.2. Performance of Two On-Chain Data Scalability Schemes

The extended data size set in the experiments is gradually increased from 256 Bytes
to 2048 Bytes, and the initial data size in the experiments is 512 Bytes. The scalability
overheads of the two schemes are tested first. Figure 5 presents the execution times of
the two scalability schemes in this paper for on-chain data extension. According to the
results in Figure 5, as the extended data increases, so does the execution time; however, the
execution efficiency is essentially the same for the two scalability schemes. Compared to the
existing schemes [11–14], the two scalability schemes are more efficient to extend because
they do not require verification of deleting and editing operations. Figure 6 illustrates
the result of the smart contract deployment. The storage overheads of the two scalability
schemes in this paper are then tested. A transaction is set to store 128 bytes of data in it.
Table 1 presents the number of transactions created when the on-chain data are extended.
The scalability scheme based on smart contract creates only one transaction when storing
the initial data because the data subject is stored within the smart contract code. According
to the data in Table 1, the two on-chain data scalability schemes in this paper reduce the
storage overhead significantly compared to the on-chain data scalability of traditional
blockchain. Therefore, the on-chain data scalability schemes based on transactions and
based on smart contracts effectively improve the scalability of the current blockchain.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 12

In this section, the above two on-chain data scalability schemes and on-chain data
index based on skip lists are fully experimented and evaluated on the Ganache platform

5.1. Experimental Setup
All experiments were conducted on the same server with an Intel Core i7-10710U and

16 GB RAM and running Ubuntu 20.04 64-bit operating system. The blockchain system is
Ganache-CLI v6.12.2, an Ethernet emulation network with ten nodes by default. The smart
contract code is written in Solidity 0.8.11, and the index and system are written and built
in Java. Web3j 4.8.7 was used as the middleware for the interaction between the system
and the blockchain. In this section, the scalability overhead and data retrieval performance
of on-chain data scalability schemes based on transactions and smart contracts are first
tested, respectively, and the differences between the two schemes are analyzed. Then, the
retrieval efficiency of on-chain data index based on skip lists, including the efficiency of
single data searches and dynamic range searches, is then tested and compared with se-
quential retrieval and B+ tree index.

5.2. Performance of Two On-Chain Data Scalability Schemes
The extended data size set in the experiments is gradually increased from 256 Bytes

to 2048 Bytes, and the initial data size in the experiments is 512 Bytes. The scalability over-
heads of the two schemes are tested first. Figure 5 presents the execution times of the two
scalability schemes in this paper for on-chain data extension. According to the results in
Figure 5, as the extended data increases, so does the execution time; however, the execu-
tion efficiency is essentially the same for the two scalability schemes. Compared to the
existing schemes [11–14], the two scalability schemes are more efficient to extend because
they do not require verification of deleting and editing operations. Figure 6 illustrates the
result of the smart contract deployment. The storage overheads of the two scalability
schemes in this paper are then tested. A transaction is set to store 128 bytes of data in it.
Table 1 presents the number of transactions created when the on-chain data are extended.
The scalability scheme based on smart contract creates only one transaction when storing
the initial data because the data subject is stored within the smart contract code. According
to the data in Table 1, the two on-chain data scalability schemes in this paper reduce the
storage overhead significantly compared to the on-chain data scalability of traditional
blockchain. Therefore, the on-chain data scalability schemes based on transactions and
based on smart contracts effectively improve the scalability of the current blockchain.

Figure 5. Execution times of the two scalability schemes. Figure 5. Execution times of the two scalability schemes.

Electronics 2023, 12, 1454 8 of 12Electronics 2023, 12, x FOR PEER REVIEW 8 of 12

Figure 6. Result of the smart contract deployment.

Table 1. Transaction usage.

Scheme Initial Data 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes
Transaction Scheme 4 6 10 18 34

Smart Contract Scheme 1 3 7 15 31
Traditional Scheme 4 10 20 38 72

Then the single-point query efficiency and multi-point query efficiency are tested
separately. The multi-point query efficiency results from 100 threads executing simulta-
neously. Figure 7 illustrates the execution time of the on-chain data scalability scheme
based on transactions. With the increase in extended data, the execution times of both
single-point and multi-point query increase; however, the increase of single-point query
time is not significant compared with multi-point query. Figure 8 demonstrates the exe-
cution time of the on-chain data scalability scheme based on smart contracts. The result is
similar to the transaction-based scheme, with execution time increasing as the extended
data increase. The results in Figures 7 and 8 also indicate that on-chain data scalability
based on transactions and based on smart contracts is feasible.

Figure 9 illustrates the comparison of the single-point query execution time of the
two schemes. It is obvious from Figure 9 that the transaction-based scheme is significantly
more efficient than the smart-contract-based scheme. After analysis, the on-chain data
scalability scheme based on transaction only needs to retrieve the raw data and the ex-
tended data directly from LevelDB. However, for the smart-contract-based scalability
scheme, since the raw data are stored in the smart contracts, obtaining the raw data re-
quires reading the smart contract code from LevelDB to the Ethereum virtual machine
and then running the function to obtain it, which increases the execution time. Neverthe-
less, the on-chain data scalability scheme based on smart contracts is significantly better
than the transaction-based scalability scheme in terms of functionality because of its abil-
ity to execute functions.

Figure 7. Execution time of the on-chain data scalability scheme based on transaction.

Figure 6. Result of the smart contract deployment.

Table 1. Transaction usage.

Scheme Initial Data 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes

Transaction Scheme 4 6 10 18 34
Smart Contract

Scheme 1 3 7 15 31

Traditional Scheme 4 10 20 38 72

Then the single-point query efficiency and multi-point query efficiency are tested sep-
arately. The multi-point query efficiency results from 100 threads executing simultaneously.
Figure 7 illustrates the execution time of the on-chain data scalability scheme based on
transactions. With the increase in extended data, the execution times of both single-point
and multi-point query increase; however, the increase of single-point query time is not
significant compared with multi-point query. Figure 8 demonstrates the execution time
of the on-chain data scalability scheme based on smart contracts. The result is similar
to the transaction-based scheme, with execution time increasing as the extended data
increase. The results in Figures 7 and 8 also indicate that on-chain data scalability based on
transactions and based on smart contracts is feasible.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 12

Figure 6. Result of the smart contract deployment.

Table 1. Transaction usage.

Scheme Initial Data 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes
Transaction Scheme 4 6 10 18 34

Smart Contract Scheme 1 3 7 15 31
Traditional Scheme 4 10 20 38 72

Then the single-point query efficiency and multi-point query efficiency are tested
separately. The multi-point query efficiency results from 100 threads executing simulta-
neously. Figure 7 illustrates the execution time of the on-chain data scalability scheme
based on transactions. With the increase in extended data, the execution times of both
single-point and multi-point query increase; however, the increase of single-point query
time is not significant compared with multi-point query. Figure 8 demonstrates the exe-
cution time of the on-chain data scalability scheme based on smart contracts. The result is
similar to the transaction-based scheme, with execution time increasing as the extended
data increase. The results in Figures 7 and 8 also indicate that on-chain data scalability
based on transactions and based on smart contracts is feasible.

Figure 9 illustrates the comparison of the single-point query execution time of the
two schemes. It is obvious from Figure 9 that the transaction-based scheme is significantly
more efficient than the smart-contract-based scheme. After analysis, the on-chain data
scalability scheme based on transaction only needs to retrieve the raw data and the ex-
tended data directly from LevelDB. However, for the smart-contract-based scalability
scheme, since the raw data are stored in the smart contracts, obtaining the raw data re-
quires reading the smart contract code from LevelDB to the Ethereum virtual machine
and then running the function to obtain it, which increases the execution time. Neverthe-
less, the on-chain data scalability scheme based on smart contracts is significantly better
than the transaction-based scalability scheme in terms of functionality because of its abil-
ity to execute functions.

Figure 7. Execution time of the on-chain data scalability scheme based on transaction. Figure 7. Execution time of the on-chain data scalability scheme based on transaction.

Figure 9 illustrates the comparison of the single-point query execution time of the two
schemes. It is obvious from Figure 9 that the transaction-based scheme is significantly more
efficient than the smart-contract-based scheme. After analysis, the on-chain data scalability
scheme based on transaction only needs to retrieve the raw data and the extended data
directly from LevelDB. However, for the smart-contract-based scalability scheme, since
the raw data are stored in the smart contracts, obtaining the raw data requires reading the
smart contract code from LevelDB to the Ethereum virtual machine and then running the
function to obtain it, which increases the execution time. Nevertheless, the on-chain data
scalability scheme based on smart contracts is significantly better than the transaction-based
scalability scheme in terms of functionality because of its ability to execute functions.

Electronics 2023, 12, 1454 9 of 12Electronics 2023, 12, x FOR PEER REVIEW 9 of 12

Figure 8. Execution time of the on-chain data scalability scheme based on smart contract.

Figure 9. Comparison of the execution time of the two schemes.

5.3. Performance of On-Chain Data Index Based on Skip Lists
This experiment tests the retrieval efficiency of on-chain data index based on skip

lists by gradually increasing the number of blocks and compares it with the efficiency of
sequential retrieval and B+ Tree index. The retrieval efficiency of single data is first com-
pared and the results are illustrated in Figure 10a,b. In single data retrieval, the on-chain
data index based on skip lists is obviously more efficient than sequential retrieval and B+
Tree index. The time complexity of sequential retrieval is O(n), while the time complexity
of the skip list and B+ Tree are both O(log(n)). It can also be observed from Figure 10 that
the execution time decreases as the number of blocks increases. This is due to the fact that
the skip list index is constructed through a random function. The more data are available,
the higher the probability of obtaining the high-level number and the more efficient the
data retrieval is.

Figure 11 shows the retrieval efficiency of the dynamic range, where multiple sets of
data are set, and the number of blocks occupied is 100 and 1000. From Figure 11, it is
observed that the execution time of sequential retrieval remains the same as the retrieval
range increases, while the execution time of the skip list index gradually increases. Until
the range reaches 100%, the execution time of skip list index and sequential retrieval are
basically the same when there are more blocks. The experimental results in Figures 10 and
11 demonstrate that the retrieval efficiency of on-chain data can be significantly improved
by constructing a skip list index.

Figure 8. Execution time of the on-chain data scalability scheme based on smart contract.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 12

Figure 8. Execution time of the on-chain data scalability scheme based on smart contract.

Figure 9. Comparison of the execution time of the two schemes.

5.3. Performance of On-Chain Data Index Based on Skip Lists
This experiment tests the retrieval efficiency of on-chain data index based on skip

lists by gradually increasing the number of blocks and compares it with the efficiency of
sequential retrieval and B+ Tree index. The retrieval efficiency of single data is first com-
pared and the results are illustrated in Figure 10a,b. In single data retrieval, the on-chain
data index based on skip lists is obviously more efficient than sequential retrieval and B+
Tree index. The time complexity of sequential retrieval is O(n), while the time complexity
of the skip list and B+ Tree are both O(log(n)). It can also be observed from Figure 10 that
the execution time decreases as the number of blocks increases. This is due to the fact that
the skip list index is constructed through a random function. The more data are available,
the higher the probability of obtaining the high-level number and the more efficient the
data retrieval is.

Figure 11 shows the retrieval efficiency of the dynamic range, where multiple sets of
data are set, and the number of blocks occupied is 100 and 1000. From Figure 11, it is
observed that the execution time of sequential retrieval remains the same as the retrieval
range increases, while the execution time of the skip list index gradually increases. Until
the range reaches 100%, the execution time of skip list index and sequential retrieval are
basically the same when there are more blocks. The experimental results in Figures 10 and
11 demonstrate that the retrieval efficiency of on-chain data can be significantly improved
by constructing a skip list index.

Figure 9. Comparison of the execution time of the two schemes.

5.3. Performance of On-Chain Data Index Based on Skip Lists

This experiment tests the retrieval efficiency of on-chain data index based on skip
lists by gradually increasing the number of blocks and compares it with the efficiency
of sequential retrieval and B+ Tree index. The retrieval efficiency of single data is first
compared and the results are illustrated in Figure 10a,b. In single data retrieval, the on-
chain data index based on skip lists is obviously more efficient than sequential retrieval
and B+ Tree index. The time complexity of sequential retrieval is O(n), while the time
complexity of the skip list and B+ Tree are both O(log(n)). It can also be observed from
Figure 10 that the execution time decreases as the number of blocks increases. This is due
to the fact that the skip list index is constructed through a random function. The more data
are available, the higher the probability of obtaining the high-level number and the more
efficient the data retrieval is.

Figure 11 shows the retrieval efficiency of the dynamic range, where multiple sets
of data are set, and the number of blocks occupied is 100 and 1000. From Figure 11, it is
observed that the execution time of sequential retrieval remains the same as the retrieval
range increases, while the execution time of the skip list index gradually increases. Until
the range reaches 100%, the execution time of skip list index and sequential retrieval are
basically the same when there are more blocks. The experimental results in Figures 10 and 11
demonstrate that the retrieval efficiency of on-chain data can be significantly improved by
constructing a skip list index.

Electronics 2023, 12, 1454 10 of 12
Electronics 2023, 12, x FOR PEER REVIEW 10 of 12

(a) (b)

Figure 10. Retrieval efficiency of single data. (a) Index retrieval efficiency; (b) Sequential retrieval
efficiency.

Figure 11. Retrieval efficiency of the dynamic range.

6. Conclusions
Currently, on-chain data scalability and retrieval are attracting a lot of attention from

academia and industry. In this paper, two on-chain storage media, transactions and smart
contracts, are first studied and analyzed, and two on-chain data scalability schemes are
proposed to improve on-chain data scalability. Moreover, on the basis of the above on-
chain data scalability scheme based on transactions, an on-chain data index based on skip
lists is proposed to realize the range search of on-chain data and improve the retrieval
efficiency of on-chain data. In the future, we will work on optimizing two on-chain data
scalability schemes, especially the smart contract-based scheme, to improve the efficiency
of on-chain data retrieval.

Author Contributions: Conceptualization, C.Y., N.M. and C.D.; methodology, C.Y. and N.M.; soft-
ware, C.Y.; validation, C.Y. and N.M.; formal analysis, C.Y.; investigation, C.Y. and N.M.; resources,
C.D.; data curation, C.Y. and H.L.; writing—original draft preparation, C.Y.; writing—review and
editing, C.Y.; visualization, C.Y.; supervision, C.Y.; project administration, C.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Figure 10. Retrieval efficiency of single data. (a) Index retrieval efficiency; (b) Sequential retrieval
efficiency.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 12

(a) (b)

Figure 10. Retrieval efficiency of single data. (a) Index retrieval efficiency; (b) Sequential retrieval
efficiency.

Figure 11. Retrieval efficiency of the dynamic range.

6. Conclusions
Currently, on-chain data scalability and retrieval are attracting a lot of attention from

academia and industry. In this paper, two on-chain storage media, transactions and smart
contracts, are first studied and analyzed, and two on-chain data scalability schemes are
proposed to improve on-chain data scalability. Moreover, on the basis of the above on-
chain data scalability scheme based on transactions, an on-chain data index based on skip
lists is proposed to realize the range search of on-chain data and improve the retrieval
efficiency of on-chain data. In the future, we will work on optimizing two on-chain data
scalability schemes, especially the smart contract-based scheme, to improve the efficiency
of on-chain data retrieval.

Author Contributions: Conceptualization, C.Y., N.M. and C.D.; methodology, C.Y. and N.M.; soft-
ware, C.Y.; validation, C.Y. and N.M.; formal analysis, C.Y.; investigation, C.Y. and N.M.; resources,
C.D.; data curation, C.Y. and H.L.; writing—original draft preparation, C.Y.; writing—review and
editing, C.Y.; visualization, C.Y.; supervision, C.Y.; project administration, C.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Figure 11. Retrieval efficiency of the dynamic range.

6. Conclusions

Currently, on-chain data scalability and retrieval are attracting a lot of attention from
academia and industry. In this paper, two on-chain storage media, transactions and smart
contracts, are first studied and analyzed, and two on-chain data scalability schemes are
proposed to improve on-chain data scalability. Moreover, on the basis of the above on-chain
data scalability scheme based on transactions, an on-chain data index based on skip lists is
proposed to realize the range search of on-chain data and improve the retrieval efficiency
of on-chain data. In the future, we will work on optimizing two on-chain data scalability
schemes, especially the smart contract-based scheme, to improve the efficiency of on-chain
data retrieval.

Author Contributions: Conceptualization, C.Y., N.M. and C.D.; methodology, C.Y. and N.M.; soft-
ware, C.Y.; validation, C.Y. and N.M.; formal analysis, C.Y.; investigation, C.Y. and N.M.; resources,
C.D.; data curation, C.Y. and H.L.; writing—original draft preparation, C.Y.; writing—review and
editing, C.Y.; visualization, C.Y.; supervision, C.Y.; project administration, C.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1454 11 of 12

References
1. Majeed, U.; Khan, L.U.; Yaqoob, I.; Kazmi, S.M.A.; Salah, K.; Hong, C.S. Blockchain for IoT-based smart cities: Recent advances,

requirements, and future challenges. J. Netw. Comput. Appl. 2021, 181, 103007. [CrossRef]
2. Granell, C.; Kamilaris, A.; Kotsev, A.; Ostermann, F.O.; Trilles, S. Internet of Things. In Manual of Digital Earth; Guo, H., Goodchild,

M.F., Annoni, A., Eds.; Springer: Singapore, 2020; pp. 387–423.
3. Weerapanpisit, P.; Trilles, S.; Huerta, J.; Painho, M. A Decentralized Location-Based Reputation Management System in the IoT

Using Blockchain. IEEE Internet Things J. 2022, 9, 15100–15115. [CrossRef]
4. Singh, P.; Masud, M.; Hossain, M.S.; Kaur, A. Blockchain and homomorphic encryption-based privacy-preserving data aggregation

model in smart grid. Comput. Electr. Eng. 2021, 93, 107209. [CrossRef]
5. Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of

architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [CrossRef]
6. Mohammed, F.; Kayes, A.S.M.; Pardede, E.; Rahayu, W. A Framework for Measuring IoT Data Quality Based on Freshness Metrics.

In Proceedings of the 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(IEEE TrustCom), Guangzhou, China, 29 December 2019–1 January 2020; pp. 1243–1250.

7. Aujla, G.S.; Singh, M.; Bose, A.; Kumar, N.; Han, G.J.; Buyya, R. BlockSDN: Blockchain-as-a-Service for Software Defined
Networking in Smart City Applications. IEEE Netw. 2020, 34, 83–91. [CrossRef]

8. Politou, E.; Casino, F.; Alepis, E.; Patsakis, C. Blockchain Mutability: Challenges and Proposed Solutions. IEEE Trans. Emerg. Top.
Comput. 2021, 9, 1972–1986. [CrossRef]

9. Wang, X.Q.; Wang, C.P.; Zhou, K.; Cheng, H.B. ESS: An Efficient Storage Scheme for Improving the Scalability of Bitcoin Network.
IEEE Trans. Netw. Serv. Manag. 2022, 19, 1191–1202. [CrossRef]

10. Wu, X.; Xu, Y.; Shao, Z.; Jiang, S. LSM-trie: An LSM-tree-based ultra-large key-value store for small data. In Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference, Santa Clara, CA, USA, 8–10 July 2015; pp. 71–82.

11. Li, X.C.; Ma, C.S. Redactable Blockchain based on Unforgeable Signatures for Supporting Fast Verification. In Proceedings of
the 20th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom),
Shenyang, China, 20–22 October 2021; pp. 1202–1207.

12. Aslam, S.; Mrissa, M. A RESTful Privacy-Aware and Mutable Decentralized Ledger. In Proceedings of the 25th European
Conference on Advances in Databases and Information Systems (ADBIS), Univ Tartu, Inst Comp Sci, Tartu, Estonia, 24–26 August
2021; pp. 193–204.

13. Pan, Y.Y.; Li, Y.; Gao, C.Y.; Fang, L.; Chen, P. Flexible and Efficient Blockchain-Based Cloud Storage. In Proceedings of the IEEE
14th International Conference on Cloud Computing (CLOUD), Electr Network, 5–10 September 2021; pp. 304–312.

14. Tang, Y.L.; Wu, S.; Wang, X.J. Redactable Blockchain Trust Scheme Based on Reputation Consensus for MEC. Comput. Intell.
Neurosci. 2022, 2022, 3269445. [CrossRef] [PubMed]

15. Feng, H.W.; Wang, J.L.; Li, Y. A Blockchain Storage Architecture Based on Information-Centric Networking. Electronics 2022,
11, 2661. [CrossRef]

16. Han, D.J.; Chen, J.Y.; Zhang, L.; Shen, Y.T.; Gao, Y.H.; Wang, X.H. A Deletable and Modifiable Blockchain Scheme Based on Record
Verification Trees and the MultisignatureMechanism. Cmes-Comput. Model. Eng. Sci. 2021, 128, 223–245. [CrossRef]

17. Wu, H.T.; Peng, Z.; Guo, S.T.; Yang, Y.Y.; Xiao, B. VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems.
IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1393–1406. [CrossRef]

18. Rahman, M.S.; Khalil, I.; Moustafa, N.; Kalapaaking, A.P.; Bouras, A. A Blockchain-Enabled Privacy-Preserving Verifiable Query
Framework for Securing Cloud-Assisted Industrial Internet of Things Systems. IEEE Trans. Ind. Inform. 2022, 18, 5007–5017.
[CrossRef]

19. Xu, C.; Zhang, C.; Xu, J.L.; Assoc Comp, M. vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases. In
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), Amsterdam, The Netherlands,
30 June–5 July 2019; pp. 141–158.

20. Yan, D.K.; Jia, X.H.; Shu, J.G.; Yu, R.T. A Blockchain-based Database System for Decentralized Information Management. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021.

21. Wan, L. An Optimization Method for Blockchain Electronic Transaction Queries Based on Indexing Technology. In Proceedings of
the Big Data Analytics for Cyber-Physical System in Smart City, Singapore, 28–29 December 2021; pp. 1273–1281.

22. Zhu, Y.; Zhang, Z.; Jin, C.; Zhou, A.; Yan, Y. SEBDB: Semantics Empowered BlockChain DataBase. In Proceedings of the 2019
IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1820–1831.

23. Huang, X.J.; Gong, X.Q.; Huang, Z.G.; Zhao, L.M.; Gao, K. EBTree: A B-plus Tree Based Index for Ethereum Blockchain Data. In
Proceedings of the 2020 Asia Service Sciences and Software Engineering Conference, Nagoya, Japan, 13–15 May 2020; pp. 83–90.

24. Chen, L.X.; Lee, W.K.; Chang, C.C.; Choo, K.K.R.; Zhang, N. Blockchain based searchable encryption for electronic health record
sharing. Future Gener. Comput. Syst.-Int. J. Escience 2019, 95, 420–429. [CrossRef]

25. Tang, X.Y.; Guo, C.; Choo, K.K.R.; Liu, Y.I.; Li, L. A secure and trustworthy medical record sharing scheme based on searchable
encryption and blockchain. Comput. Netw. 2021, 200, 108540. [CrossRef]

26. Rukundo, A.; Tsigas, P. TSLQueue: An Efficient Lock-Free Design for Priority Queues. In Proceedings of the 27th International
European Conference on Parallel and Distributed Computing (Euro-Par), Electr Network, 30 August–3 September 2021; pp.
385–401.

http://doi.org/10.1016/j.jnca.2021.103007
http://doi.org/10.1109/JIOT.2022.3147478
http://doi.org/10.1016/j.compeleceng.2021.107209
http://doi.org/10.1016/j.scs.2020.102360
http://doi.org/10.1109/MNET.001.1900151
http://doi.org/10.1109/TETC.2019.2949510
http://doi.org/10.1109/TNSM.2021.3127187
http://doi.org/10.1155/2022/3269445
http://www.ncbi.nlm.nih.gov/pubmed/35676948
http://doi.org/10.3390/electronics11172661
http://doi.org/10.32604/cmes.2021.016000
http://doi.org/10.1109/TPDS.2021.3113873
http://doi.org/10.1109/TII.2021.3105527
http://doi.org/10.1016/j.future.2019.01.018
http://doi.org/10.1016/j.comnet.2021.108540

Electronics 2023, 12, 1454 12 of 12

27. He, J.; Yao, S.W.; Cai, L.; Zhou, W. SLC-index: A scalable skip list-based index for cloud data processing. J. Cent. South Univ. 2018,
25, 2438–2450. [CrossRef]

28. Li, Z.X.; Jiao, B.; He, S.B.; Yu, W.K. PhaST: Hierarchical Concurrent Log-Free Skip List for Persistent Memory. IEEE Trans. Parallel
Distrib. Syst. 2022, 33, 3929–3941. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11771-018-3927-0
http://doi.org/10.1109/TPDS.2022.3173707

	Introduction
	Related Works and Preliminary Concepts
	On-Chain Data Scalability and Retrieval
	Ethereum and Smart Contract
	Skip List

	Storage Medium and Scalability Scheme
	Transaction
	Smart Contract

	On-Chain Data Index Based on Skip Lists
	Experiment
	Experimental Setup
	Performance of Two On-Chain Data Scalability Schemes
	Performance of On-Chain Data Index Based on Skip Lists

	Conclusions
	References

