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Abstract: For the task of answering complex logical queries on large-scale incomplete knowledge
graphs, the promising approach is to embed the knowledge graph and complex logical queries into
a low-dimensional space and perform iterative reasoning to find the final answers. The general
problem is that these models do not include entity types as an important feature, which reduces
the reasoning potential. However, explicit type information is not always available on large-scale
knowledge graphs. We innovatively propose an embedding-based framework for Unsupervised
Type-Aware Complex Logical Queries (UnTiCk). Our approach implements unsupervised type
constraints on multi-hop complex logical query processing. Moreover, it can capture the different
representations of type features when entities are in different locations in the logical path. We designed
type compatibility measurement meta-operators combined with popular Existential Positive First-
Order (EPFO) neural logical operators to achieve type-aware EPFO complex query embedding. We
validated the effectiveness of our framework on popular large-scale knowledge graphs by using the
same embedding dimensionality as complex logical embedding methods. The results showed an
average relative improvement of 1.9–12.8% on Hit@3 and up to 42.1% on the certain logical pattern.

Keywords: knowledge graph; knowledge representation; type constraints; knowledge reasoning;
representation learning; unsupervised learning

1. Introduction

Knowledge Graphs (KGs) record much of the established knowledge of the real world
in a universal form without designing database fields. Such a form of data is widely used
in large-scale databases such as Freebase [1], YAGO [2], and DBpedia [3]. The feature of
knowledge graphs not having predefined schemas allows them to gain flexibility with
fewer constraints, which makes reasoning difficult. Multi-hop reasoning is a popular new
question on the knowledge graph. For a complex logical query, a simple recursion of the
traditional single-hop models (or knowledge graph completion models) [4–9] would be
ineffective and would not handle the combination logic of it well. A promising approach
is to embed the elements of the knowledge graph and complex logical queries into a low-
dimensional space, looking for entities’ embedding of the knowledge graph close to the
representation of query embedding results in the space to get answers. In contrast to a
rule-based or path-based multi-hop reasoning solution [10–13], which requires modeling
predefined rules and intermediate nodes, the logical query embedding methods require
less consumption, yet have better generalization [14].
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However, existing complex logical query embedding models inevitably introduce
structurally similar wrong answers as they mainly capture the structural information of
entities. A common solution for knowledge graph completion models is introducing more
entity information, such as the entity type [15–18]. There is a need to introduce type con-
straints for the complex logical query embedding models to enhance their reasoning power.
Due to the lack of explicit type information on large knowledge graphs, such constraints
should be unsupervised and generalizable. This leads to a challenging task that combines
unsupervised type constraint information and complex logical query embedding methods.

Some studies have modeled unsupervised type constraints on knowledge graph
completion models [17–20]. They explored some approaches to add unsupervised type
constraints on single-hop completion models and mentioned the influence of the relations
and location on entity types. However, we cannot directly generalize their approaches
because complex logical query embedding models do not model intermediate nodes of the
logical path.

Let us consider a logical question, “What are the albums of the singers who won the Grammy
Awards?” There are two focus issues: First, complex logical query embedding methods
relying only on entity structure information may return singles, movie promos, or even
more answers with similar, but incompatible entity types. Second, there is an essential
question that many entities, in reality, will exhibit different bias-type representations when
faced with different relations and in different roles of the relation. A person who wins a
Grammy as a singer can be an actor, a director, or even an athlete. The diversity of entity
types can be even more difficult in multi-hop complex logical embedding.

Based on the above thoughts and issues, we propose UnTiCk. As its name implies,
our framework can untick entities whose types do not conform to the constraints. In brief,
we designed four type compatibility measurement meta-operators, which we simply refer to as
type meta-operators in the following, by combining the four type meta-operators with neural
logical operators containing only entity structure information. The implementation converts
complex logical queries into type-aware complex logical queries. We used the type-aware
neural logical operators recursively based on the computation graph to obtain the final
set containing the type-aware answers. We successfully implemented unsupervised type
constraints under the task of multi-hop complex logical query embedding. Furthermore,
our approach captures different bias-type representations of entities for different relations
and locations in the path.

Our contributions are as follows:

• We propose UnTiCk, an embedding-based unsupervised type-aware complex logi-
cal queries reasoning model. It is a novel solution that extends unsupervised type
constraints to multi-hop complex logical query embedding models.

• We designed four type compatibility measurement meta-operations that reflect good
modularity and generalization. They capture the diversity of entity types in different
relations and locations in complex logical queries.

• We conducted experiments on three popular benchmark datasets, combining our
model with popular complex logical embedding models. With the same number
of embedding dimensions, our models showed better results than the complex log-
ical embedding models, which contain only entity structure information. We also
demonstrate the effectiveness of our unsupervised type feature extraction with a
visualization.

2. Related Work

Our framework was inspired by two lines of prior work: logical query embedding
models for multi-hop complex logical reasoning tasks and unsupervised type constraint
methods in single-hop knowledge graph completion tasks. This section mainly introduces
two lines of related work described above. At the beginning of each subsection, we present
additional instructive background work in related fields. We summarize the most-relevant
work in Table 1.
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Table 1. Main related work and classification.

Fields Model Name Model Category Type Constraint
Logical Query Type Information Unsupervised Supervised

Logical Query
Embedding

GQE [14] Point – – –
Query2Box [21] Box region – – –
NewLook [22] Box region – – –

BetaE [23] Beta distribution – – –

Type Information
Embedding

TypeDM
and TypeComplex [19] – Entity-relation matching X

CooccurX [20] – Entity-relation matching X
ProtoE [17] – Entity-relation matching X

AutoETER [18] – Relation-specific extraction X
TEMP [24] Plug-in module Message passing X

2.1. Logical Query Embedding Models for Multi-Hop Reasoning

A popular and effective approach to solving incomplete knowledge graph problems
is to embed knowledge graphs into a low-dimensional space. Early knowledge graph
embedding models [4–7] brought better results on the knowledge graph completion task.
Later models [8,9] extended the embedding to the complex space to model more relation
patterns, but they can also handle only single-hop problems.

Some models [25–27] use the output of the embedding model as a guide, combined
with posterior computation, to find complex queries’ approximate answers. However,
using the edge prediction model and scoring the possible paths, the required computational
time is exponential in the number of existentially quantified variables in the query [28].
Moreover, since the model is not trained end-to-end, it cannot be optimized for error
propagation between the model and the algorithm.

In recent years, researchers in the knowledge graph community have gradually shifted
their attention from single-hop knowledge graph completion tasks to complex query
reasoning tasks. They have made significant progress in the field of complex logical
query embedding.

The logical query embedding methods [14,21–23,29,30] are promising approaches
for solving multi-hop logical query reasoning tasks. Due to their performance, recent
work used them for the KGQA task [31]. They avoid modeling intermediate entities while
possessing greater flexibility and generalization capabilities than the traditional rule- and
path-based multi-hop reasoning methods [10–13]. We will introduce representative work
in this field.

GQE [14] models the whole logical query process in a low-dimensional space, treats
entities as points, and represents logical operators as learned geometric operations in the
embedding space, implementing complex query reasoning on the subset of First-Order
Logic (FOL).

Query2Box [21] is currently a popular and intuitive model in the field of logical
query embedding, with the best balance of computational efficiency, model complexity,
and accuracy. Its main idea treats anchor entities as points (box regions with zero offset) in
a low-dimensional space, but maps logical operators and predicted results to box regions,
similar to Venn diagrams [32]. Consistent with our intuition about multi-hop logical query
reasoning, we applied a smaller weight to the distance inside the box so that it is dominant
in the ranking, meaning it is closer to the answer.

NewLook [22] reduces the cascading error on the Query2Box projection operation by
introducing nonlinearity while supporting difference operations and multivariate node
queries. However, using randomly sampled adjacency matrices has some impact on
spatial complexity.

BetaE [23] models uncertainty in complex logic queries with a beta distribution while
supporting a complete set of first-order logical operators. The cost is that it increases the
complexity of the model and is not intuitive enough compared to box embedding.
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2.2. Unsupervised Type Information Embedding Models

Many single-hop models that utilize entity types require entity annotations or explicit
type prior knowledge.

For the knowledge graph completion task, TKRL [15] models explicit hierarchical type
information, and TransT [33] integrates type information through probabilistic estimation.
They both propose that entities should have multiple representations in different types.
On the entity type inference task, ConnectE [16] models not only entity types, but also
type triples. CORE [34] embeds entities and types into the complex space separately
and connects the two spaces by a regression model. TET [35] designs three transformers
to capture information, which provides a new way for the entity type inference task
with Transformers [36]. However, the above work cannot satisfy our need for complex
logical queries.

TEMP [24] extends the application of entity type information to multi-hop reasoning.
It is implemented through a combination with existing query embedding models, using
message passing to aggregate explicit type information. The information requires much
manual effort and is not always available on modern large knowledge graphs. This is
different from the goal of our model.

We wanted to model unsupervised type constraints of knowledge graphs to make
them applicable to a wider range of situations. Some prior work has explored this in the
single-hop tasks, which is the focus of this subsection.

They are mainly based on two ideas, which we classify as entity-relation matching and
relation-specific extraction. The former assigns type information vectors for each entity and
relation separately and achieves type constraints by matching scores. The latter designs
extraction matrices for each relation and applies a translation mechanism to the extracted
type representations to score them to achieve type constraints. The specific categories of
the models are shown in Table 1.

TypeDM and TypeComplex [19] proposes a type-sensitive method based on the popu-
lar knowledge graph completion models DistMult and ComplEx. It does not require prior
knowledge and measures type compatibility by adding a new vector space. TypeDM and
TypeComplex designs four embedding vectors for each tuple (s, r, o), representing the type
of subject entity, type of object entity, expected type of subject entity, and object entity by
the relation. It performs type-sensitive constraints by computing a joint score function of
subject type compatibility, object type compatibility, and the original knowledge graph
model score.

CooccurX [20] proposes co-occurrence to calculate the type similarity between entities.
The main idea is that a pair of entities with more simultaneous subjects or objects in the
same relation is more similar in type. However, this computation cannot be applied to
large-scale knowledge graphs.

ProtoE [17] is similar to TypeDM and TypeComplex, except that it embeds type embed-
ding and entity embedding in the same low-dimensional space. It considers the diversity
of prototypes of head and tail entity types and redesigns the loss function. This approach
extends unsupervised type constraints to more knowledge graph completion models. It
brings more parameters while still only handling single-hop completion problems.

AutoETER [18] proposes a joint entity and unsupervised type embedding model. It
sets up the entity embedding as a complex space embedding similar to RotatE, where the
embedded entities and relations are in the complex space. It treats the relations as rotations
between the head and tail entities. When extracting unsupervised type constraints, the type
representations of head and tail entities are extracted in space using relation-specific feature
extraction matrices while treating the relation vectors as type transformations. This process
is most relevant to our idea. Unlike the diversity of head and tail entity type prototypes in
ProtoE, we should intuitively pay more attention to the diversity of type representations of
entities in the face of different relations, because entities usually show specific features for
particular relations. However, we focused on type compatibility measurement in multi-hop
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logical query embedding. In contrast, they focused on multi-type representations of entities
in knowledge graph completion tasks without any logic and path.

3. Background and Problem Definition

In this section, we first define the concepts and operators used in this paper, then
briefly introduce the popular complex logical embedding models used, finally leading to a
formal statement of the problem we expected to solve. We need a clear definition of the
knowledge graph at the beginning of this section.

Definition 1 (Knowledge graph). A knowledge graph G = (E ,R, T ) consists of entities e ∈ E ,
relations r ∈ R, and tuples (or triples) (h, r, t) ∈ T . h represents the head entity of the triple, and t
represents the tail entity of the triple connected by relation r. We consider r(h, t) = {1, 0} to be a
binary function representing (h, r, t) ∈ T when r(h, t) = 1 and (h, r, t) /∈ T otherwise.

The point of this work is unsupervised type constraints in complex logical query
embedding. It is necessary to formalize the details of the unsupervised type constraints we
need to capture, even if they are not explicitly identified in datasets.

Definition 2 (Type constraint collection of knowledge graph). A type constraint collection
GT of a knowledge graph G is denoted as GT = (ET ,RT , CE , CR), where ET is the constraint
distinct type set of E and RT is the distinct type set of R, CE is a constraint function that
CE (e) = {c1, c2, ..., ce} represents the distinct type set of entity e. CR is a constraint function that
CR(r) = {(ch1 , ct1), (ch2 , ct2), ..., (chn , ctn)} represents the head (domain) and tail (range) distinct
type constraints tuple of relation r.

Following the definition of previous works [21], the complex logical query domain
of this article is at Existential Positive First-Order (EPFO) logical queries (i.e., queries that
include any set of ∧, ∨, and ∃).

Some recent articles attempted to solve logical query embedding on a complete set of
first-order logical operators. BetaE [23] can model negation using probabilistic inversion,
as it models logical operations natively as beta distributions. NewLook [22] can solve
negation using the whole set because it models the difference logical operator.

However, these models are similar to model arbitrary quantifiers in that they cause a
dramatic increase in the query space. They are less used in practice, and we often solve them
by combining and excluding multiple queries, which sometimes leads to faster ones. This
paper considered a common generic method in EPFO queries. These modeling differences
are not the focus of this paper, so they will not be expanded further here.

Definition 3 (EPFO logical queries). We formally define an EPFO logical query as follows:

q[a?] = a? . ∃e1, ..., ek : p1 ∧ p2 ∧ ...∧ pn, (1)

where pi = r(ea, e) or r(e′, e), ea ∈ Ea, r ∈ R,

e ∈ {a?, e1, ..., ek}, e′ ∈ {e1, ..., ek}, e 6= e′,

where a? is our target variable, ea represents the anchor entity node of the query, which is a non-
variable node, ei, ..., ek are existentially quantified bound variables, and pi represents the atomic
formula. An atomic formula represents the projection of a relation between an anchor entity node
and an existentially quantified bound variable or two existentially quantified bound variables.

Given an EPFO logical query, we want to find the answer set JqK ⊆ E s.t. ∀e ∈ JqK⇔
q[e] = 1.

A common approach is to convert logical queries into corresponding dependency
graphs and computation graphs to guide the embedding model for the result query pro-
cess [14,21–23,37]. We define them as follows.
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Definition 4 (Dependency graph and computation graph). A complex logical query q has a
corresponding dependency graph denoted as Q = (EQ,RQ,LQ). Q consists of entities EQ ⊆ E ,
which contain the anchor nodes’ set and the existentially quantified bound variables’ set. The relation
between entities RQ ⊆ R and L is the logical operator. In this paper, we considered the logical
collection LQ ⊆ L = {P, I,U} (project, intersection, union operators). The computation graph
represents the actual order of operations of our framework for reasoning about the dependency graph.

A dependency graph for a valid query must be a Directed Acyclic Graph (DAG) with
the source node as the anchor node and the target node as the unique sink node [37]. Let us
consider a typical question that is more convenient to give an example: “Who are the singers
of the songs composed by Jay Chou and lyrics written by Vincent Fang?” The corresponding
dependency graph and computation graph for the complex logical query is shown in
Figure 1.

isSangBy

Vincent Fang

A?V

𝑞 = A? . ∃𝑉: 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟𝑂𝑓 Jay Chou, 𝑉 ∧ 𝑖𝑠𝐿𝑦𝑟𝑖𝑐𝑖𝑠𝑡𝑂𝑓 Vi𝑛𝑐𝑒𝑛𝑡 𝐹𝑎𝑛𝑔, 𝑉 ∧ 𝑖𝑠𝑆𝑎𝑛𝑔𝐵𝑦 𝑉, 𝐴?

Jay Chou 

Vincent Fang

Projection

Jay Chou

Projection

Projection

(a) (b)

Figure 1. This is the graph of the complex logical query “Who are the singers of the songs composed by Jay
Chou and lyrics written by Vincent Fang?” (a) Dependency graph for the above query. (b) Computation
graph for the above query.

In summary, we now conceive of the model to focus on extracting the corresponding
collection of type constraints during the traditional embedding of complex logical queries,
as well as how to convert EPFO queries into type-aware EPFO queries and execute joint
queries based on dependency graph and computation graph. Based on this idea, we wanted
to design some assemblable type meta-operator components. We combined them with the
neural logical operators of the logical query embedding to achieve this goal.

In the following, we first introduce the similarities and differences of several popular
EPFO complex logical query embedding models from the perspective of logical embedding
operators. They will be used as part of our model to capture the original entity structure
information of the knowledge graph. Then, we define the problems of the type-aware
neural logical operators. Finally, we obtain a formal representation of the complete problem
that UnTiCk needs to solve.

3.1. Logical Query Embedding Operators

It is necessary for us in this subsection to briefly describe the intuition and design
of GQE [14] and Query2Box [21] for the entity logical embedding operator, which will
be effectively integrated into our framework as the basis for entity structure information
embedding. We summarize their main features and the way the logical query embedding
operator is implemented and briefly introduce their main ideas in the following.

Query2Box implements all the logical operators required by EPFO queries, which can
be seen as an extension of the idea of GQE, and we decided to introduce its design first.
It uses zero offset box embedding to represent an entity (which can also be regarded as a
point), box transformations to represent relations, and the result box region to represent the
answer prediction space for a logical query. The box embedding is defined as:

b = {e ∈ Rde : bc − bo ≤ e ≤ bc + bo}, (2)
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where e is the embedding of entity e ∈ E , de is the embedding dimensionality of e, and b is
the box region consisting of center bc and offset bo ≥ 0.

When initializing an anchor node, since it contains only one entity, intuitively, Query2Box
represents it as a box with zero offset. The model then uses logical query embedding opera-
tors to obtain the final answer region based on the computational graph. The target entity
is located at or close to the final box region.

Entity projection operator: Given an entity embedding or an existential quantified
variable box region and a relation box embedding r, we model the entity projection opera-
tion as a linear transformation:

b̂c = bc + rc, b̂o = bo + ro, (3)

where rc and ro are the center and offset of the relation box embedding r and b̂c and b̂o form
the box region b̂, which is the prediction of the box embedding space after the projection oper-
ation.

Entity intersection operator: Given a collection of entity sets, the entity intersection
operation’s intuition is to find the overlap of multiple spaces. Since the importance of each
collection element is not the same for the merged space, it uses the attention mechanism to
find the entity centers and the sigmoid function of Deepsets [38] to shrink the offset:

b̂c = ∑
i

ai � bc
i , ai =

exp(MLP(bi
c)))

∑j exp(MLP(bc
j ))

, (4)

b̂o = Min({bo
1 , ..., bo

n} � σ(Deepsets({bo
1 , ..., bo

n})), (5)

Deepsets({bo
1 , ..., bo

n}) = MLP(
1
N

N

∑
i=1

MLP(bo
i )), (6)

where � is the dimensionwise product, MLP(·) is the multi-layer perceptron, and σ repre-
sents the sigmoid function; Deepsets(·) follows the idea of GQE to guarantee permutation
invariance, shown in Equation (6).

Entity union operator: Given a collection of entity sets, the entity union operation’s
intuition is to transform the query into a Disjunctive Normal Form (DNF) [39], instead
of creating a new neural logical operator. In the final step, the box regions of all anchor
nodes need to be united, and the shortest distance in the answer space will determine the
confidence of the entity:

Sagg(e, q) = Min({S1(e, q1), ..., S1(e, qn)}), (7)

where q is the complex logic query, qi is every single path of the union query, Sagg(·)
represents the confidence function of the entity answer after the union operation, and S1(·)
represents the score function to calculate the distance of the entity representation from the
center of the predicted box region.

It solves the problem that the answer space is not closed and makes the model only
need to be united in the last step. Moreover, if not converted to the DNF, the model may
need to model the powerset of the entity set in vector space, which is unacceptable in many
cases, much less to support all union queries.

Finally, they use the following distance function to calculate the confidence level of
the entity as an answer:

S1(e, q) = distoutside(e, q) + α · distinside(e, q), (8)

where distinside(·) and distoutside(·) are the inside and outside parts of L1 distance between
the entity embedding and box center, respectively. α ∈ (0, 1) is a hyperparameter that
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makes elements inside the box have a smaller distance and gives a larger penalty to entities
outside the box. It gives the entities inside the box a greater propensity to be the answers.

We used the extended implementation of GQE [21], making it work in the EPFO
query space. It models entities as points, and the entity projection operator is modeled
as translation. The entity intersection operator is modeled by Deepsets. It also uses the
DNF-query rewriting strategy and L1 distance as a score function to calculate the score
between entity embedding e and query box q.

3.2. Type-Aware Logical Query Operations

According to the above, our problem is to convert existing logical query embedding
operators to type-aware neural logical operators. We define three type-aware neural logical
operations as follows.

Problem 1 (Type-aware projection). Given a set of entities Eq ⊆ E , relation r ∈ R, and their corre-
sponding type constraint collection GTq , for eh ∈ Eq, we use a type-aware projection operation to obtain
the answer collection Pt(eh, r) = {et|r(eh, et) = 1, ∃(ch, ct) ∈ CR(r), ch ∈ CE (eh), ct ∈ CE (et)}.

Problem 2 (Type-aware intersection). Given a collection of entity sets E = {E1, E2, ..., En},
the corresponding entity type constraint set C = {CE1 , CE2 , ..., CEn }. The prediction constraint set
after the intersection is CEI . Then, we use the type-aware intersection operator to obtain the answer
collection It(E, C) = ∩n

i=1{e ∈ Ei|∃ce ∈ CEi (e), ce ∈ CEI }.

Problem 3 (Type-aware union). Given a collection of entity sets E = {E1, E2, ..., En}, the cor-
responding entity type constraint set C = {CE1 , CE2 , ..., CEn }. The prediction constraint set after
the union is CEU. Then, we use the type-aware union operator to obtain the answer collection
Ut(E, C) = ∪n

i=1{e ∈ Ei|∀ce ∈ CEi (e), ce ∈ CEU}.

To solve the problems, we carefully analyzed the common operations required by the
logical query embedding model to implement type-aware operators. The logical query
embedding model can be combined by designing type compatibility measurement meta-
operators to perform joint metrics with it for type information.

3.3. UnTiCk Problem Definition

Based on the above definitions, we can formalize the unsupervised type constraints
logical query embedding problem described in this paper as follows.

Given a knowledge graph G, an EPFO logical query q, and type compatibility mea-
surement meta-operators set, we need to extract the type constraint information from it.
Then, we use the type-aware neural logical operators recursively through the computation
graph generated by the dependency graph. Finally, we obtain a set of answer entities JqtK
that conform to the type constraint information and logical structure information.

4. UnTiCk: Unsupervised Type-Aware Complex Logical Queries Reasoning Framework

We designed a joint framework to combine the popular complex logical embedding
framework for the entity structure information embedding module. We also designed the
entity type information embedding module. It consists of type compatibility measurement
meta-operators, which we will describe in detail below. An overview of our UnTiCk
framework is shown in Figure 2.

In the model’s training process, we jointly trained the entity structure information
embedding module and the entity type information embedding module and implemented
type-aware complex logical query embedding after the joint evaluation of the two modules.
We briefly introduce the query processing process of our framework with typical complex
logical queries in the following.
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e1 r1

t1

e2 r2

e3
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Complex Logical Query

Latent Type Information

Entity Structure Information Embedding Module

Unsupervised Type Constraints Embedding Module

Type-Aware Complex

Logical Query

Anchor1

Anchor2

t2

Type-Aware Logical

Query Answers

Logical Query 

Answers

Regression

Fusion

Extraction Transformation Extraction Transformation

RegressionExtraction Transformation Extraction Transformation

Extraction

Type1

Type2

UnTiCk

Latent Type 

Representation

Figure 2. The overview of the UnTiCk framework.

4.1. Type Compatibility Measurement Meta-Operators

Based on the definitions in the previous section, we analyzed the intermediate states
and measurement methods for unsupervised entity types during logical query reason-
ing. Then, we summarize them into four different type compatibility measurement meta-
operators, which we design concretely in the following.

We represent the unsupervised types of entities as separate points because unsuper-
vised type constraints do not have an explicit type separation. Moreover, our goal was
not to perform a classification task, but to constrain our target entities in an additional
dimension. We only need to focus on the different features of an entity in the face of a
particular relation and the specific degree of expression that captures these features.

It is a smaller vector space compared to the entity structure embedding space, allowing
entity and relation representations to show more group similarity features in lower dimen-
sionality.

Let us continue to consider the typical question: “Who are the singers of the songs
composed by Jay Chou and lyrics written by Vincent Fang?” We illustrate our type compatibility
measurement meta-operator design with an example type knowledge graph. It contains
the previous question. For each meta-operator, we used the part of the knowledge graph
that best represents its characteristics as an example to describe it. The specific structure of
the type knowledge graph is shown in Figure 3. We describe our approach with a phased
example of the above problem.

Director

Movie

Absolute Music

The Swan

Secret

isSangBy

Vincent 

Fang

Jay Chou

Lyricist

Chinese 

Song

Pop Song Pop Singer

Chinese 

Singer

Hip-hop 

Song

Singer

Composer

Nunchucks

A?V

Figure 3. This is an example of the type knowledge graph used in this section. It shows the entities
and relations and the different types of entities. V represents the virtual intermediate node. A?

represents the target node.
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Example 1. For the anchor node Jay Chou , when it is in (Jay Chou, isComposerOf, The
Swan), its entity type feature is expressed as Composer. In (Jay Chou, isDirectorOf, Secret),
its entity type feature is expressed as Director. In (Nunchuncks, isSangBy, Jay Chou), its entity
type feature is expressed as Singer.

With Example 1, we need to design a meta-operator that makes an entity exhibit
different bias type representations in the face of different relations. We refer to this meta-
operator as type feature extraction and define it as follows.

Definition 5 (Type feature extraction). Given an entity e and an outgoing relation r, Ex(e, r)
aims to obtain the domain type representation of this entity Ex(e, r) = {ch|∃(ch, ct) ∈ CR(r),
ch ∈ CE (e)} for this outgoing edge r.

For the design of the type feature extraction function, our intuition is to design a
relation-specific representation matrix for each relation:

ce = Wrte (9)

where ce represents the relation-specific type representation of the entity e, te represents the
type representation of the entity e, and Wr represents the relation-specific representation
matrix for relation r. For an entity as the outgoing edge of a relation, ce represents the
domain type representation for relation r. Similarly, for an entity as the incoming edge of a
relation, ce represents the range type representation for relation r.

The representation matrix represents the unique preference of each relation for the
entity type. It leads each entity to exhibit a different type representation for different
relations. Meanwhile, the entity’s representation needs to be converted to accommodate
complex logical paths, as it serves as both the head of one relation and the tail of another. It
also brings new challenges for the other meta-operators’ design.

Example 2. For the anchor nodes Jay Chou and Vincent Fang in the previous example, we should
not show modeling specific intermediate nodes during reasoning, but we need to obtain intermediate
nodes as range type constraint representations of isComposerOf and isLyricistOf.

With Example 2, we find that we need to design a meta-operator that converts the
entity relation-specific domain representation we have obtained into an entity relation-
specific range representation. We call this meta-operator type feature transformation and
define it as follows.

Definition 6 (Type feature transformation). Given a domain entity type representation ce
h and

an outgoing relation r, Tr(r) aims to obtain the range type representation of this entity e for this
outgoing edge r, denoted as Tr(ce

h, r) = {ct|(ce
h, ct) ∈ CR(r)}.

The representation of a relation in the type embedding space can be regarded as a
transformation from its domain type to its range type. The type feature transformation
function is represented as a linear transformation:

ct = ce + tr, (10)

where ce represents the domain embedding of entity e extracted by relation r and tr
represents the type transformation of r from its domain to the range type. We used this to
obtain the range feature ct after transformation.

If we obtain the predicted range type representation of the target node at this point, we
can directly perform type feature extraction on the target entity node and calculate the score.
Alternatively, if we obtain the predicted range type representation of the intermediate node
at this point, we need a meta-operator to connect the intermediate nodes before and after.
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This meta-operation can be regarded as the inverse operation of type feature extraction.
However, it is obvious that taking the inverse matrix of learnable parameters for type feature
extraction is not feasible in all cases. Furthermore, we cannot handle the cascading errors
introduced by simple inverse operations in long paths.

Here are two possible approaches. The first one is to use a feedforward neural network
to directly fit the process of inputting the range of one relation and outputting the domain
of another relation. The second one is to use the feedforward neural network to fit a virtual
node that serves as a placeholder intermediate node on this type-constrained path to allow
reasoning to proceed.

We chose the latter one because the former approach has two limitations: First, a sim-
ple feedforward neural network may not be expressive enough in this case. The range
representation we obtain will already have some loss of original entity type features, and it
may introduce large errors due to the arbitrary combination of relations connected before
and after the intermediate nodes. Second, this approach loses the atomicity of the meta-
operators. It actually assumes fitting both regression and extraction meta-operations, which
violates our original design principle.

We still use an example to demonstrate this process.

Example 3. Once we have obtained the range representation of isComposerOf and isLyricistOf
in the query, we need to regress the virtual nodes’ representation from the range representation for
each logical path. These nodes refer to the original features of the entity node composed by Jay Chou
and written lyrics by Vincent Fang, and they will be used as the following Relation isSangBy for
type feature extraction.

With Example 3, we need to design a meta-operator that converts the entity relation-
specific range representation into a virtual node representation. We call this meta-operator
type feature regression, defined as follows.

Definition 7 (Type feature regression). Given a relation r and a range entity type representation
cv of the intermediate virtual node V for r, Re(cv, r) aims to obtain the original entity type
representation of the intermediate virtual node V, Re(cv, r) ⊆ {v|∃(ch, cv) ∈ CR(r), cv ∈ CE (v)}.

At the intermediate node of a logical query, an entity will serve as both the tail of
the preceding relation and the head of the following one. We already have type feature
extraction and type transformation meta-operations. Now, the question is: How do we
regress a relation-specific entity type representation to the original entity type representa-
tion without modeling the actual representation of the intermediate nodes? We designed
the following type feature regression meta-operator:

v = MLP(th||tr||ct), (11)

where v represents the original entity type representation of the intermediate virtual
node V, th represents the original entity type representation of the previous node of the
virtual intermediate node v (i.e., the head entity of the relation r), ct represents the range
embedding extracted by relation r, tr represents the type transformation of r from its
domain to the range type, and || is a concatenation operation. We think we can handle this
matter with a generic multi-layer perceptron.

The intuition is that the primitive representation of an intermediate node’s entity
type is strongly related to its domain entity representation, the relation transformation
representation, and the relation-specific type representation of them. We concatenated
these three representations together and output the final intermediate node primitive type
representation using MLP.

In the type constraint reasoning process above, we maintained a separate predicted
type constraint for each path. This is because, in terms of factual logic, the constraints for
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each different path should be independent. We computed the logical path to the target
node by the above three meta-operations.

Example 4. After the recursive computation in the previous example, we obtain the target node
type representation of the logical paths where each of the two anchor nodes, Jay Chou and Vincent
Fang, is located. We need to calculate the scores of each path and jointly find the target answers.

With Example 4, the virtual target node type representations on the two paths jointly
determine the different type constraints on the gold target nodes. They are intuitively part
of this entity type. In other words, the virtual node does not represent a specific entity that
exists in reality, but is only a placeholder with a logical feature reference.

In our EPFO logical query, we need to consider two operations requiring the fusion of
multiple paths, the intersection and the union, in the last step. We need a meta-operator
to obtain the final type constraint score. We call this meta-operator type feature fusion and
define it as follows.

Definition 8 (Type feature fusion). Given the target node e, the list of incoming edges of the
target node R, and the list of type constraints C for each logical path, Fu(e, R, C) aims to obtain
a composite score of the type constraints’ compatibility for multiple logical paths after feature
intersection or union (R and C identified as intersection or union).

Continuing with the above typical example, suppose we have obtained the prediction
type range representation of the two path sink nodes.

For each path, we used a feature extraction of the target node, then calculated the
score with it and our predicted range type representation. For the intersection, each path is
individually constrained, and we perform the mean value directly:

Sint(te, Wint, cint) = Mean({S2(te, W1, c1), ..., S2(te, Wn, cn)}), (12)

where te represents the original entity type presentation of the target node, Wint represents
the intersection path list of relation-specific representation matrix for each logical path,
cint represents the intersection path list of predicted type constraints for each logical path,
Mean(·) represents the arithmetic mean function, and S2(·) represents the score function
for the type constraint.

For the path of union, we moved it to the last step by converting the query to the DNF
in the computation graph. Similar to the intersection, except we obtain the maximum value
of the score for different paths:

Suni(te, Wuni, cuni) = Max({S2(te, W1, c1), ..., S2(te, Wn, cn)}), (13)

where Wuni represents the union path list of the relation-specific representation matrix for
each logical path, cuni represents the union path list of predicted type constraints for each
logical path, and Max(·) represents the maximum value function.

When there are multiple anchor nodes in the computation graph, we first treat its type
constraints as multiple independent type constraint paths. In the EPFO query, we need to
consider the joint operation between two paths, intersection and union. We recorded the
order in which the intersection and union operations appear during the path reasoning
process and perform a type feature fusion in the final stage.

We used the L1 distance between the relation-specific type representation of the target
node and the predicted type constraint as the scoring function for type compatibility:

S2(te, W, c) = ||Wte − c||1. (14)

where || · ||1 represents the L1 distance function. We perform type feature extraction on
the candidate nodes and score the ranking with our calculated type representation of the
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target nodes. Nodes with smaller distances are more consistent with the unsupervised type
constraints of the logical query.

We modeled type constraint in the complex logical query process by designing the
above four type meta-operators. Next, we describe how to apply the type meta-operators
and the logical query embedding operators to implement type-aware neural logical opera-
tors.

4.2. UnTiCk Query Reasoning Process

Based on the previously described logical query embedding operators and type com-
patibility measurement meta-operators, we iteratively used type-aware neural logical
operators, which consist of logical query embedding operators and type compatibility mea-
surement meta-operators. We used the two-anchor-intersection-projection query structure
of Figure 1 as an example to introduce our query embedding generation process. The details
of this process are given as Algorithm 1. We use {P, I,U} to represent the structure projec-
tion, intersection, and union operators, and {Pt, It,Ut} represents type-aware projection,
intersection, and union operators below.

Algorithm 1: UnTiCk query embedding generation
Input: Query anchor nodes Ea, query variable nodes B, query edges Eq, a map dq

from query variables to their degree in the query DAG
Output: Type-aware query embedding qt

Qs, Qt = dictionary mapping every Vi ∈ B to an empty set for structure and type;
for r(ei, Vj) ∈ Eq : ei ∈ A do

// One time of the loop as a type-aware projection.;
Qs[Vj] = Qs[Vj] ∪ P(e, r);
Qt[Vj] = Qt[Vj] ∪ Tr(Ex(e, r), r);

end
At = empty dictionary;
while |Qs.key_set| > 0 do

As = empty dictionary;
// A loop as a type-aware intersection without fusion.;
for Vi ∈ Qs.key_set : |Qs[Vi]| = dq(Vi) do

As[Vi] = As[Vi] ∪Qs[Vi]);
At[Vi] = At[Vi] ∪ Ex(Re(Qt[Vi])), r) ;
// relation r in last projection.;
delete Qs[Vi];

end
As[Vi] = I(Qs[Vi]));
for Vi ∈ A.key_set do

for r(Vj, Vk) ∈ Eq : Vj = Vi do
Qs[Vk] = Qs[Vk] ∪ P(At[Vi], r);
Qt[Vk] = Qt[Vk] ∪ P(At[Vi], r);

end
end

end
// This step for type fusion.;
Qt[Vk] = Fu(Qt[Vk]);
return As[a?] ∩ At[Ex(a?, r)];

Next, we introduce the process of the combination of each type-aware operator and
give proofs.

Type-aware projection operation: In the entity structure information embedding
module, we perform one entity projection operation on it. In the entity type information
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embedding module, a relation feature extraction operation and a type feature transforma-
tion operation are performed on it if our target entity is an anchor node. It will add a type
feature regression meta-operation before this if our target entity is an intermediate node.

Lemma 1. In the logical patterns discussed in the experiments of this paper, the above solution
is equivalent to Problem 1. (We prove this with a simple example: given a two-hop path query,
the anchor entity is called e1, the target entity is called e3, and the relation is r1, r2, respectively.)

Proof. According to the structural projection operation, we obtain the projection set:

P(e1, r)⇔ {e|r(e1, e) = 1}. (15)

We can obtain a virtual intermediate node representation after applying Definitions 5–7:

v⇔ P(e1, r1) ∩ Re(Tr(Ex(e1, r1), r1), r1), (16)

then we apply Definition 5 to v and e2, and we simply obtain:

Pt(Pt(e1, r1), r2)⇔ P(v, r2) ∩ Tr(Ex(v, r2), r2); (17)

this proves that our algorithm on this logical model is equivalent to using the type-aware
embedding operator twice.

Type-aware intersection operation: In the entity structure information embedding
module, we perform one entity intersection operation on it. In the entity type information
embedding module, each different incoming relation is a different constraint for the sink
node of the intersection operation, and we should not ignore this information. Therefore, we
record different path type compatibility separately, add the paths that need to be intersected
with the intersection path list, and record the relevant information in the computation order
list. We handle all this in the final path fusion operation.

Lemma 2. In the logical patterns discussed in the experiments of this paper, the above solution is
equivalent to Problem 2. (We prove this with a simple example: given a three-intersection query,
the anchor entity set E contains e1, e2, e3, the target entity is called e4, and the relation is a list R
with r1, r2, r3.)

Proof. According to the structural projection operation, we considered a one-hop path
query. Applying Definition 5 to anchor entity e and target entity e′ with relation r, we
obtain:

Pt(e, r)⇔ P(e, r) ∩ Tr(Ex(e, r), r); (18)

we also have:
I(E)⇔ ∩3

i=1P(ei, ri), (19)

then using the proven type-aware projection operator for all three anchor nodes, we obtain
type constraint list C, and finally, we can obtain:

Fu(e4, R, It(E, C))⇔ Fu(e4, R, I(E) ∩ (Pt(e1, r1) ∪ Pt(e2, r2) ∪ Pt(e3, r3))); (20)

this demonstrates that the scores calculated based on our algorithm are consistent with us-
ing three type-aware projection operations plus one intersection type fusion operation.

Type-aware union operation: Similar to the type-aware intersection operation, on the
entity structure information embedding module, we perform one entity union operation on
it. In the entity type information embedding module, we separately record different path
type compatibility and add the paths that need to be united to the union path list and the
relevant information in the computation order list. We deal with it during the final path
fusion meta-operation.
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Lemma 3. In the logical patterns discussed in the experiments of this paper, the above solution
is equivalent to Problem 3. (We prove this with a simple example: given a three-union query,
the anchor entity set E contains e1, e2, e3, the target entity is called e4, and the relation is a list R
with r1, r2, r3.)

Proof. According to the structural projection operation, we have:

U(E)⇔ ∪3
i=1P(ei, ri); (21)

we can prove this similarly to the intersection operation:

Fu(e4, R,Ut(E, C))⇔ Fu(e4, R,U(E) ∪ (Pt(e1, r1) ∪ Pt(e2, r2) ∪ Pt(e3, r3))); (22)

this shows that the scores calculated based on our algorithm are consistent with using three
type-aware projection operations plus one union type fusion operation.

We substitute Lemmas 1 and 2 into Algorithm 1, which becomes similar to the form
of query embedding generation algorithm proposed in GQE [14], with the difference that
UnTiCk’s query embedding generation uses type-aware neural logical operators instead of
those containing only structure information. Moreover, our algorithm can be extended to
merge set operations. As in the two-union-projection logical pattern, it only needs to replace
the intersection part with the union (i.e., substitution of Lemmas 1 and 3 into Algorithm 1)
and moving the union part to the later. Because the computation graph has been converted
to the DNF using the DNF-query rewriting strategy before applying the algorithm, the other
logical patterns discussed in experiments can also be proven recursively by applying a
form similar to Algorithm 1.

In summary, we proved the effectiveness of the proposed method on the UnTiCk
problem presented in Section 3.3.

4.3. Optimization Objective

Our training goal was to jointly learn type-aware logical embedding operators and
optimize entity structure embeddings and entity type embeddings in proportion. Therefore,
we designed the loss function as a joint form and controlled the ratio of the two modules
with a hyperparameter, combining both entity query operations and unsupervised type
operations. We optimize our loss function to make the loss as small as possible below:

Loss = L1 + µL2 (23)

where L1 and L2 are the loss functions of the entity structure information embedding
module and the entity type information embedding module, respectively. We used type
constraint weight µ as a hyperparameter so that the model does not overly rely on unsu-
pervised type constraints and ignores entity structure information. For both modules, we
used the negative sampling loss [40], which is widely used in such tasks. The form is the
following equation:

L1 = −logσ(γ1 − S1(e, q))−
k

∑
i=1

1
k

logσ(S1(e′i, q)− γ1), (24)

L2 = −logσ(γ2 − S2(te, W, c))−
k

∑
i=1

1
k

logσ(S2(t′ei
, W, c))− γ2), (25)

where γ1 and γ2 represent the hyperparameter about the fixed margin of entity structure
information embedding and entity type information embedding, respectively, S1 and S2
represent their score functions, e and te represent their positive samples, and e′i and t′ei
represent their negative samples.
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5. Experiments

To validate the efficacy of our method, we tested its performance on nine different
logical query patterns using three datasets widely used in the field of complex logical
query embedding, with parameter settings similar to the baseline model. In this section,
we describe our experiments in detail.

5.1. Datasets

We used three widely used publicly available datasets for our experiments:

• FB15k: FB15k [4] is a subset created from Freebase and is a frequently used standard
dataset for embedding knowledge graphs. It includes knowledge base relation triples
and textual references to Freebase entity pairs.

• FB15k-237: FB15k-237 [41] is a variant of the original FB15k dataset in which inverse
relations have been eliminated because it was discovered that inverting triplets in the
training set yielded many test triplets, which may cause test leakage.

• NELL-995: NELL [42] is a dataset built from the web via an intelligent agent named
Never-Ending Language Learner. NELL-995 [11] is a subset of NELL that filters and
improves NELL to make it more suitable for multi-hop reasoning tasks.

In contrast to other articles in the field, we added three additional datasets to demon-
strate the model’s performance on a wider range of data features:

• WN18: WN18 [4] is a dataset commonly used for knowledge graph linkage prediction,
deriving its name from it as a subset of WordNet containing 18 different relations.
Its entities correspond to senses, and the relation types define the lexical relations
between senses.

• WN18RR: WN18RR [43] is a subset created from WN18 in order to handle test leakage
due to training set triplet inversion in WN18.

• YAGO3-10: YAGO3-10 is a publicly available and commonly used dataset, which is a
subset of YAGO3 [44], which only contains entities with at least ten relations. Most
triples are descriptive attributes of people. We processed it to fit our experiments,
as described below.

The details of the datasets are shown in Table 2. For FB15k, FB15-237, and NELL-
995, we used the same data as Query2Box. For WN18 and WN18RR, we followed the
training set, validation set, and test set division from the original paper. Since the set
division of YAGO3-10 was skewed for our task, we randomly selected 5 percent of its
triples from the training set. Then, we removed the triples in the validation and test sets
containing entities not present in the training set. For the above division of three additional
datasets, we finally applied the complex logical query generation process consistent with
Query2Box to generate logical query datasets. Every KG was augmented with inverse
relations consistent with the baseline, allowing our model to capture the type constraints
better. The training knowledge graph is a subset of the validation knowledge graph, and the
validation knowledge graph is a subset of the testing knowledge graph. Then, different
logical query patterns are generated by pre-order traversal. In the end, we filter out the
answers that can be fully answered by the previous smaller knowledge graph and focus
only on the non-trivial answers (the answer appears in the test set, but never in the training
and validation set).

The experiments were conducted on the following nine logical query patterns, con-
taining five logical query patterns that appear in the training set and four promoted logical
query patterns that appear only in the validation and test sets, as shown in Figure 4.
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Table 2. Datasets’ details.

Items Statistics Training Validation Test
Dataset Entities Relations Single 1 Complex 2 Triples Single Complex Triples Single Complex Triples

FB15k 14,951 1345 273,710 273,710 483,142 59,097 8000 50,000 67,016 8000 59,071
FB15k-237 14,505 237 149,689 149,689 272,115 20,101 5000 17,526 22,812 5000 20,438
NELL-995 63,361 200 107,982 107,982 114,213 16,927 4000 14,324 17,034 4000 14,267

WN18 40,943 18 171,254 171,254 141,442 9006 3000 5000 9028 3000 5000
WN18RR 40,943 11 103,509 103,509 86,835 5202 2000 3034 5356 2000 3034

YAGO3-10 51,374 36 64,420 40,000 53,554 3998 1500 2250 4160 1500 2333
1 Single: 1p logical query pattern. 2 Complex: other logical query patterns.

1p 2p 3p 2i 3i

ip pi 2u up

u

u

u

u

Training Logical Query Patterns

Unseen Logical Query Patterns

Figure 4. This is a diagram of the nine logical query patterns. It contains five training logical query
patterns and four unseen logical query patterns. p represents projection, i intersection, and u union.

5.2. Evaluation Metrics

We used the common metrics for evaluating this type of task. Given a test query q,
we calculated the score using the formula E1 + µE2 to sort the non-trivial answers in our
query, and we used the sorted Mean Reciprocal Rank (MRR) and Hits at K (H@K).

MRR =
1
|JqtK|

|JqtK|

∑
e∈JqtK

1
Rank(e)

(26)

where JqtK is the non-trivial answers’ set, Rank(e) is a function that calculates the rank of
an entity after a scoring function, and e is for the entity that has been scored.

Hit@K = 1[Rank(e) ≤ K], (27)

1[r ≤ K]
{

1 r ≤ K
0 otherwise

. (28)

MRR calculates the average of the reciprocal of answer entities’ rank, and Hit@K is the
proportion of queries with rank less than or equal to K.

5.3. Baselines and Hyperparameter Settings

In our experiments, we selected two representative models of the logical query em-
bedding domain and set up three baselines:

1. GQE [14] treats entities as points and queries as individual vectors. We used its
extended version. The projection is modeled as a translation mechanism and the inter-
section as Deepsets [38], and then, the DNF-query rewriting strategy is used to make
it support union operations;



Electronics 2023, 12, 1445 18 of 26

2. GQE-Double, which has the same basic model settings as GQE, but uses double-
embedding dimensionality to enable the model dimensionality to be on the same level
as other models;

3. Query2Box [21] models the query as a box embedding, projection as a linear trans-
formation, intersection as the center using the attention mechanism, offset using
Deepsets, and the sigmoid function to shrink, and union uses the same DNF-query
rewriting strategy.

For the three baselines above, we followed the main default parameters of the imple-
mentation (https://github.com/hyren/query2box, accessed on 17 January 2023). The pur-
pose was to fairly compare and control the variables, which can test our model’s improvement
without affecting the plug-in module’s performance. For GQE, we used 400 embedding
dimensionality. GQE-Double used 800 embedding dimensionality. Query2Box used 400 em-
bedding dimensionality (center and offset, respectively). All models were trained with margin
γ1 = 24, a learning rate of 0.0001, a batch size of 512, and 128 negative samples. Because of
the characteristics of the different datasets, we trained each model for 300,000 iterations in the
performance experiments and 120,000 iterations in the robustness experiments.

Based on this, we implemented three different combinations of UnTiCk. For the entity
structure information embedding part, we used the same hyperparameter settings as above,
except that the embedding dimensionality became 360, 760, and 360. For the entity type
constraint embedding part, we used the embedding dimensionality of 40. They all used the
type margin of γ2 = 8 and the type constraint weight of µ = 0.3. Such a setting ensured a
consistent embedding dimensionality. We trained each model for 300,000 iterations and
120,000 iterations as above.

We also tried to combine with NewLook [22], but ultimately did not consider this part
of the work due to GPU limitations, since NewLook is based on the structure of Query2Box
for further work. The experimental results of Query2Box can represent, to some extent,
the effective prospect of our approach to this family of models (box embedding-based
model).

5.4. Experimental Results and Discussion

We conducted performance experiments relying on baselines on the popular three
datasets. For the result of Hit@3, a commonly used and balanced metric in the tasks, we
show the experimental results in Table 3. Our model outperformed the baseline model on
the average of all nine logical query patterns.

Table 3. Performance experimental results of Hit@3. The best results are indicated in bold.

Datasets Models Avg 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 0.3979 0.6448 0.3508 0.2543 0.5434 0.6567 0.1491 0.3191 0.3865 0.2764
GQE-Double 0.4058 0.6498 0.3578 0.2596 0.5566 0.6732 0.1564 0.3349 0.3828 0.2812
Query2Box 0.4872 0.7883 0.4175 0.3087 0.5908 0.7119 0.2111 0.4124 0.6122 0.3317

UnTiCk (GQE) 0.4484 0.6924 0.4071 0.3191 0.5843 0.6869 0.1846 0.3759 0.4576 0.3275
UnTiCk (GQE-D) 0.4577 0.6977 0.4124 0.3287 0.6016 0.7068 0.1937 0.3909 0.4571 0.3300

UnTiCk (Q2B) 0.5010 0.7913 0.4420 0.3547 0.6178 0.7310 0.2286 0.4413 0.6199 0.3631

FB15k-237

GQE 0.2305 0.4044 0.2141 0.1557 0.2993 0.4179 0.0859 0.1728 0.1634 0.1613
GQE-Double 0.2388 0.4100 0.2190 0.1577 0.3206 0.4374 0.0877 0.1851 0.1662 0.1656
Query2Box 0.2702 0.4692 0.2504 0.1893 0.3208 0.4486 0.1091 0.2087 0.2453 0.1902

UnTiCk (GQE) 0.2473 0.4286 0.2465 0.1932 0.2829 0.3999 0.0961 0.1795 0.2080 0.1914
UnTiCk (GQE-D) 0.2565 0.4378 0.2507 0.1943 0.3049 0.4258 0.1006 0.1906 0.2120 0.1922

UnTiCk (Q2B) 0.2753 0.4715 0.2619 0.2082 0.3056 0.4471 0.1122 0.2061 0.2562 0.2087

NELL-995

GQE 0.2514 0.4262 0.2295 0.2060 0.3205 0.4585 0.0788 0.1840 0.2120 0.1468
GQE-Double 0.2588 0.4282 0.2368 0.2110 0.3369 0.4821 0.0814 0.1930 0.2113 0.1481
Query2Box 0.3078 0.5549 0.2652 0.2354 0.3492 0.4822 0.1328 0.2113 0.3695 0.1693

UnTiCk (GQE) 0.2770 0.4165 0.2685 0.2659 0.3205 0.4585 0.0910 0.1972 0.2745 0.2000
UnTiCk (GQE-D) 0.2823 0.4166 0.2793 0.2731 0.3286 0.4678 0.0948 0.2020 0.2684 0.2104

UnTiCk (Q2B) 0.3189 0.5457 0.2936 0.2800 0.3431 0.4804 0.1349 0.2123 0.3781 0.2017

Specifically, on the FB15k dataset, our model outperformed all baselines on the five
logical query patterns that appear in the training set and on the four unseen logical query

https://github.com/hyren/query2box
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patterns. On FB15k-237, our model was slightly lower than the baseline model on the 2i, 3i,
and pi logical query patterns and better than the baseline on all other logical query patterns.
On NELL, our model was slightly lower than the original model on the 1p, 2i, and 3i logical
query patterns and better than the baseline on all unseen logical patterns. The results
demonstrate the effectiveness of our model in reasoning about the correct answer.

The MRR results in Table 4 were similar to the results above. This demonstrates the
excellent modularity and generalization of our model. The results of Hit@1 and Hit@10
shown in Tables 5 and 6 are generally consistent with the above analysis, and we do not go
into detail here.

Table 4. Performance experimental results of MRR. The best results are indicated in bold.

Datasets Models Avg 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 0.3371 0.5114 0.3056 0.2241 0.4614 0.5626 0.1375 0.2769 0.3066 0.2479
GQE-Double 0.3440 0.5067 0.3113 0.2274 0.4775 0.5840 0.1449 0.2910 0.3024 0.2509
Query2Box 0.4153 0.6604 0.3795 0.2778 0.4934 0.6021 0.1933 0.3499 0.4762 0.3053

UnTiCk (GQE) 0.3909 0.5816 0.3721 0.2933 0.5025 0.6030 0.1703 0.3258 0.3697 0.3000
UnTiCk (GQE-D) 0.3987 0.5764 0.3773 0.2991 0.5201 0.6239 0.1782 0.3420 0.3649 0.3065

UnTiCk (Q2B) 0.4396 0.6760 0.4048 0.3208 0.5209 0.6266 0.2081 0.3775 0.4882 0.3334

FB15k-237

GQE 0.2047 0.3469 0.1941 0.1430 0.2566 0.3631 0.0850 0.1583 0.1441 0.1509
GQE-Double 0.2127 0.3503 0.1965 0.1477 0.2776 0.3860 0.0893 0.1690 0.1467 0.1512
Query2Box 0.2369 0.4033 0.2276 0.1760 0.2737 0.3769 0.1060 0.1847 0.2050 0.1793

UnTiCk (GQE) 0.2218 0.3754 0.2242 0.1794 0.2458 0.3541 0.0953 0.1663 0.1768 0.1751
UnTiCk (GQE-D) 0.2286 0.3772 0.2279 0.1815 0.2657 0.3774 0.0973 0.1748 0.1766 0.1792

UnTiCk (Q2B) 0.2414 0.4100 0.2397 0.1917 0.2654 0.3765 0.1061 0.1821 0.2080 0.1935

NELL-995

GQE 0.2133 0.3161 0.1952 0.1769 0.2799 0.4072 0.0780 0.1667 0.1647 0.1349
GQE-Double 0.2188 0.3189 0.1999 0.1797 0.2901 0.4274 0.0791 0.1744 0.1643 0.1352
Query2Box 0.2560 0.4145 0.2297 0.2106 0.2915 0.4183 0.1251 0.1918 0.2657 0.1566

UnTiCk (GQE) 0.2364 0.3228 0.2329 0.2371 0.2766 0.4039 0.0871 0.1815 0.2073 0.1781
UnTiCk (GQE-D) 0.2419 0.3253 0.2409 0.2408 0.2856 0.4157 0.0899 0.1846 0.2110 0.1837

UnTiCk (Q2B) 0.2658 0.4106 0.2494 0.2513 0.2879 0.4156 0.1253 0.1935 0.2766 0.1816

Table 5. Performance experimental results of Hit@1. The best results are indicated in bold.

Datasets Models Avg 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 0.2185 0.3310 0.2009 0.1400 0.3213 0.4214 0.0786 0.1690 0.1492 0.1554
GQE-Double 0.2234 0.3171 0.2032 0.1391 0.3392 0.4499 0.0826 0.1829 0.1411 0.1555
Query2Box 0.2904 0.5043 0.2790 0.1867 0.3442 0.4553 0.1183 0.2271 0.2879 0.2107

UnTiCk (GQE) 0.2758 0.4291 0.2759 0.2039 0.3696 0.4753 0.1006 0.2097 0.2116 0.2068
UnTiCk (GQE-D) 0.2829 0.4147 0.2804 0.2077 0.3895 0.5012 0.1072 0.2285 0.2029 0.2136

UnTiCk (Q2B) 0.3175 0.5326 0.3068 0.2235 0.3762 0.4871 0.1316 0.2537 0.3095 0.2367

FB15k-237

GQE 0.1203 0.2277 0.1196 0.0818 0.1433 0.2455 0.0430 0.0868 0.0540 0.0806
GQE-Double 0.1277 0.2295 0.1198 0.0861 0.1653 0.2719 0.0472 0.0963 0.0543 0.0785
Query2Box 0.1432 0.2791 0.1457 0.1077 0.1541 0.2472 0.0559 0.1025 0.0917 0.1049

UnTiCk (GQE) 0.1354 0.2614 0.1447 0.1104 0.1403 0.2418 0.0500 0.0944 0.0771 0.0988
UnTiCk (GQE-D) 0.1415 0.2587 0.1467 0.1114 0.1595 0.2681 0.0503 0.1027 0.0730 0.1032

UnTiCk (Q2B) 0.1495 0.2903 0.1604 0.1206 0.1467 0.2477 0.0554 0.1051 0.1017 0.1176

NELL-995

GQE 0.1140 0.1481 0.1026 0.0952 0.1598 0.2852 0.0363 0.0960 0.0436 0.0594
GQE-Double 0.1186 0.1513 0.1055 0.0963 0.1678 0.3082 0.0363 0.1012 0.0435 0.0569
Query2Box 0.1466 0.2309 0.1336 0.1298 0.1655 0.2883 0.0727 0.1164 0.1036 0.0786

UnTiCk (GQE) 0.1348 0.1719 0.1371 0.1492 0.1587 0.2850 0.0400 0.1090 0.0696 0.0925
UnTiCk (GQE-D) 0.1404 0.1742 0.1469 0.1520 0.1679 0.2990 0.0408 0.1115 0.0740 0.0970

UnTiCk (Q2B) 0.1563 0.2329 0.1522 0.1671 0.1651 0.2882 0.0712 0.1177 0.1147 0.0972

From the performance experimental results, the patterns with lower comparative
baselines for the models on FB15k-237 and NELL are mainly focused on the logical query
patterns that require type feature fusion meta-operations. Since it performs well on all
patterns of FB15k, we think that this is due to a certain degree of overfitting caused by
the fewer different relations in FB15k-237 and NELL, as well as the overly rich constraints
(multiple logical path joint constraints) on the logical query patterns. The results illustrated,
from another perspective, that the number of distinct relations in the dataset was positively
correlated with our model’s performance.

To test the robustness of our model on different feature and size datasets, we produced
three additional datasets from WN18, WN8RR, and YAGO3-10. They have commonly used
datasets on link prediction, and we made versions adapted to complex logical query tasks.



Electronics 2023, 12, 1445 20 of 26

Many patterns on these datasets lose reality due to the entity-relation ratio and the dataset
division. We used each pattern’s relative performance instead of the absolute performance
as an evaluation criterion. Our purpose was, compared to the complex logical query
embedding models, to test the robustness of our model under different data characteristics.
We draw stacked column charts of the Hit@3 results on the three datasets in Figure 5.

Table 6. Performance experimental results of Hit@10. The best results are indicated in bold.

Datasets Models Avg 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 0.5574 0.8136 0.5046 0.3825 0.7212 0.8151 0.2485 0.4876 0.6125 0.4314
GQE-Double 0.5687 0.8220 0.5142 0.3901 0.7362 0.8276 0.2643 0.5034 0.6196 0.4410
Query2Box 0.6422 0.9060 0.5799 0.4536 0.7564 0.8518 0.3384 0.5812 0.8112 0.5013

UnTiCk (GQE) 0.6090 0.8379 0.5621 0.4752 0.7474 0.8371 0.3039 0.5531 0.6749 0.4896
UnTiCk (GQE-D) 0.6173 0.8425 0.5729 0.4809 0.7586 0.8472 0.3137 0.5669 0.6723 0.5009

UnTiCk (Q2B) 0.6611 0.9013 0.6042 0.5096 0.7748 0.8646 0.3544 0.6108 0.7993 0.5312

FB15k-237

GQE 0.3711 0.5741 0.3349 0.2625 0.4881 0.5976 0.1618 0.2965 0.3337 0.2909
GQE-Double 0.3802 0.5773 0.3428 0.2704 0.5047 0.6140 0.1661 0.3101 0.3417 0.2950
Query2Box 0.4207 0.6402 0.3887 0.3128 0.5119 0.6225 0.2014 0.3432 0.4396 0.3257

UnTiCk (GQE) 0.3921 0.5945 0.3824 0.3192 0.4593 0.5758 0.1801 0.3062 0.3837 0.3275
UnTiCk (GQE-D) 0.4004 0.6023 0.3869 0.3228 0.4826 0.5906 0.1843 0.3147 0.3871 0.3327

UnTiCk (Q2B) 0.4251 0.6410 0.4042 0.3399 0.4925 0.6161 0.2016 0.3362 0.4413 0.3527

NELL-995

GQE 0.4076 0.6047 0.3767 0.3252 0.5386 0.6546 0.1526 0.3044 0.4151 0.2967
GQE-Double 0.4151 0.6111 0.3829 0.3341 0.5461 0.6666 0.1581 0.3151 0.4190 0.3033
Query2Box 0.4673 0.7116 0.4244 0.3652 0.5534 0.6757 0.2265 0.3417 0.5784 0.3289

UnTiCk (GQE) 0.4392 0.5912 0.4313 0.4095 0.5219 0.6429 0.1762 0.3239 0.4903 0.3660
UnTiCk (GQE-D) 0.4426 0.5915 0.4331 0.4088 0.5280 0.6502 0.1845 0.3263 0.4955 0.3659

UnTiCk (Q2B) 0.4765 0.6983 0.4419 0.4176 0.5448 0.6686 0.2275 0.3386 0.5913 0.3600
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Figure 5. Stacked column chart of robustness of Hit@3 results on additional datasets: (a) Stacked Hit@3
results on WN18. (b) Stacked Hit@3 results on WN18RR. (c) Stacked Hit@3 results on YAGO3-10.

With the results of the robustness experiments, our model still consistently outper-
formed the baseline model on more different data features. Although we do not refer to the
significance of the absolute performance on these three datasets, it can still be seen from
the data that the model performance improvement on YAGO3-10 was less compared to
WN18 and WN18RR. Since the triples on WN18 and WN18RR represent character relations
between senses, their logical patterns can somewhat match the characteristics of real logical
problems. For YAGO3-10, the logical patterns that may exist in them lose their real meaning
due to the numerous relations of each entity, but the limited overlap of entities. Random
sampling further adds to this feature. This also brings about a sparse distribution of entities
in the embedding space, a more significant differentiation of entities, and fewer answers
in the result set that do not conform to the type constraints. In other words, our model
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was more effective on datasets having evenly distributed type features and moderate
entity-relation ratio.

Moreover, our model prefers to increase the fine-grained differentiation in broad fuzzy
categories. The optimization space for datasets with a sparse type space is poor, leading to
less model improvement. This feature will be confirmed in the visualization results later
on. However, in most cases, our method gave better results, demonstrating the robustness
of our approach.

To verify the effectiveness of our embedding dimensionality setting, we used differ-
ent parameters on UnTiCk (GQE-Double). For example, UnTiCk (GD-760-40) represents
UnTiCk (GQE-Double) with an entity structure information embedding dimensionality
of 760 and an entity type information embedding dimensionality of 40. We used this
setting as the standard parameter in the previous experiment. We used the setting of
the entity type information embedding dimension sequence [0, 20, 40, 60, 80] and set
the entity structure information embedding dimension sequence as [800, 780, 760, 740,
720] for the performance experiments. We used the Hit@3 results on three experimental
performance datasets. The clustered column charts and stacked bar chart of the Hit@3
results are shown in Figure 6. In the clustered column charts, we highlight our models of
the default parameters using the black line plots.
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Figure 6. The clustered column charts and stacked bar chart of the Hit@3 results for different
parameters of UnTiCk (GQE-Double): (a) Hit@3 results for different parameter on FB15k. (b) Hit@3
results for different parameter on FB15k-237. (c) Hit@3 results for different parameters on NELL-995.
(d) stacked Hit@3 results for different parameters on three datasets.

We found a steady improvement for all our models in the interval of entity type infor-
mation embedding dimensionality as above. There was a peak in the overall effectiveness
of the model, achieving its best results at 40 to 60. As the type embedding dimension
continues to increase or decrease, the overall effectiveness of the model starts to decrease.
This confirmed our previous statement that a good ratio between entity structure informa-
tion embedding and type information embedding needs to be maintained to capture and
utilize both of the above fully. In our experience, this ratio is generally close to 10:1 for the
box-based model and 20:1 for the point-based model.
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We produced the visualization of the experimental results. The data processing used
a similar approach to TypeDM and TypeComplex [19] for data processing. In detail, we
used the dataset of display types already labeled on FB15k provided by TKRL [15], which
labeled various relevant types for each entity. From these, we filtered out entities containing
five common categories, including people, location, organization, film, and sports. Each entity
was assigned to only one category.

Then, we used t-SNE [45] for dimensionality reduction to two dimensions for the
weights obtained from model training, labeled the above five types of entities with different
colors, and finally, visualized the results. Here, we used the type constraint embeddings of
UnTiCk (Q2B), the entity structure information embedding of UnTiCk (Q2B), and the entity
information embedding of the original Query2Box. The visualization results are shown in
Figure 7.

people location organization film sports

(a) (b) (c)

Figure 7. Visualization of the embedding of UnTiCk (Q2B) and original Query2Box: (a) Result
of entity type constraint embedding of UnTiCk (Q2B). (b) Result of entity structure information
embedding of UnTiCk (Q2B). (c) Result of entity information embedding of the original Query2Box.

We can see that the entity type constraint embedding of UnTiCk tends to produce
smaller clusters of the same type. It represents a more fine-grained information extraction in
dealing with the diversity of entity types. Since the entity structure information embedding
part of UnTiCk adopts a similar approach to the popular complex logical query embedding
model, there is no significant difference in the visualization results of the two parts.

Entity structure information tends to divide the whole graph into chunks of several
types. The visualization results prove that, although it allows structurally similar entities
to exhibit some primary type features to some extent, it cannot obtain more fine-grained
and precise unsupervised type features.

For distance-based models [9] like the embedding model, this characteristic makes
the clusters of entities in the space exhibit more unsupervised type constraints. In other
words, this data distribution makes the entities close to the target entities conform more
to the type constraints compared to models that are also box or point modeled and based
only on entity structure information.

We further demonstrate the effectiveness of our approach with another visualization
result. Here, we filtered out the entities of people and treated all the remaining entities as
others. We chose the relation /people/person/profession, which frequently occurs in people. We
compared the original entity type embedding of people with the entity type embedding
after the type feature extraction meta-operation in the type constraint embedding module.
The visualization is shown in Figure 8.

It is obvious that, although the entities of people show smaller clusters in the em-
beddings, when we performed the type feature extraction meta-operation, the obtained
relation-specific type representations became large clusters and more accurately separate
people and others at this time. The visualization results not only demonstrate our approach’s
effectiveness for capturing the diversity of entity types, but also prove that our approach
can work well for unsupervised entity type constraints.
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people

others

(a) (b)

Figure 8. Visualization about type people and relation /people/person/profession: (a) Result without type
feature extraction meta-operation. (b) Result after using type feature extraction meta-operation.

To illustrate the difference between the proposed model and other models, we used
the trained model for two cases to show its results. Here, a 3c query and a uc query were
chosen because the type of answer space is rich (the intersection operation will shrink the
answer space). They were used as examples under the single path and required path fusion.
The specific query content and model prediction results are shown in Table 7.

Table 7. Case study for UnTiCk (Q2B) and Query2Box.

Anchor Entities Relation Target Entities Query2Box Predication UnTiCk (Q2B) Predication

The Last King of
Scotland (film)

(1) films_in_this_
genre_reverse,

(2) titles,
(3) production_

companies

(1) Channel 4
(organization),

(2) SONY
(organization)

(1) Walt Disney Animation
Studios (organization),
(2) Walt Disney Studios

Motion Pictures
(organization),

(3) drama film (film_genre),
(4) Pixar (organization),

(5) historical drama (film_genre)

(1) Walt Disney Animation
Studios (organization),
(2) Magnolia Pictures

(organization),
(3) Walt Disney Studios

MotionPictures
(organization),

(4) Pixar (organization),
(5) BBC (organization)

(1) Chester County
(location),

(2) Latin Grammy
Award for Album

of the Year
(award_category)

(1) contains,
(2) award_reverse,
(3) people_with_
this_profession_

reverse

(1) model
(profession),

(2) audio engineer
(profession),

(3) songwriter
(profession)

(1) songwriter (profession),
(2) Chester County (location),

(3) composer (profession),
(4) actor (profession),
(5) artist (profession)

(1) songwriter (profession),
(2) artist (profession),
(3) actor (profession),

(4) composer (profession),
(5) guitarist (profession)

The first column of the table is the case study result of 3c; the anchor row represents
the query’s anchor node, and the relation list represents the three query relations in order.
The second column is the case study result of uc; the anchor list represents the two anchor
nodes of the query in order, and the relation list is the relations connected with the two
entities and the relation after the union.

From the results in the table, our model was better in type consistency for the first
five answers compared to Query2Box, achieving “untick” for entities that do not meet
the type constraints. We also collected the results for two cases. On the 3c query, UnTiCk
(Q2B) had a prediction rank of 39 and 102 for the two answers, gaining improvement over
Query2Box’s 90 and 357. On the uc query, this result was 8, 12, and 1, compared with 19, 25,
and 1. Both cases prove our model’s effectiveness from the consistency of the result types
and the ranking of the results.

6. Conclusions and Future Work

In this paper, we proposed UnTiCk, which provides the ability to capture unsupervised
type constraints to the traditional embedding-based complex logical query framework. We
analyzed and designed type compatibility measurement meta-operations, then combined
them into an existing complex logical query framework to implement type-aware neural
logical operators. We innovatively solved the problem of unsupervised type constraints in
complex logical queries, and we modeled the diversity of unsupervised type representations
of entities in multi-hop logical paths. With experimental and visualization results on
popular datasets, we steadily outperformed traditional complex logical query embedding
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frameworks for the same number of embedding dimensions. This demonstrated the
effectiveness and robustness of our framework.

In future work, we will try to extend our unsupervised type constraint extraction
method to the complete set of first-order logical operators. Another promising work is
to improve the atomicity and generalization of type meta-operators by further refining
the characteristics of entity type information in the complex logical query embedding
process. This allows the model to be effectively utilized on a wider variety of logical query
embedding models. In addition, making more datasets with different logical patterns and
data characteristics is an important task to drive complex logical embedding models closer
to practical applications.
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