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Abstract: Interconnect parasitic capacitance extraction is crucial in analyzing VLSI circuits’ delay
and crosstalk. This paper uses the deep neural network (DNN) to predict the parasitic capacitance
matrix of a two-dimensional pattern. To save the DNN training time, the neural network’s output
includes only coupling capacitances in the matrix, and total capacitances are obtained by summing
corresponding predicted coupling capacitances. In this way, we can obtain coupling and total
capacitances simultaneously using a single neural network. Moreover, we introduce a mirror flip
method to augment the datasets computed by the finite element method (FEM), which doubles the
dataset size and reduces data preparation efforts. Then, we compare the prediction accuracy of
DNN with another neural network ResNet. The result shows that DNN performs better in this case.
Moreover, to verify our method’s efficiency, the total capacitances calculated from the trained DNN
are compared with the network (named DNN-2) that takes the total capacitance as an extra output.
The results show that the prediction accuracy of the two methods is very close, indicating that our
method is reliable and can save the training workload for the total capacitance. Finally, a solving
efficiency comparison shows that the average computation time of the trained DNN for one case is
not more than 2% of that of FEM.

Keywords: interconnect wire; parasitic capacitance matrix; data augmentation; DNN; ResNet

1. Introduction

With the shrinking of the feature size, the interconnect wires’ delay caused by the
parasitic parameters has exceeded the gate delay and becomes the main part of the chip’s
total delay [1]. Additionally, parasitic parameters of interconnect wires also cause crosstalk
between wires, which may lead to confusion in the transmitted signal logic. Parasitic
parameters consist of resistance, capacitance, and inductance; among them, parasitic
capacitance plays a significant role owing to its extraction complexity and critical influence
on signal integrity analysis [2,3].

In advanced process technology nodes, the accuracy requirement of the parasitic
capacitance extraction is that the relative error should be less than 5% [4]. The parasitic
capacitance extraction methods can be divided into two categories: the field solver method
and the pattern-matching method [5]. The field solver method solves maxwell equations
through traditional numerical methods, such as floating random walk (FRW) [6], finite
element method (FEM) [7], and boundary element method (BEM) [8,9], etc. It has high
accuracy but suffers high calculation costs for full chip extraction. The pattern-matching
method first segments the layout and obtains the interconnect wires’ patterns; then matches
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the corresponding pattern in the pattern library; in the end, calculates each pattern’s
capacitance through pre-built capacitance models that are stored in the pattern library. It is
fast and is often used for parasitic extraction at the full chip level. Figure 1 shows the flow
of the pattern-matching method. The capacitance extraction dimension changes from 1D,
2D, and 2.5D to 3D and the extraction accuracy is improved accordingly [10]. Directly using
the 3D model will cause huge memory and time cost for the full-chip extraction [11]. The
2.5D method is an alleviation of 3D method, which considers the 3D effect by a combination
of two orthogonal 2D patterns [12]. It achieves a good balance between accuracy and
efficiency and is used in several commercial electronic design automation (EDA) tools, such
as StarRC [13] and Calibre xRC [14].

Electronics 2023, 12, x FOR PEER REVIEW 3 of 19 
 

 

changes from 1D, 2D, and 2.5D to 3D and the extraction accuracy is improved accordingly 
[10]. Directly using the 3D model will cause huge memory and time cost for the full-chip 
extraction [11]. The 2.5D method is an alleviation of 3D method, which considers the 3D 
effect by a combination of two orthogonal 2D patterns [12]. It achieves a good balance 
between accuracy and efficiency and is used in several commercial electronic design 
automation (EDA) tools, such as StarRC [13] and Calibre xRC [14]. 

 
Figure 1. The flow of parasitic capacitance extraction using the pattern-matching method [3,15]. 

With the continuous development of big data technology and high-performance 
computing, machine learning and deep learning have been applied to many fields [16]. In 
addition to common fields such as image analysis and natural language processing [17], 
they have also been implemented in the field of electronic and electrical engineering 
[18,19,20]. Some researchers use machine learning and deep learning to solve the problem 
of parasitic parameter extraction. Kasai et al. [21] employed multilayer perception (MLP) 
to extract the total capacitance and partial coupling capacitances of 3D interconnect wires. 
The dimension of the MLP output layer is only one. Hence, it needs to train multiple 
neural networks to predict the total capacitance and coupling capacitances of the same 
pattern. Besides, its prediction error for total capacitance was not very good since some 
errors exceeded 10%. Li et al. [22] combined the adjacent capacitance formulas through 
the Levenberg–Marquardt least square method, reducing the number of capacitance 
formulas in the pattern library. It also constructed a classifier for automatic pattern 
matching through a deep neural network (DNN), which improved pattern-matching 
efficiency. Yang et al. [11] leveraged a convolutional neural network (CNN), ResNet-34, 
to extract parasitic capacitances of 2D interconnect wires. For the total capacitance and 
coupling capacitances, this work trains two separate ResNet networks for prediction. 
Furthermore, it also compared the prediction performance of the CNN with the MLP, 
showing that the accuracy is higher than the MLP. Abouelyazid et al. [4] focused on the 
interconnect pattern containing metal connectivity and trained a DNN model to predict 
one specific coupling capacitance. Abouelyazid et al. [5] took into account the trapezoidal, 
wire thickness, dielectric layer thickness, et al. into the model variation and employed 
DNN and support vector regression (SVN) to predict one specific coupling capacitance of 
2D patterns, respectively. Abouelyazid et al. [23] employed DNN to predict the parasitic 
capacitance matrix. For total capacitances and coupling capacitances in the matrix, this 
work utilized two separate DNN networks for prediction. Moreover, a hybrid extraction 
flow was proposed. It can identify the accuracy of three extraction methods, field-solver, 

Figure 1. The flow of parasitic capacitance extraction using the pattern-matching method [3,15].

With the continuous development of big data technology and high-performance
computing, machine learning and deep learning have been applied to many fields [16]. In
addition to common fields such as image analysis and natural language processing [17],
they have also been implemented in the field of electronic and electrical engineering [18–20].
Some researchers use machine learning and deep learning to solve the problem of parasitic
parameter extraction. Kasai et al. [21] employed multilayer perception (MLP) to extract the
total capacitance and partial coupling capacitances of 3D interconnect wires. The dimension
of the MLP output layer is only one. Hence, it needs to train multiple neural networks
to predict the total capacitance and coupling capacitances of the same pattern. Besides,
its prediction error for total capacitance was not very good since some errors exceeded
10%. Li et al. [22] combined the adjacent capacitance formulas through the Levenberg–
Marquardt least square method, reducing the number of capacitance formulas in the pattern
library. It also constructed a classifier for automatic pattern matching through a deep neural
network (DNN), which improved pattern-matching efficiency. Yang et al. [11] leveraged a
convolutional neural network (CNN), ResNet-34, to extract parasitic capacitances of 2D
interconnect wires. For the total capacitance and coupling capacitances, this work trains
two separate ResNet networks for prediction. Furthermore, it also compared the prediction
performance of the CNN with the MLP, showing that the accuracy is higher than the MLP.
Abouelyazid et al. [4] focused on the interconnect pattern containing metal connectivity and
trained a DNN model to predict one specific coupling capacitance. Abouelyazid et al. [5]
took into account the trapezoidal, wire thickness, dielectric layer thickness, et al. into
the model variation and employed DNN and support vector regression (SVN) to predict
one specific coupling capacitance of 2D patterns, respectively. Abouelyazid et al. [23]
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employed DNN to predict the parasitic capacitance matrix. For total capacitances and
coupling capacitances in the matrix, this work utilized two separate DNN networks for
prediction. Moreover, a hybrid extraction flow was proposed. It can identify the accuracy of
three extraction methods, field-solver, rule-based, and DNN-based, and choose the fastest
extraction method to meet the user’s required accuracy.

In the parasitic capacitance matrix, the total capacitance on the matrix diagonal equals
the sum of the remaining coupling capacitances in the same row. Using this constraint,
we train only one DNN model to predict the capacitance matrix in this study. The neural
network’s output includes only coupling capacitances in the capacitance matrix, and the
total capacitances are obtained by summing corresponding predicted coupling capacitances.
The trained DNN model can be used as a capacitance model in the pattern-matching
method shown in Figure 1. The main contributions of this work are as follows. First, we
propose a mirror flip method to realize data augmentation. Second, we use the DNN
to predict the parasitic capacitance matrix. The neural network output includes merely
coupling capacitances in the matrix. The total capacitance is obtained by calculating the
sum of the coupling capacitances. Table 1 shows the comparison of our work with other
state-of-the-art works.

Table 1. The comparison among different capacitance extraction methods, including our works.

Property Abouelyazid
et al. [4]

Abouelyazid
et al. [5] Kasai et al. [21] Yang et al. [11] Abouelyazid

et al. [23] This Work

Prediction content One coupling
capacitance

One coupling
capacitance One capacitance

One total
capacitance and

its corresponding
coupling

capacitances

Capacitance
matrix

Capacitance
matrix

Pattern dimension 2D 2D 3D 2D 3D 2D
Data augmentation No No No No No Yes

Type of the method DNN DNN,
SVN MLP ResNet DNN DNN

Number of neural
networks 1 1 1 2 2 1

The rest of the paper is organized as follows. Section 2 first recalls the definition
of the parasitic capacitance matrix. Then it introduces the data acquisition flow, data
augmentation method, and the DNN structure used in the work. Finally, the density-
based data representation for the ResNet input and the ResNet structure used in this
work are described in detail. In Section 3, we first utilize DNN to predict the parasitic
capacitance matrix of a 2D pattern. Then, ResNet is employed to predict the parasitic
capacitance matrix for comparison. Then, to further verify our method, the calculated total
capacitances from the trained DNN are compared with another network (named DNN-2)
that takes the total capacitance as the output. Then, the prediction performance of DNN
under different training set sizes is tested. Then, the solving efficiency of the trained DNN
and the FEM is compared. In the end, we apply our method to a new pattern to verify
its feasibility. Section 4 discusses the experimental results and future works. Section 5
concludes this work.

2. Materials and Methods
2.1. Parasitic Capacitance Matrix

For multi-conductor interconnect systems, capacitance extraction means calculating
the capacitance matrix between those conductors. The coupling capacitance Cij between
conductor i and j satisfies Equation (1). Vij represents the potential difference between i
and j, and Qj denotes the total charges on the surface of conductor j.

Cij =
Qj

Vij
(j 6= i) (1)
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For an electrostatic system containing n conductors, the capacitance matrix is defined
as Equation (2), where qi (i = 1, 2, . . . , n) denotes the total charges on the conductor i. ui is
the potential of conductor i. Cii on the matrix diagonal represents the total capacitance or
self-capacitance of conductor i, whose value is equal to the sum of the remaining coupling
capacitances Cij (j = 1, 2, . . . , n, j 6= i) in the same row.

The method to calculate the capacitance matrix is roughly as follows. The potential of
conductor i is set as ui = 1, and the potential of other conductors is uj = 0 (j = 1, 2, . . . , n, j 6= i),
then Vij = 1. The Cij can be obtained by computing the total charges on the surface of
conductor j. In addition, since the total capacitance of conductor i is the capacitance of
this conductor to the ground, and the potential difference between them is also 1. Hence,
the total capacitance Cii equals the charges on the surface of conductor i. Repeating this
process, the entire capacitance matrix can be determined. Moreover, since the capacitance
between two conductors is a single value, the capacitance matrix is symmetric.

q1
q2
...

qn

 =


C11 C12 . . . C1n
C21 C22 . . . C2n

...
...

...
...

Cn1 Cn2 . . . Cnn




u1
u2
...

un

 (2)

2.2. Dataset Acquisition

In the pattern-matching method, 2.5D extraction is a way that considers the 3D effect
with a combination of two orthogonal 2D patterns. Moreover, each 2D pattern is defined by
the combination of different metal layers and the number of conductors on each layer [11].
Figure 2 shows a 2D pattern studied in this work. It contains three metal layers, layer k,
layer m, layer n, and a large substrate ground. Each layer contains one or more interconnect
conductors. The substrate ground and conductors are embedded in the dielectric, whose
relative permittivity is 3.9. The studied pattern contains five conductors and one substrate
ground. Conductor 1 is always in the center, and its central position x1 is a constant, which
equals 0. Hence, there are nine geometric variables in total, including the center positions
and widths of conductors, namely x2, x3, x4, x5, and w1, w2, w3, w4, w5.
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Figure 2. The illustration of the studied pattern and its geometry variables.

The capacitance matrix of this pattern is defined in Equation (3). It ignores the substrate
ground’s total capacitance and only considers the coupling capacitances between the
substrate ground and other conductors.

C =


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56

 (3)

The acquisition of datasets is a crucial step in deep learning. In order to achieve broad
coverage of the sampling range, we employ the Latin hypercube sampling (LHS) [24]
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method. The studied pattern contains nine geometric variables. Suppose sampling N sets
of data for each parameter, the flow of LHS is roughly as follows. First, randomly sample
N values within the range of each geometric variable. Then randomly match the sampling
results, then a dataset with N × 9 size is obtained. After obtaining the parameter sampling
results, we then construct simulation models and utilize the FEM program to compute their
capacitance matrix. To sum up, the flow of the dataset acquisition is shown in Figure 3, and
the above process is conducted through the FEM software EMPbridge developed by the
authors’ team [25], whose modeling and solving result interfaces are shown in Figure 4.
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2.3. Data Augmentation

The size of datasets also has a crucial impact on the deep learning prediction effect.
When the size is small, due to a lack of sufficient supervision information, it is easy to
lead to poor generalization ability of the model, and the phenomenon of over-fitting is
prone to occur [26]. However, the acquisition of enough datasets, such as with the FEM
simulation, is often accompanied by heavy time and labor costs. Data augmentation is a
way to alleviate this problem. It can expand the original data by setting a transformation
rule without additional computation. Common transformation operations include rotation,
mirror flip, cropping, etc. [27].

This work introduces a mirror flip method, as shown in Figure 5, to augment datasets.
After flipping, the geometric variables of conductors change as follows. The position and
width of conductor 1 are unchanged; The widths of conductors 4 and 5 are unchanged, but
their horizontal positions are multiplied by −1; For conductors 2 and 3, their widths are di-
rectly exchanged, and horizontal coordinates are first multiplied by−1 and then exchanged.
The transformation rule of parasitic capacitances is shown in Figure 6. C represents the
original value before the mirror flip, and Ĉ denotes the value of the new capacitance matrix.
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According to the transformation rule, a new set of data can be obtained, and the
datasets are doubled in size. It is worth remembering that this data augmentation method
is also applicable to other similar patterns once a transformation rule is determined.

2.4. Prediction of Parasitic Capacitance Matrix Based on the DNN

In the parasitic capacitance matrix, the total capacitance equals the sum of the re-
maining coupling capacitances in the same row. With this information, the DNN network
output includes only coupling capacitances in this work, and the total capacitance is indi-
rectly obtained by summing the predicted coupling capacitances. The input of DNN is a
vector containing geometric variables, and the output is a vector containing all coupling
capacitances.

Taking the studied pattern as an example, its parasitic capacitance matrix has been
given in Equation (3). Due to the matrix’s symmetric property, there are 15 non-repetitive
coupling capacitances in total, which are C12, C13, C14, C15, C16, C23, C24, C25, C26, C34, C35,
C36, C45, C46, and C56. Therefore, as shown in Figure 7, the input dimension of DNN is
nine, that is, all geometric variables; the output dimension is fifteen, including all coupling
capacitances. The batch normalization (BN) layer could mitigate the vanishing gradient
problem since it shifts the input data distribution to the unsaturated region of the activation
function [28]. Hence, we add a BN layer before each activation function in the DNN
structure, although it is not shown in Figure 7. Equation (4) is the loss function, which is
defined by the mean square error (MSE) between the predicted value and the reference
value in the datasets. In Equation (4), N represents the size of datasets, and K denotes the
output dimension of the DNN, which is fifteen here. Cij is the predicted value, and C′ij
represents the reference value.

MSE =
1
N

N

∑
i=1

1
K

K

∑
j=1

∣∣∣Cij − C′ij
∣∣∣2 (4)
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2.5. Density-Based Data Representation

For comparison, we employ the convolutional neural network ResNet to predict the
capacitance matrix. A density-based data representation method [11,29] is used to describe
the geometric characteristics of the metal layer and represents the input of ResNet. This
method can effectively describe the layout feature [23]. Furthermore, it is suitable for the
feature extraction operation performed by the convolutional neural network. In this way,
the conductor placement of a metal layer can be represented as a vector.



Electronics 2023, 12, 1440 8 of 18

The extraction window width W determines the extraction range of the pattern in
the horizontal direction and the variation range of the geometric variables. A simulation
experiment is conducted to determine the extraction window width W of the studied
pattern. In the simulation, conductor 1 and conductor 3 take the minimum width under
the process. Conductor 4 and conductor 5 take a very large width. Then move conductor 3
away from conductor 1 until the coupling capacitance between them is less than 1% of the
total capacitance of conductor 1. The distance between conductor 1 and conductor 3 at this
time multiplied by two is the width of the extraction window [5,11].

Once the extraction window size W is determined, the flow of this data representation
method is as follows. First, the extraction window size is divided into L cells at equal
intervals. To accurately distinguish different geometries, the cell width should not be more
than half the minimum spacing smin between two interconnects [11]. Therefore, in this
study, we let the cell width equal half the minimum spacing, and the number of cells L is
determined by Equation (5) [23].

L =
W

0.5× smin
(5)

Second, taking one layer as an example, a one-dimensional vector with a size of L is
created. The vector value is determined by the ratio of the conductor area to the cell area at
each position. When the conductor occupies the entire cell area, the vector value is 1; when
the conductor occupies part of a cell, the vector value is taken as the ratio of the occupied
area to the cell area. The illustration of the density-based data representation of one layer is
shown in Figure 8.
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2.6. Prediction of Parasitic Capacitance Matrix Based on ResNet

ResNet was proposed by He [30] in 2015, which solves the network degradation
problem of deep networks. In this study, we modify the convolution kernel size of ResNet
to fit our input data and then use it to predict the parasitic capacitance matrix. The network
structure ResNet-18 used in this work is shown in Figure 9, including 17 two-dimensional
convolutional layers, one fully connected layer, and two pooling layers. “1× 7 conv, 64, /2”
in the figure indicates that the output channel of the convolutional layer is 64, the size of
the convolution kernel is 1× 7, and the stride is 2. The connection line in the figure is called
a shortcut. The solid line indicates that the input and output of the residual module are
directly connected. The dotted line means the input and output of the residual module are
inconsistent in size and cannot be directly connected. Hence a 1× 1 convolutional kernel is
added, which makes the input and output the same size. A detailed illustration of these
two shortcuts is also given in Figure 9. The loss function definition of the ResNet is the
same as Equation (4).
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3. Experiments and Results

The research case in this experiment has been introduced in Section 2.2. It has nine
geometric variables. Equation (3) defines its parasitic capacitance matrix, which includes
fifteen non-repetitive coupling capacitances. In this study, only the coupling capacitances
are considered during the deep learning training, and the total capacitance is calculated by
summing up coupling capacitances. The structure and geometric variables’ sampling range
of the case meet the 55 nm process requirements. Moreover, this work is also applicable to
other process technology. Table 2 lists the first four layers’ process criterion of the 55 nm,
which includes the interconnect wires’ thickness, the minimum wire width wmin, and the
minimum spacing smin between two wires of each metal layer. This research selects the
combination of layer 2, layer 3, and layer 4, that is, k = 2, m = 3, and n = 4 in Figure 2.

Table 2. Multilayer interconnect 55 nm process standard (first four metal layers) [11].

Layer Thickness (µm) wmin (µm) smin (µm)

1 0.1 0.054 0.108
2 0.16 0.081 0.08
3 0.2 0.09 0.09
4 0.2 0.09 0.09
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As shown in Figure 10, the extraction window width is taken as W = 56× smin, where
smin = 0.09 µm. For a higher precision in reference values, the solving domain width of
numerical computation is taken as 10 µm. Once the window width W is determined, the
ResNet input data dimension L of one metal layer can be computed using Equation (5), and
the result is L = 112. Since there are three metal layers, the input data size of the ResNet is
3 × 112.
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Traditional multilayer interconnect routing follows the Manhattan structure [31], that
is, placing adjacent layers’ interconnects orthogonally to each other. In this way, the
crosstalk caused by coupling capacitances can be minimized [32]. The studied pattern
shown in Figure 2 is a cross-section view of a small geometry from the layout. Layers k and
n are regarded as horizontal routing here, and the three conductors in the middle layer are
regarded as vertical page routing. w1, w2, and w3 represent the width of the interconnects.
Hence, we let the maximum variation range of w1, w2, and w3 not exceed ten times the
minimum width. Finally, the sampling range of each geometric variable is listed in Table 3.

Table 3. Parameters’ sampling range.

Parameter Sampling Range Parameter Sampling Range

x2 [1.0, 2.05] w2 [0.09, 0.9]
x3 [−2.05, −1.0] w3 [0.09, 0.9]
x4 [−1.0, 1.0] w4 [0.081, 3.0]
x5 [−1.0, 1.0] w5 [0.09, 3.0]
w1 [0.09, 0.9] - -

The deep learning framework used in the study is PyTorch. The hardware config-
uration is as follows: CPU Intel Core i7-12700KF, GPU NVIDIA RTX3080Ti, with 16GB
RAM. For the studied pattern, 25,000 sets of samplings were generated, and the reference
capacitance matrix values were computed using the FEM solver using EMPbridge software.
Finally, 50,000 sets of data were obtained after using the data augmentation method de-
scribed in Section 2.2. The total datasets were randomly split into three parts: 80% of the
sampling was used as the training set, 10% was used as the validation set, and 10% was
used as the testing set. Too-small coupling capacitances are usually not considered in the
extraction [11,23]. In this work, all coupling capacitances are considered during the neural
network training stage. However, in the testing stage, the coupling capacitances whose
values are less than 1% of the corresponding total capacitance are specially treated. When
calculating the predicted total capacitance, all coupling capacitances are included in the cal-
culation. When evaluating the prediction accuracy of the coupling capacitances, the small
values are not considered in order to evaluate only the accuracy of significant coupling
capacitances. Since one coupling capacitance corresponds to two total capacitances, such
as Cij, which contributes to total capacitances Cii and Cjj, the error of Cij is not evaluated
only when both Cij/Cii and Cij/Cjj are less than 1%.
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3.1. Experiment Results

The hyperparameters of the neural network have a great influence on the prediction
effect. Different combinations of hyperparameters may cause a significant difference in
the prediction effect of the model. For scenarios with few kinds of hyperparameters, the
grid search method is commonly used. However, the DNN has many hyperparameters
needed to be tuned, and the grid search method will become time-consuming. To alleviate
this problem, we utilize an automated hyperparameter tuning method, the tree-structured
parzen estimators (TPE) method [33]. TPE is based on the Bayesian optimization algorithm,
and it can select the next set of hyperparameters according to the evaluation results of the
existing hyperparameter combinations [34]. The TPE method can find the better or best
choice among all hyperparameter combinations within the maximum evaluation number.

For the DNN training, the optimizer is Adam [35]. Weights and biases are initialized
by the Xavier initialization [36]. The remaining hyperparameters are determined with TPE,
and their search space is shown in Table 4. The maximum evaluation number is 100. The
objective function of the TPE is the predicted coupling capacitances’ average relative error
of the trained neural network on the testing set, and the procedure is implemented using
the Hyperopt python package [37]. In the end, the hyperparameter combination with better
performance for this studied pattern is as follows. The activation function is Swish; the
batch size is 32; the learning rate is 10−4; the number of hidden layers is 4, and each hidden
layer has 500 neurons.

Table 4. Hyperparameters’ space for TPE.

Hyperparameter Search Range

Activation function ReLU [38], Tanh, Swish [39]
Batch size 32, 64, 128, 256, 512

Learning rate 10−2, 10−3, 10−4,10−5

Number of hidden layers 1, 2, 3, 4, 5, 6
Neurons in each hidden layer 50, 100, 200, 300, 400, 500, 600

Additionally, we experimented with ResNet-18 and ResNet-34 to predict their respec-
tive capacitances. Both employ the Adam optimizer. Since their hyperparameters needed
to be tuned only for batch size and learning rate, hence we utilized the grid search method
to find the better combination. Batch size is enumerated in {32,64,128,256,512}; the learning
rate is enumerated in {10−2,10−3,10−4,10−5}. Eventually, ResNet-18 has better performance
than ResNet-34, and its hyperparameter combination is as follows. The batch size is set to
32, and the learning rate is 10−3.

Tables 5 and 6 are the prediction results obtained by those two neural networks under
1000 epochs, and their testing sets are consistent. The predicted total capacitances are
indirectly obtained by summing the predicted coupling capacitances. We can see that DNN
performs better both in the coupling capacitance and total capacitance prediction in this
research case. Furthermore, the training time of DNN is only 31% of ResNet-18. In addition,
those two networks’ prediction accuracy on the total capacitance all meets the accuracy
requirements (<5%) in the advanced process criterion, showing the computation method of
total capacitance introduced in this work is reliable.

Table 5. The predictive performance of different neural networks on the coupling capacitance (the
relative error is only evaluated for coupling capacitances greater than 1% of the corresponding total
capacitance).

Network Training
Time (h)

Average
Relative Error

Maximum
Relative Error

Ratio
(>5%)

DNN 0.89 0.12% 10.66% 0.01%
ResNet-18 2.90 0.21% 10.69% 0.05%
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Table 6. The predictive performance of different neural networks on the total capacitance.

Network Average
Relative Error

Maximum
Relative Error

Ratio
(>5%)

DNN 0.05% 2.76% 0
ResNet-18 0.05% 4.45% 0

Figure 11 shows the relative error distribution of two neural networks for the coupling
capacitance and the total capacitance, respectively. The larger errors of coupling capaci-
tance usually occur at lower capacitance values. In addition, the total capacitance error
distribution of DNN is more concentrated than that of ResNet-18.
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3.2. The Comparison of Two Methods for Predicting Total Capacitance Using the DNN

In this study, the total capacitance is obtained indirectly by calculating the sum of
coupling capacitances. To compare this method with the way that directly predicts the total
capacitance using DNN, we constructed another DNN model called DNN-2. The input
of this neural network is consistent with the DNN structure introduced in Section 2.4, but
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the output dimension of DNN-2 is five, corresponding to the five total capacitances of this
research case. The training sets, validation sets, and testing sets are consistent with those in
Section 3.1. The approach of hyperparameters’ settings of DNN-2 is the same as those of
the DNN introduced in Section 3.1.

Finally, after trial and error, the hyperparameters’ combination with better perfor-
mance is as follows. The activation function is Tanh. The learning rate is 10−3. The batch
size is 64. The number of hidden layers is 3, and the number of neurons in each hidden
layer is 500. The prediction results of DNN-2 are shown in Table 7. At the same time, the
prediction results of DNN on the total capacitance in Section 3.1 are given as a comparison.
From the table, we can see that the predictive performance of the two DNN models is
very close. Therefore, the method used in this study is reliable. Moreover, the result also
indicates that our method can save the training cost for predicting total capacitance.

Table 7. The prediction results of two methods using DNN for total capacitance.

Method Training
Time (h)

Average
Relative Error

Maximum
Relative Error

Ratio
(>5%)

DNN 0.89 0.05% 2.76% 0
DNN-2 0.35 0.05% 4.96% 0

3.3. The Predictive Performance of DNN under Different Training Set Sizes

This subsection tests the predictive performance of DNN under different training set
sizes. The validation set and testing set are still the same as in Section 3.1. The ratio of the
training set size gradually increases from 10% to 80%; that is, the size of training sets varies
from 5000 to 40,000. The structure of DNN is also the same as in Section 3.1. Finally, the
average relative error and the ratio of errors greater than 5% of each trained model on the
testing set are drawn in Figure 12. It can be seen that both the average relative error and
the ratio (>5%) overall decrease with the increase of the training set size. Moreover, when
the size of training sets is more than 20,000, the change trend in both factors slows down.
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3.4. The Comparison of Solving Time between the FEM and the Trained DNN

To compare the solving efficiency between the trained DNN and the FEM, we select
100 sets of data in the testing set and compute their parasitic capacitance matrix with the
trained DNN and FEM, respectively. Since both the trained DNN and FEM need to process
the input data in advance (i.e., FEM needs to generate mesh, and the trained DNN needs
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to construct the input vector), the data preparation time is ignored here, and only the
solving time is counted. The programming language of DNN is Python, and it uses GPU
for computation. The programming language of the FEM is C++. Finally, the average
computation time of those two methods for one case is shown in Table 8. The solving time
of the trained DNN takes only 2% of FEM.

Table 8. The average computation time of the FEM and the trained DNN for one testing case.

Method Time (ms)

FEM 759.49
The trained DNN 14.64

3.5. The Verification of a New Pattern

To further verify our method, we experiment with a new pattern called pattern-2,
whose geometry and parameters are shown in Figure 13. In pattern-2, conductor 1 is
centered, conductor 2 and conductor 4 are always on the right side of the center line,
and conductor 3 and conductor 5 are always to the left of the center line. We choose the
same metal layers as the pattern in Figure 2, but each layer contains a different number of
conductors. Subsequently, we built a new DNN network called DNN-3. Since the geometric
variables and the total number of conductors of pattern-2 are the same as the pattern in
Figure 2, the input and output layer used for DNN-3 is the same as in Figure 7.
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The metal layer selected in Pattern-2 is the same as the pattern in Figure 2; hence their
extraction window width is also the same. The sampling range of each geometric parameter
in pattern-2 is shown in Table 9. We utilized the field solver EMPBridge to generate
25,000 sets of data and used the data augmentation method introduced in Section 2.3
to augment the datasets, and finally obtained 50,000 sets of data. A total of 80% of the
datasets were used as training sets, 10% were used as verification sets, and 10% were used
as testing sets.

Table 9. Parameters’ sampling range of pattern-2.

Parameter Sampling Range Parameter Sampling Range

x2 [1.04, 1.52] w2 [0.081, 2.0]
x3 [−1.52, −1.04] w3 [0.081, 2.0]
x4 [1.05, 1.52] w4 [0.09, 2.0]
x5 [−1.52, −1.05] w5 [0.09, 2.0]
w1 [0.09, 0.9] - -

The approach of hyperparameters’ settings of DNN-3 is the same as those of the DNN
introduced in Section 3.1. In the end, the better hyperparameter combination obtained with
TPE is as follows. The activation function is Swish. The batch size is 64. The learning rate
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is 10−4; The number of hidden layers is 2, and each hidden layer has 500 neurons. The
prediction performance of DNN-3 on the testing set is shown in Table 10. It can be seen
that our method performs well in the new example, and the average relative error of the
coupling capacitance is only 0.10%, the average relative error of the total capacitance is only
0.04%, and the prediction accuracy of the total capacitance all meets advanced technology
accuracy requirements (errors < 5%).

Table 10. The predictive performance of DNN-3 on the coupling capacitances and total capacitances.

Property Training
Time (h)

Average
Relative Error

Maximum
Relative Error

Ratio
(>5%)

Coupling
Capacitance 0.32 0.10% 5.04% 0.00%

Total capacitance - 0.04% 0.37% 0

4. Discussion

This study uses the DNN to predict the parasitic capacitance matrix of a 2D pattern.
The network output only includes coupling capacitances. The total capacitance is obtained
by calculating the sum of the corresponding coupling capacitances. Moreover, a data
augmentation method is employed, doubling the dataset’s size. For comparison, this study
also utilized ResNet to predict the parasitic capacitance matrix. The above experiments can
derive the following discussions.

• Data augmentation technique can obtain new data through the original dataset without
additional computation. Section 2.2 introduces a mirror flip method that doubles the
size of datasets size and reduces the data preparation effort.

• In this paper, we train only one DNN model to predict the capacitance matrix. The
neural network’s output includes only coupling capacitances in the capacitance ma-
trix, and the total capacitances are obtained by summing corresponding predicted
coupling capacitances. For the research case, experimental results in Table 6 show that
the prediction accuracy of the total capacitance obtained by this method meets the
advanced process requirements (<5%).

• The comparison in Table 7 indicates that the predictive performance of our method
with the method that directly predicts the total capacitance using DNN is very close.
Moreover, the training time of our method is 0.89 h, and that of DNN-2 is 0.35 h.
Therefore, our method only takes about 72% of the total training time but can simul-
taneously predict the total capacitances and coupling capacitances. In addition, the
hyperparameters’ tuning of DNN-2 is time-consuming, and our method also saves
this process. The above results indicate that the method introduced in this work is
reliable and can save the training cost for predicting total capacitance.

• In [11], ResNet is used to predict the total capacitance and coupling capacitances,
which shows good precision. To compare this kind of neural network’s prediction
performance with DNN for this research case, we also utilized the ResNet to predict the
capacitance matrix. The results show that the performance of DNN is better than the
ResNet for this research case, and the training time of DNN is only 31% of ResNet-18.

• We tested the prediction effect of DNN under different dataset sizes. With the increase
in training data size, the average relative error and the ratio of errors greater than 5%
of trained models gradually decrease. Further, when the training data size is greater
than 20,000, the changing trend of the average relative error and the ratio (>5%) tends
to slow down.

• In addition, the calculation efficiency of the FEM and the trained DNN are compared.
The average computing time of the trained DNN for one case is only 2% of that of FEM,
which shows that the trained DNN has good efficiency. Furthermore, we validate
our method to another pattern called pattern-2. The results show that our method
performs well on the new pattern, indicating its feasibility.
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• This experiment only considers horizontal changes in the interconnect geometry.
However, in real manufacturing, there will be more process variations. For example,
the permittivity of the dielectric layer, interconnect wire’s thickness, etc. Therefore,
in the future, the parasitic capacitance prediction will add more variables to the
consideration.

• When there are corners or connections in the interconnect wires [4,40], the two-dimensional
analysis is no longer applicable. We prepare to solve the parasitic capacitance pre-
diction of this kind of problem in the next step. The neural network’s input data
representation is critical, and one approach is using the density-based data representa-
tion of the interconnect’s top view [23].

5. Conclusions

This study used DNN to predict the parasitic capacitance matrix of a two-dimensional
pattern. The neural network’s output includes only coupling capacitances in the capaci-
tance matrix, and the total capacitances are obtained by summing corresponding coupling
capacitances, thus saving the cost of training total capacitance. For the research case in
this study, experimental results show that the average relative error of the predicted total
capacitance based on DNN in the testing set is only 0.05%, and the average relative error
of the predicted coupling capacitance is only 0.12%, showing good prediction accuracy.
Furthermore, a data augmentation method was introduced, reducing the data preparation
effort. Our study can be used to construct capacitance models in the pattern-matching
method.
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