
Citation: Zheng, Q.; Wang, L.; He, J.;

Li, T. KNN-Based Consensus

Algorithm for Better Service Level

Agreement in Blockchain as a Service

(BaaS) Systems. Electronics 2023, 12,

1429. https://doi.org/10.3390/

electronics12061429

Academic Editor: Ping-Feng Pai

Received: 4 February 2023

Revised: 28 February 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

KNN-Based Consensus Algorithm for Better Service Level
Agreement in Blockchain as a Service (BaaS) Systems
Qingxiao Zheng 1 , Lingfeng Wang 1 , Jin He 1,* and Taiyong Li 2,*

1 Industry College of Blockchain, Chengdu University of Information Technology, Chengdu 610225, China
2 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics,

Chengdu 611130, China
* Correspondence: hejin@cuit.edu.cn (J.H.); litaiyong@gmail.com (T.L.)

Abstract: With services in cloud manufacturing expanding, cloud manufacturers increasingly use
service level agreements (SLAs) to guarantee business processing cooperation between CSPs and
CSCs (cloud service providers and cloud service consumers). Although blockchain and smart contract
technologies are critical innovations in cloud computing, consensus algorithms in Blockchain as a
Service (BaaS) systems often overlook the importance of SLAs. In fact, SLAs play a crucial role in
establishing clear commitments between a service provider and a customer. There are currently
no effective consensus algorithms that can monitor the SLA and provide service level priority. To
address this issue, we propose a novel KNN-based consensus algorithm that classifies transactions
based on their priority. Any factor that impacts the priority of the transaction can be used to calculate
the distance in the KNN algorithm, including the SLA definition, the smart contract type, the CSC
type, and the account type. This paper demonstrates the full functionality of the enhanced consensus
algorithm. With this new method, the CSP in BaaS systems can provide improved services to the
CSC. Experimental results obtained by adopting the enhanced consensus algorithm show that the
SLA is better satisfied in the BaaS systems.

Keywords: BaaS system; blockchain consensus algorithm; KNN; service level agreement; transaction priority

1. Introduction

Blockchain, business analytics, and the Internet of Things (IoT) are the emerging in-
dustry trends to which scholars and practitioners have paid much attention in recent years.
The state-of-the-art research related to these technologies has been summarized by Zhang
and Chen [1]. Blockchain as a Service (BaaS) is a new technology that combines cloud
computing and blockchain technology. As a third-party service, BaaS provides customers
with the ability to create and manage blockchain-based networks through cloud technol-
ogy. It is a relatively new technology trend that provides third-party services within the
blockchain technology domain. Blockchain applications are more than just cryptocurrency
transactions. They have expanded to encompass all types of secure transactions. As a
result, hosting services are increasingly in demand. Blockchain technology has been used
to provide services to more customers as a service model through the cloud. This model
works similarly to SaaS, PaaS, and IaaS models, which support the usage of cloud-based
applications and storage. Blockchain technology is complex, and much effort is required
to build, maintain, and monitor a blockchain system when applied. In order to increase
the accessibility of the blockchain and distributed ledgers, we need to leverage blockchain
with lower costs and less overhead, especially for businesses. BaaS is a promising technical
option that can meet these goals [2]. However, critical issues in current public blockchain
systems prevent them from being used as a generic platform for different services and
applications. Bitcoin can handle about 5.5 transactions per second (TPS), and Ethereum
can process about 20 TPS, which is far below the mainstream payment systems. There is

Electronics 2023, 12, 1429. https://doi.org/10.3390/electronics12061429 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061429
https://doi.org/10.3390/electronics12061429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0255-7876
https://orcid.org/0000-0003-3336-660X
https://orcid.org/0000-0002-8830-2868
https://orcid.org/0000-0002-1546-8015
https://doi.org/10.3390/electronics12061429
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061429?type=check_update&version=1


Electronics 2023, 12, 1429 2 of 21

no silver bullet that solves all of these problems due to the Trilemma, as mentioned by the
founder of Ethereum, Vitalik Buterin: public blockchain systems can have only two of the
following three properties: decentralization, scalability, and security [3].

Most previous studies have not solved the scalability issue well. It is difficult for cloud
service providers (CSPs) to guarantee effective SLA with cloud service consumers (CSCs).
There are some studies that achieve better data query/sharing services based on blockchain
service, such as BlockShare [4], Verifiable Query Layer (VQL) [5], and vChain+ [6], but these
services cannot solve the SLA issue. To address the SLA issue in the BaaS environment, this
paper proposes a novel KNN-based consensus algorithm by classifying the transactions
with priority. Any factor that impacts the priority of the transaction can be used to calculate
the distance in the KNN algorithm. Such factors include the SLA definition, the smart
contract type, the CSC type, and the account type.

This paper has three main contributions: (1) A simple supervised learning method,
KNN, is used to build a consensus algorithm for the first time. (2) With the realization of
the full functionality of the enhanced consensus algorithm, the CSP in the BaaS systems
can provide improved services to the CSC. (3) Experimental results demonstrate that the
SLA is better satisfied in the BaaS systems. The transaction with higher priority that arrives
later is executed early.

We have organized the rest of the paper as follows. Section 2 provides a review of
related work. Section 3 depicts the problem studied in this paper. Section 4 describes prelim-
inaries, such as BaaS, cloud computing SLA in BaaS, and the KNN algorithm. The proposed
KNN-based consensus algorithm is detailed in Section 5. Section 6 reports and analyzes
the experimental results. Section 7 concludes this paper.

2. Related Work
2.1. Evolution of Consensus Algorithms

In decentralization, any node in a blockchain can submit a transaction to be stored in
the system, so it is important that there are processes that can ensure that each node reaches
a consensus to accept or reject the submitted transactions. These processes are essentially
considered consensus algorithms.

PoW is the first consensus protocol used in blockchain. It works with Bitcoin and
Ethereum, among others. In each round of consensus, PoW uses computational power
competition to decide which node can pack recent transactions into a new block. PoW guar-
antees eventual consistency based on the major distributed nodes with high computational
power in reaching a consensus. It is a probabilistic-finality consensus protocol [7].

PoS was created to overcome shortages that occur when PoW consumes too much com-
putational power. In each round of consensus, PoS considers not only the computational
power but also the stake held when deciding which node can pack recent transactions into
a new block. The difference between PoS and PoW is the importance of the amount of stake
(coins) and of how many times the nonce is adjusted. PoS is also a probabilistic-finality
consensus protocol [7].

Raft reaches a consensus by an elected leader. A node in a blockchain system with
Raft is either a leader or a follower and can be a candidate in an election scenario when a
current leader is unavailable. The Raft leader has the responsibility of logging replications
to the followers, and it periodically notifies the followers of its alive state by sending a
heartbeat message. Raft implements a consensus based on the leader schema. The whole
blockchain system has only one elected leader, which has full responsibility for managing
logged replications to followers.

PBFT provides a practical Byzantine state machine replication that tolerates the
Byzantine Generals’ Problem caused by malicious nodes. It assumes that these malicious
nodes have independent failures and send manipulated messages. Distributed nodes in a
blockchain system with PBFT are appointed as leaders, in turn, and others are appointed as
backup nodes. All nodes in the blockchain system assume that all honest nodes will make
an agreement by using predefined rules when communicating with each other.



Electronics 2023, 12, 1429 3 of 21

The above consensus algorithms are the main types of consensus algorithms used in
the blockchain system. They have different decentralization and transaction throughput
capabilities, and these consensus algorithms have their own application scenarios based on
the requirement of decentralization and performance grades.

The data structure of the transaction in most blockchains is simple. It includes a receiver
address, transaction amount, etc. In a typical blockchain system, such as Bitcoin, the receiver ad-
dress is located in the “Locking-Script” field of a transaction output, and the transaction amount
is located in the “Amount” field of a transaction, as shown in Tables 1 and 2. The blockchain
node verifies the validity and effectiveness of the transaction, while transactions are not classified
or processed with priority in the consensus procedure since there is no field in the transaction
data structure to describe the transaction priority or type [8]. There is an opportunity for opti-
mization by classifying and processing transactions with priority. The method introduced in
this paper uses a strategy that ensures that transactions with higher priority can be processed in
a timely manner.

Table 1. The structure of a transaction in Bitcoin.

Size Field Description

4 bytes Version Specifies which rules this transaction follows
1–9 bytes (VarInt) Input Counter How many inputs are included
Variable Inputs One or more transaction inputs
1–9 bytes (VarInt) Output Counter How many outputs are included
Variable Outputs One or more transaction outputs
4 bytes Locktime A Unix timestamp or block number

Table 2. The structure of a transaction output in Bitcoin.

Size Field Description

8 bytes Amount Bitcoin value in satoshis

1–9 bytes (VarInt)
Locking-

Script
Size

Locking-Script length in bytes, to follow

Variable Locking-
Script A script defining the conditions needed to spend the output

2.2. QoS Assurance

Previous studies show that most of the recently developed public blockchain systems
focus on increasing transaction throughput to improve scalability. Even if the existing
consortium blockchain TPS is improved compared with public blockchains, the efficiency
of the consensus algorithm is still low, and its fault tolerance is still poor [9].

Blockchain technology plays an important role in supporting Service Level Agreements
(SLAs) that guarantee quality of service (QoS) standards for various service providers.
Meanwhile, although smart contracts are applied in traditional cloud providers, SLAs are
rarely used to provide improved service [10].

The blockchain data are used in the BaaS system to provide a range of operational
services, such as search queries and task submission on the blockchain [11]. Driven by
BaaS, the content of a cloud service becomes more abundant, and the CSC increases its
requirements for QoS [12,13]. In order to solve the QoS assurance problem between the CSP
and CSC, one method is proposed to support the cloud computing service level agreement.
The purpose of this agreement is to create a healthy environment for operations on the
network so that the CSC can enjoy not only the service promised verbally by the CSP
but also a service that is regulated and fully protected [14].

Existing research recognizes the critical role played by the service provider [15], but it
lacks a valid method that enhances the consensus algorithm with improved QoS assurance.
Since smart contracts stand on the application layer, providing QoS assurance for smart



Electronics 2023, 12, 1429 4 of 21

contracts is relatively inefficient and is not the best choice; it is better to put this assurance
in the kernel module of the BaaS system for all transactions.

According to the above studies, the existing consensus algorithms cannot provide
effective support for SLAs between a CSP and a CSC. It is important to provide QoS
assurance in a consensus algorithm, and how various transactions are classified is key in
supporting QoS. As the KNN is one of the simplest classification methods, it was chosen
here for classifying transactions. The main aim of a KNN is to find k training samples
that are closest to the new sample and assign the majority label of the k samples to the
new sample. Despite its simplicity, the KNN has been successful in solving a wide range
of regression and classification problems, including handwritten characters and image
recognition scenarios. As a non-parametric approach, it often succeeds in classification
situations where the decision boundary is highly irregular [16].

In this paper, we introduce a KNN-based consensus algorithm for improved service
level agreements in BaaS systems. Even with the efficiency or poor fault tolerance in BaaS
systems, the QoS assurance between the CSC and the CSP is better achieved with the
enhanced consensus algorithm.

3. Problem Definition

Performance and scalability are always key non-functional requirements in appli-
cation systems, and such application systems generally achieve extremely high transac-
tion throughput. China’s central bank digital currency, DCEP, for example, has about
220,000 TPS. While blockchain systems or BaaS achieve a lower transaction throughput,
Bitcoin has 5.5 TPS, and Ethereum has 20 TPS on average. The CSP in BaaS can only provide
a similar transaction throughput performance; it cannot meet the requirements of the CSC
in the SLA due to the limitation of throughput [17].

The two major challenges of blockchain, scalability and throughput issues, have been
studied and improved extensively as the below methods.

Consortium blockchain does not use high-power consensus algorithms such as PoW.
They consume much effort and have a complicated consensus process. Hyperledger Fabric
is a typical consortium blockchain that uses a Raft or PBFT consensus algorithm [18] to
reach a consensus faster than a public blockchain that uses PoW or PoS. It can achieve
higher throughput than a public blockchain, and its throughput is 3500 TPS on average [17].

The Ethereum community scheduled a scaling method that performs sharding to im-
prove Ethereum’s scalability and capacity. It splits Ethereum data horizontally to spread the
load. After Ethereum upgrades to 2.0 with sharding, it is expected to reach 100,000 TPS [17].

NeuChain utilized an ordering-free consensus that makes ordering implicit through
deterministic execution to markedly improve the throughput of the blockchain system.
The distributed experimental results show that NeuChain can achieve 47.2–64.1X through-
put improvement over HyperLedger Fabric [19].

Some hardware methods to improve blockchain performance have been proposed.
For instance, a FPGA-based NoSQL caching system with high performance was proposed
to improve the throughput and scalability of the blockchain system, and this can increase
the throughput to about 10,000 TPS when a cache hit occurs [20].

Except for the above performance optimization for consensus algorithms, some pro-
posals for the optimization of other aspects related to the blockchain system and the
blockchain-based framework have also been researched. For some special scenarios, such
as confidential transactions, the SymmeProof method, used to reduce the transmission
cost, was proposed, and it can improve communication efficiency and indirectly improve
the transaction throughput for special types of transactions [21]. A mechanism where full
nodes can be compensated fairly for their full blockchain data storage and where clients
can query blockchain data effectively was constructed [22]. LineageChain provides an
innovative method to support efficient provenance and history data query processing [23].
The secure performance of the blockchain-based federated learning framework has been
proposed to be optimized [24].



Electronics 2023, 12, 1429 5 of 21

Due to the need to establish trust between completely anonymous entities, a time-
consuming mining-based consensus mechanism was used. Thus, it takes a long time to
achieve transaction finality and results in much lower transaction throughput. The limi-
tation of throughput can be increased by using the methods mentioned above. However,
compared to traditional e-business application systems that do not adopt blockchain tech-
nology, the optimized blockchain still presents a gap between throughput performance and
the requirements of e-business scenarios. Although some of the methods mentioned above
can improve the throughput of the blockchain system to different degrees, they generally
cannot be applied for most scenarios.

Considering the existing studies on blockchain performance optimization, the through-
put of a blockchain system cannot reach the same magnitude as traditional e-business
application systems. Therefore, another approach where the CSP of BaaS provides an SLA
that meets the CSC’s requirements is needed.

4. Preliminaries
4.1. BaaS

Blockchain as a Service (BaaS) is a service provided by third parties that create and
manage cloud-based networks for customers building their own blockchain applications.
The decentralization of blockchain, the pervasiveness of IoT, and the high computing power
of cloud computing are combined in BaaS, while the transparency and openness of the
system are ensured. The main functional behaviors of blockchain, such as off-chain and
on-chain synchronization, node validity, consensus, and forking, are managed by BaaS.
The CSC can fully outsource the technical overhead to the CSP [25].

BaaS inherits blockchain’s challenges, synchronization mechanism, transaction through-
put, storage space, network congestion, accessibility, and cost issues, among others. As dis-
cussed in Section 3, the transaction throughput of the blockchain system cannot be im-
proved to match the magnitude of traditional e-business application systems. BaaS also
has a transaction throughput issue that cannot be completely resolved. This paper depicts
a method to optimize SLAs for key transactions when transaction throughput cannot be
further promoted in BaaS.

4.2. Cloud Computing SLAs in BaaS

BaaS is introduced as an important part of the cloud service platform of several
giant enterprises that can provide a trustworthy decentralization service, such as the
Alibaba-built BaaS system on Kubernetes, the IBM-built BaaS system on Bluemix, and the
Microsoft-built BaaS system on the Microsoft Azure cloud platform [2].

An SLA formally defines the relationship between two or more parties in BaaS, one of
which is the CSC and one of which is the CSP. It specifies what CSCs can be served by a
CSP, the obligations that both the CSC and the CSP shall fulfill, the objectives of the service
related to performance, availability, and security, and the processes that guarantee compli-
ance with SLAs. In general, an SLA includes the following typical components: the type of
service to be provided; the desired performance level of the service; the reporting process
that occurs when the service is unstable or unavailable; the time frame for responding and
issuing a problem resolution; the schema for monitoring and reporting the service level;
the consequences that result when the CSP does not fulfill its promises; termination clauses;
and constraints of service. The SLA is used to evaluate the QoS provided by the CSP in
BaaS, as in IaaS, PaaS, and SaaS.

4.3. KNN

As a typical supervised learning method in machine learning, the k-nearest neighbors
algorithm (KNN) has shown its advantages for both classification and prediction [26–28].
It is a supervised learning classifier and is used to classify or predict the grouping of an
individual data point according to the distance between different feature vectors. KNN has
two main phases: (1) the training phase, in which feature vectors are stored and labels of



Electronics 2023, 12, 1429 6 of 21

the training samples are classified, and (2) the classification phase, in which an unlabeled
vector is classified by assigning the most frequent label among the k training samples that
are nearest to that vector. Although it can be used in either regression or classification, it is
typically used as a classification algorithm, as in this paper.

The parameter k of the KNN has an extraordinary impact on the classification result,
and the data impact the best choice of k. In general, a larger k reduces the effect of noise on
classification, but it is then less distinct among class boundaries. Cross-validation is used
when assigning different k values to different test samples in previous solutions. A kTree
method that learns different optimal k values for different tests of individual data points is
proposed in the training stage during kNN classification [29].

Although KNN was developed by Joseph Hodges and Evelyn Fix in 1951 [30], due to
its simple implementation and relatively excellent performance, it, along with its improved
methods, has been widely used in the applications of several industries in the last three
years, including cancer diagnosis in medicine [31], gas-bearing reservoir prediction in
geophysics [32], and antenna optimization and design in the electronic industry [33]. This
paper applies the KNN to classify the priority of the transaction in BaaS, and transactions
are executed with different priorities based on priority classification. It should be noted
that the KNN can be replaced by other classification models in practice.

5. KNN-Based Consensus Algorithm

We propose a KNN-based consensus algorithm in this paper, and we describe this
algorithm in three subsections: the Priority-Queue-Enabled Transaction Pool, Attribute Se-
lection in the KNN-Based Consensus Algorithm, and Transactions Classified to a Different
Priority Queue by Adopting the KNN-Based Consensus Algorithm. The first subsection
introduces how the existing consensus algorithm puts newly received transactions into
the transaction pool and points out that our optimization aim is to classify newly received
transactions and determine their priority according to the classification results. The second
subsection explains how classification attributes are selected, and the third subsection
introduces how transactions are classified and how the transaction pool is filled according
to the classified priority queue.

5.1. The Priority-Queue-Enabled Transaction Pool

The blockchain system only allows a limited number of transactions since a block can
only contain a limited number of transactions. Transactions that exceed the limit of arrival
should not be included in the block. For example, in a four-node consortium blockchain
system, a Practical Byzantine Fault Tolerance algorithm [34] (also known as PBFT) is
applied, where multiple clients connect to the blockchain system, and the transaction count
limit of the transaction pool is set to 1000. As the leader node, Node4 picks the transactions
to be sent to the Transaction Pool. However, once it reaches the pool limit, the transactions
that arrive later will not be sent to the transaction pool. The existing PBFT consensus
protocol can be illustrated in Figure 1.

A new priority-queue-enabled transaction pool is introduced in this paper. Based on
the attributes, received transactions should be classified into queues of different priorities,
and each queue is a first-in first-out queue. The transactions that arrive later are cached
once the queue is full. The details on how the attributes are selected and how the incoming
transactions are classified will be presented in the following subsections.



Electronics 2023, 12, 1429 7 of 21

Figure 1. The PBFT consensus protocol.

5.2. Attribute Selection in the KNN-Based Consensus Algorithm

The account type, the CSC (cloud service consumer) type, and the contract type i
chosen as the attributes to be used in the KNN algorithm to calculate the distance.

(1) Account type. There are different kinds of roles in the blockchain system. Roles
based on access control should usually be defined in the system, such as chain ad-
ministrators, system administrators, and ordinary accounts. Chain administrators
have access control permissions, that is, grant permissions. System administrators
need to manage permissions related to system functions, and each permission should
be granted independently, including contract deployment, user table creation, node
management, and system parameter modification. Chain administrators can autho-
rize other accounts to be chain administrators or system administrators or authorize
ordinary accounts to write table lists. Table 3 lists the permissions related to the roles.

Table 3. Permissions related to the roles.

Permission Type

Permission of chain administrators
Permission of system administrators
Permission to deploy contracts
Permission to create user tables
Permission to manage nodes
Permission to modify system parameters
Permission to write user tables

(2) CSC type. Transactions from different CSCs have varying priorities. Since CSC
clients run similar CSCs, they should have similar priorities. However, if a CSC client
experiences limitations in terms of CPU, memory, storage, or network resources, it
may need to adjust the CSC priority accordingly.

(3) Contract type. Besides contracts relating to chain management, there are many smart
contracts. Some of them handle time-critical applications, some of them handle
applications that are not so critical but are urgent, and some of them do not care about
the timing. In the consortium Blockchain FISCO BCOS [35], for example, there are
many contract types in the consortium Blockchain system, as shown in Tables 4 and 5.



Electronics 2023, 12, 1429 8 of 21

Table 4. Address range in FISCO BCOS [35].

Address Use Address Range

Ethereum precompiled 0x0001–0x0008
Reserve 0x0008–0x0fff
Precompiled contracts in FISCO BCOS 0x1000–0x1006
Reserved in FISCO BCOS 0x1007–0x5000
Interval assigned by user 0x5001–0xffff
Reserved for CRUD 0x10000+
Used by Solidity Other address

Table 5. Precompiled contracts in FISCO BCOS [35].

Address Feature

0x1000 managing system parameters
0x1001 contract of the table factory
0x1002 implementing CRUD operations
0x1003 managing consensus nodes
0x1004 Contract Name Services
0x1005 managing storage table authorities
0x1006 configuring parallel contracts

The chain management contracts have higher priority when we send transactions to the
Tx pool. For those fundamental contracts, such as the table factory and CRUD operations,
we cannot determine the priority that depends on the CSC’s request. The contract type can
be used to calculate the priority.

5.3. Transactions Classified to a Different Priority Queue by Adopting the KNN-Based
Consensus Algorithm

A KNN-based consensus algorithm is proposed to select the transactions for the queue.
When a CSC is registered, we can obtain the key properties of the transactions in this
CSC, which may impact its transaction priority, such as the SLA type, the contract type,
the account type, the CSC type, the CPU type, the memory size, the storage type, and the
network bandwidth.

Classification is an important task in machine learning. The KNN algorithm is simple
and accurate and is used for regression models and pattern classification [36]. The term
“non-parametric” is used when there are no parameters, or there is a fixed number of
parameters, regardless of data size. The size of the training dataset determines the param-
eters, although no assumptions need to be made about the underlying data distribution.
Therefore, KNN is probably the best choice for any classification study that involves little
or no prior knowledge of the data distribution. KNN is also a lazy learning method,
which means it stores all training data and waits to generate test data without creating a
learning model [37]. This is the reason why the KNN algorithm was chosen to optimize the
consensus algorithm.

The KNN algorithm classifies as follows: there is an existing set of sample data or a
training set. All of these data have been labeled, and we know the class of each piece of
data. When a new piece of data has no label, we compare that new piece of data with
every existing piece of data. We then take the nearest neighbors and check their labels. We
look at the k data that are most similar to the known dataset, which is what k represents.
Finally, we perform a majority vote on the similar k data, and the label of the winning vote
is selected as the new class to be assigned to the new piece of data. The detailed steps to
calculate distance and determine the k value are listed below:



Electronics 2023, 12, 1429 9 of 21

(1) The distance calculation and normalization procedure is as follows: We can use

d(p, q) =

√
n

∑
i=0

(pi − qi)2

to calculate the Euclidean Distance between input data and existing data. Which term
in the above equation makes the most difference? It must be the one with the largest
magnitude. To reduce the impacts of the magnitude, we need to normalize the sample
data to give all factors an equivalent weight. In this paper, every attribute is scaled
from 0 to 1, which can be formulated as

newValue = (oldValue−min)/(max−min).

(2) The KNN algorithm does not need a training procedure. However, the selection of
k is important for accuracy. Basically, k should be an integer between 1 and 20. We
divided the sample data into two portions: 90% of them was used for the known set,
while the remaining 10% was for testing. We increase k successively and calculate the
accuracy. The k value that achieves the highest accuracy is chosen for classifying the
transactions from the incoming client in the final algorithm. Algorithm 1 describes
the procedure by which the incoming transaction is classified into different priority
queues, while Algorithm 2 details how transactions are collected and sent to Tx Pool.
In the system, there are N queues starting from Q1 to QN , where QN and Q1 have the
highest and lowest priority, respectively. n is in 1..N, and Qn. size denotes the number
of transactions in Qn.

Algorithm 1 Transaction classification.

Input: Tx: The incoming transaction; Q1 . . . QN : The priority Q list from Q1 to QN ; sample:
The sample dataset;

Output: updated Qn
1: Initial trainingData = prepareLabeledDataset(sample); . Prepare training dataset
2: n = classify(Tx,trainingData,k) . Classify Tx with given training data and k value,n

means which Qn it belongs to
3: if (Qn. size < MAX_SIZE) then
4: PUSH Tx to Qn; . PUSH Tx to corresponding Qn once the Q isn’t full
5: else
6: Save Tx to memory pool; . Otherwise temporarily save the Tx to memory pool
7: end if
8: return Qn

Algorithm 2 Prepare the Tx Pool.

Input: Q1 . . . QN : The priority queue list from Q1 to QN ; POOL_LIMIT: The limit on the
number of transactions that can be accommodated in the Tx_Pool;

Output: Tx_Pool
1: Set Tx_Pool to empty, j = N; . j = N −→ start to pick up priority queue item from QN

to Q1
2: while (Tx_Pool. size < POOL_LIMIT) and (j > 0) do . Keep filling the pool in order

of priority of the queue items until j ≤ 0 or Tx_Pool is full
3: Fill Tx_Pool with Qj
4: j−− . Move to the next lower priority queue item
5: end while
6: Save remaining queue items to memory pool if the Tx_Pool is full;
7: return Tx_Pool



Electronics 2023, 12, 1429 10 of 21

With the KNN algorithm, the consensus algorithm can be optimized with SLA as-
surance. Any transaction that is classified with higher priority can be handled earlier.
Figure 2 shows the data flow through which transactions are selected and sent to the
transaction pool.

Figure 2. Data flow through which transactions are selected and sent to the transaction pool.

Figure 3 provides the overall framework of the enhanced KNN-enabled consensus
algorithm. As shown in the figure, the newly added KNN-enabled transaction classification
module is a new concept in the BaaS system. Any CSP can integrate this module into
its BaaS framework when it wants to provide a guaranteed SLA to the CSC. Some minor
changes are required when preparing the transaction pool, which picks up transactions
in the order of priority. If the SLA of one transaction is 1 s, 2000 transactions come in
within 1 s, the TPS of the BaaS system is 1000, and the CSP receives this transaction with
a sequence number 1100. Only transactions with a sequence number smaller than 1000
can be handled, so this transaction cannot meet the requirements of the SLA. With this
KNN-enabled consensus algorithm, since it has a higher priority, it can be sent to the
transaction pool with a smaller sequence number (e.g., 100), and it can be handled earlier
within the SLA.

Figure 3. The KNN-enabled PBFT consensus algorithm.

6. Simulation Experiments and Analysis
6.1. TPS Limit Measured from the Existing BaaS System

To evaluate the proposed consensus algorithm, we ran a performance test on the
well-known FISCO-BCOS Consortium Blockchain system. The flowchart of the test process
is shown in Figure 4.



Electronics 2023, 12, 1429 11 of 21

Figure 4. Performance test flow chart.

We deployed a Cloud Virtual Machine standard type S3 on the Tencent Cloud to
simulate the BaaS system. Tables 6 and 7 list the details of the hardware and software
environment, respectively.

Table 6. Virtual machine hardware configuration.

Hardware Type Hardware Configuration

CPU Intel Xeon Cascade Lake 8255C (2.5 GHz)
vCPU 4 Core
Memory (GB) 4 GB
System disk type High-performance cloud disk
System disk size (GB) 50 GB
Bandwidth 100 Mbps

Table 7. Virtual machine software configuration.

Software Type Software Version

FISCO BCOS V2.7.2
OS CentOS 7.6 64 bit
WeBase V1.5.1
JAVA jdk1.8.0
IDE IntelliJ IDEA 2022.2.2 (Ultimate Edition)

A JAVA performance testing application [38] was used to measure the TPS on the BaaS
simulation system. It started at 1000 transactions and set the TPS limit from 10 to 100 with
a step of 10. Figure 5 shows the Actual TPS/TPS Limit results. The TPS limit setting is the
maximum number of transactions that the testing application is allowed to send, and the
actual TPS is the actual number of transactions that the testing application sends. If the
actual TPS is smaller than the TPS limit setting, then the testing application has reached the
maximum TPS supported by the BaaS system.



Electronics 2023, 12, 1429 12 of 21

10 20 30 40 50 60 70 80 90 100
TPS limit setting

10

20

30

40

50

60

70

Ac
tu

al 
TP

S

Figure 5. TPS limit of the performance evaluation system.

6.2. Simulation Experiments with the Existing Consensus Algorithm

We considered transaction type, account type, and CSC type as the input features of
the KNN. The normalized values are from 0 to 1, where 0 is the highest priority and 1 is the
lowest priority.

Without a KNN-based consensus algorithm, the transactions should be handled in
a FIFO way. In this way, the transaction that arrived early will be served early. We
generated 1000 transactions with different transaction types, account types, CSC types,
and arrival times. Table 8 shows part of the transaction data. Algorithm 3 illustrates how
the transaction pool picks up the transactions in a FIFO way. Correspondingly, Figure 6
shows a scatter diagram of the handled transactions.

Table 8. Samples of transactions.

Transaction Type Account Type CSC Type Arriving Time (ms)

0.503 0.536 0.592 506
0.014 0.399 0.454 539
0.655 0.547 0.991 52
0.328 0.095 0.579 152
0.271 0.810 0.502 822
0.734 0.675 0.667 391
... ... ... ...
0.608 0.726 0.806 84
0.472 0.610 0.017 935
0.410 0.239 0.538 257
0.870 0.715 0.617 23

Algorithm 3 Transactions selected with the FIFO method.

Input: Tx_Table: A 2D array as the transaction table, one row presents one Tx;
Output: Q: An FIFO Q with all transactions;

1: Set Q to empty;
2: while (Q. size < Tx_MAX) and (Tx_Table has unused transaction) do . Keep picking

up Tx fromTx_Table until Q is full or Tx_Table has no unused transaction
3: Get a new Tx from Tx_Table
4: Insert Tx to Q
5: end while
6: return Q

Figure 6 shows that, with the FIFO method, transactions that arrive earlier will be
handled earlier, even if it has a lower priority classified by their attributes. The transac-
tion start time is irrelevant to its priority, and the higher priority transaction will not be
handled earlier.



Electronics 2023, 12, 1429 13 of 21

0 100 200 300 400 500 600 700 800 900 1000
start time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

pr
io
ri
ty

transaction FIFO consensus scatter diagram

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Figure 6. FIFO way transaction scatter diagram.

6.3. Simulation Experiments with the KNN-Enabled Enhanced Consensus Algorithm
6.3.1. First Round of k Value Selection

In this paper, Algorithms 1 and 2 are used to classify 1000 transactions into 5 priority
queues using the KNN algorithm, in which the number of nearest neighbors, k is an
important parameter. First, we apply Algorithm 4 to the selection of the best k value. It
adopts the KNN classification using Scikit-learn in python. Generally, the dataset is split
into a training set and a testing set. We then run the KNN classifier with different k values.
The accuracy score is used to check the accuracy of our KNN model and the k value. The k
value with the highest accuracy score should be selected as the best k value for handling
unknown incoming transactions and checking its target priority.

Algorithm 4 KNN k value selection with a single training/test set split.

Input: Training_Data: The prepared transaction training data; Training_Target: The target
priority of the prepared transaction training data; k: The k value used in KNeigh-
borsClassifier function;

Output: accuracy_score: The accuracy score of the given k value;
1: Xtrain, Xtest, ytrain, ytest=train_test_split(Training_Data, Training_Target, test_size =

0.3); . The dataset is split into a training set and a testing set, and the testing set size is
30 percent

2: knn = neighbors.KNeighborsClassifier(k, weights = “distance”) . Prepare the KNN
classifier by using the Scikit-learn module with the specified k value

3: knn.fit(Xtrain, ytrain) . Fit the KNN classifier with the split training set
4: yprediction = knn.predict(Xtest) . Predict the target priority of the split testing set
5: accuracy_score = accuracy_score(ytest, yprediction) . Check the accuracy of the target

priority of the testing set
6: return accuracy_score

We plotted the accuracy of different k values ranging from 1 to 20 in Figure 7. It
demonstrates that k = 12 can achieve the highest accuracy among all k values. Therefore,
we used k = 12 for KNN in all remaining experiments. A flowchart for classifying all
1000 transactions into the 5 priority queues once k is fixed is shown in Figure 8.



Electronics 2023, 12, 1429 14 of 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k value

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

 s
co

re

Figure 7. k value selection.

Figure 8. Transaction classification.

6.3.2. Choose a k Value in K-Fold cross-Validation

In Section 6.3.1, we presented the initial method for selecting the best value of k.
However, is this the optimal k value? In the first round’s KNN k value, we only use a
single training/test set split. The test set will only include a small portion of randomly
selected data. In this scenario, the test set may not accurately represent “new unseen data”,
which could lead to an overestimation of performance if it is used alone (due to potentially
significant variability in the test results). By using cross-validation, all available data can be
used for testing purposes, thereby ensuring that “bad” observations also play a role during
the testing process. The train–test split and k-fold cross-validation are both examples of
resampling methods in statistics. Resampling methods involve taking a sample from a
dataset and using it to estimate unknown quantities. These techniques are particularly
useful in machine learning and data analysis when a limited amount of data is available
for model training and evaluation. The k value generated by using only one training/test
set split will change due to the selection of the training/test set. We must use k-fold
cross-validation to eliminate this effect, so we use the following algorithm to ensure that
we consider all of the elements in the dataset. We finally obtain a k value of 4, as shown in
Figure 9 below.



Electronics 2023, 12, 1429 15 of 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k value

0.86

0.87

0.88

0.89

Cr
os
s-
Va
li
da
te
d 
ac
cu
ra
cy
 s
co
re

Figure 9. Cross-validated accuracy score scatter diagram.

6.3.3. Performance Optimization and Evaluation

When we obtain an optimal k value, we use 1000 transactions as the training set,
and their layout is shown in Figure 10. In the figure, different categories of data in the
training set data sometimes overlap (meaning that the categories of this part of the data are
blurred). This part of the data will cause some model overfitting. Based on the learning
curve in Figure 11, we know that there are still opportunities to optimize performance.
One idea is to directly remove this part of the overlapping data, which is referred to as a
clipping method.

CSC type

0.2

0.4

0.6

0.8 Acco
unt ty

pe

0.0

0.2
0.4

0.6
0.8

Ta
ns

ac
tio

n 
ty

pe

0.2
0.4
0.6
0.8

Original training set
Priority 1
Priority 2
Priority 3
Priority 4
Priority 5

Figure 10. Original training set scatter diagram.



Electronics 2023, 12, 1429 16 of 21

100 200 300 400 500 600 700 800
Training examples

0.75

0.80

0.85

0.90

Sc
or

e

Original dataset learning curve (KNN, n_neighbors=4)

Training score
Cross-validation score

Figure 11. Original training set learning curve scatter diagram.

The clipping method randomly divides the training set, D, into two parts. One part
is used as a new training set, and the other part is used as a test set. Based on the new
training set, the KNN method is used to classify the test set, and the misclassified samples
are removed from the entire training set. Since the division of the training set D is randomly
divided, it is difficult to ensure that the samples in the overlapping part of the data will be
eliminated in the first clip. After obtaining the new training set, the above operations can
be repeated, and clearer class boundaries can be obtained. We can obtain its layout image
(Figure 12) and learning curve (Figure 13), as shown below. Compared with the original
training set, we achieved improved performance with a smaller size.

CSC type

0.2

0.4

0.6

0.8 Acco
unt ty

pe

0.0

0.2

0.4
0.6

0.8

Ta
ns

ac
tio

n 
ty

pe

0.2
0.4
0.6
0.8

Clipping training set
Priority 1
Priority 2
Priority 3
Priority 4
Priority 5

Figure 12. Clipping training set scatter diagram.

By observing the learning curve optimized by the clipping method, it can be seen
that when the number of samples is around 300, it already has a good fitting performance.
At the same time, as shown by the layout of samples in Figure 12, there are a large number
of samples in the center of each class, indicating that we can reduce the size of the training
set by compressing the KNN training set. The compressing method is used when a large
number of samples of the same type are concentrated in the center of the cluster, and these
concentrated samples have little effect on classification, so these samples can be discarded.
The training set is divided into two parts in this method. The first part is a store that contains
a portion of the samples, and the second part is a grab bag that contains the remaining
samples. The store is used for the training set of the KNN model, and the grabbag is



Electronics 2023, 12, 1429 17 of 21

used for the test set. The misclassified samples are moved from the grab bag to the store.
The store continues to be used with increased samples, and the grab bag with decreased
samples is used to train and test the KNN model again until all samples in the grab bag are
correctly classified or until the number of samples in the grab bag is 0. After compression,
the store keeps a portion of the randomly selected samples at initialization as well as the
misclassified samples in each subsequent cycle. Since the clipping method removes all
outliers, these selected misclassified samples are concentrated at the edge of the cluster and
are considered correct samples with a large classification effect. The final training set is
smaller. We can see its layout in Figure 14. The learning curve in Figure 15 shows that the
training set still has a similar accuracy to that of the clipping training set.

Each transaction will be executed with its priority, and arrival time is only used
when the transactions have the same priority. If two transactions have the same priority,
the transaction that arrived earlier will be executed earlier. Table 9 describes the priority
and new start time of each transaction based on its attributes.

100 200 300 400 500 600
Training examples

0.90

0.92

0.94

0.96

0.98

1.00

Sc
or

e

Clipping dataset learning curve (KNN, n_neighbors=4)

Training score
Cross-validation score

Figure 13. Clipping training set learning curve scatter diagram.

CSC type

0.2
0.3

0.4
0.5

0.6
0.7

0.8
Acco

unt ty
pe

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

Ta
ns

ac
tio

n 
ty

pe

0.2
0.4
0.6
0.8

Compressing training set
Priority 1
Priority 2
Priority 3
Priority 4
Priority 5

Figure 14. Compressing training set scatter diagram.



Electronics 2023, 12, 1429 18 of 21

50 100 150 200 250
Training examples

0.80

0.85

0.90

0.95

1.00

Sc
or

e

Compressing dataset learning curve (KNN, n_neighbors=4)

Training score
Cross-validation score

Figure 15. Compressing training set learning curve scatter diagram.

Table 9. Transactions with priority and new start time.

Transaction Type Account Type CSC Type Arrival Time
(ms) Priority Start Time

(ms)

0.077 0.132 0.058 396 1 1
0.133 0.029 0.226 330 1 2
0.031 0.007 0.213 500 1 3
0.208 0.017 0.174 132 1 4
0.116 0.069 0.007 326 1 5
... ... ... ... ... ...
0.067 0.306 0.009 499 1 12
0.034 0.143 0.545 331 2 13
0.496 0.066 0.171 393 2 14
0.248 0.371 0.122 788 2 15
... ... ... ... ... ...

With the proposed KNN consensus algorithm, the scatter diagram of the transactions
is shown in Figure 16, where 1 is the highest priority, and 5 is the lowest priority. Differently
from the start time that only relates to the arrival time in the FIFO method, as shown in
Figure 6, the start time with the KNN-based consensus algorithm relates to the priority of
the transaction, which introduces the QoS method to the consensus algorithm and helps to
better achieve SLA requirements and provide BaaS users an improved experience.

0 100 200 300 400 500 600 700 800 900 1000
start time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

pr
io
ri
ty

transaction priority consensus scatter diagram

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Figure 16. Prioritized transaction scatter diagram.

When a new transaction needs to be added to the transaction pool, it needs to be
classified by the KNN algorithm. The prediction is only determined by the number of
sample points in the training set, which is a constant value once the training set is finalized.
The time complexity of this algorithm is O(1), and the space complexity is also O(1), which



Electronics 2023, 12, 1429 19 of 21

is irrelevant to the number of transactions in the transaction pool. After adopting the
clipping and compressing algorithms, the number of samples in the training set is greatly
reduced while ensuring a good fitting performance. The given example reduces the number
of samples from 1000 to 200+. Algorithm 5 describes how a new transaction is added to the
priority queue with the new compressed training set.

Algorithm 5 New transaction classification.

Input: Tx: The new transaction; Q1 . . . QN : The priority Q list from Q1 to QN ; k: The best k
in K-fold Cross-Validation Traning_data: The compressed training data; Traning_target:
The compressed training target;

Output: Updated Qn
1: Initial KNN_cl f = neighbors.KNeighborsClassi f ier(n_neighbors = k); . Prepare

KNeighborsClassifier with the best k value
2: KNN_cl f . f it(Traning_data, Traning_target) . Fit the compressed training data and

target to the KNeighborsClassifier
3: predict = KNN_cl f .predict(Tx) . Predict the class of new incoming Tx
4: if (predict == n) and (Qn. size < MAX_SIZE) then
5: PUSH Tx to Qn; . PUSH Tx to Qn once the Q isn’t full
6: else
7: Save Tx to memory pool; . Otherwise temporarily save the Tx to memory pool
8: end if
9: return Qn

Compared with existing blockchain consensus algorithms, the proposed KNN-based
consensus algorithm guarantees that higher priority transactions are executed earlier.
Table 9 shows that the CSC type is important for calculating the priority. If a CSC has a
short SLA requirement, its CSC type should be assigned with a high priority. This helps to
deliver services to the CSCs within the SLA limitation in the BaaS system. Considering the
transaction with attributes {0.034, 0.143, 0.545} in Table 9 as an example, its arrival time is 331.
Without the proposed KNN-based optimization consensus algorithm, the transaction pool
assigns it with a sequence number of 331. If the SLA of this transaction has a short duration,
the transaction may miss the SLA. With the KNN-based consensus algorithm, however, it
should be classified into a higher target priority queue. In this way, the transaction pool
assigns it with a sequence number of 13 and, therefore, is more likely to satisfy the SLA.

7. Conclusions

Most existing consensus algorithms do not consider the priority. If a high-priority
transaction comes late, it needs to wait until other, lower-priority transactions are handled.
Due to the TPS limitation, it is difficult to meet SLA requirements in the BaaS system. This
paper proposes a KNN-based consensus algorithm to enhance the SLA handling in the
BaaS system. With the KNN-based consensus algorithm, each transaction is handled based
on its priority. The transactions that arrive late but have high priority can be handled
early. In this way, the BaaS system can better satisfy the SLA between the CSP and the
CSC. The proposed KNN-based blockchain consensus algorithm is a common solution,
and we only choose three attributes for classification. The experimental results illustrate
the advantages of the proposed algorithm. In the future, we will consider more attributes
for classification and try using other classification methods that can outperform the KNN.

Author Contributions: Conceptualization, Q.Z., L.W. and J.H.; formal analysis, Q.Z., L.W. and J.H.;
investigation, Q.Z. and L.W.; methodology, Q.Z., L.W. and T.L.; project administration, L.W. and
J.H.; resources, J.H. and T.L.; software, Q.Z., T.L. and L.W.; supervision, J.H.; validation, Q.Z. and
T.L.; writing—original draft preparation, Q.Z., L.W. and J.H.; writing—review and editing, Q.Z., L.W.
and T.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education of Humanities and Social Science
Project (grant no. 19YJAZH047), the Ministry of Science and Technology Innovation Method Work



Electronics 2023, 12, 1429 20 of 21

Special Project (grant no.2017IM030100), Sichuan Provincial Higher Education Talent Training Quality
and Teaching Reform Project (grant no. JG2021-995), Sichuan Provincial Higher Education Talent
Training Quality and Teaching Reform Project (grant no. JG2021-1016), and the Social Practice
Research for Teachers of Southwestern University of Finance and Economics (grant no. 2022JSSHSJ11).

Data Availability Statement: All the data in this paper are publicly available. Please contact the
corresponding author to obtain them.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Zhang, C.; Chen, Y. A review of research relevant to the emerging industry trends: Industry 4.0, IoT, blockchain, and business

analytics. J. Ind. Integr. Manag. 2020, 5, 165–180. [CrossRef]
2. Song, J.; Zhang, P.; Alkubati, M.; Bao, Y.; Yu, G. Research advances on blockchain-as-a-service: Architectures, applications and

challenges. Digit. Commun. Netw. 2021, 8, 466–475. [CrossRef]
3. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 1–36. Available online:

https://ethereum.org/en/whitepaper/#a-next-generation-smart-contract-and-decentralized-application-platform (accessed on
28 January 2023).

4. Peng, Z.; Xu, J.; Hu, H.; Chen, L. BlockShare: A Blockchain Empowered System for Privacy-Preserving Verifiable Data Sharing.
IEEE Data Eng. Bull. 2022, 45, 14–24.

5. Wu, H.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems. IEEE
Trans. Parallel Distrib. Syst. 2022, 33, 1393–1406. [CrossRef]

6. Wang, H.; Xu, C.; Zhang, C.; Xu, J.; Peng, Z.; Pei, J. vChain+: Optimizing Verifiable Blockchain Boolean Range Queries. In
Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May
2022; pp. 1927–1940. [CrossRef]

7. Sayeed, S.; Marco-Gisbert, H. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Appl. Sci. 2019,
9, 1788. [CrossRef]

8. Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M. Blockchain networks: Data structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and
Iota. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1436. [CrossRef] [PubMed]

9. Du, M.; Chen, Q.; Ma, X. MBFT: A New Consensus Algorithm for Consortium Blockchain. IEEE Access 2020, 8, 87665–87675.
[CrossRef]

10. Li, D.; Deng, L.; Cai, Z.; Souri, A. Blockchain as a service models in the Internet of Things management: Systematic review. Trans.
Emerg. Telecommun. Technol. 2022, 33, e4139. [CrossRef]

11. Samaniego, M.; Jamsrandorj, U.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the 2016 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 433–436.
[CrossRef]

12. Ardagna, D.; Casale, G.; Ciavotta, M.; Pérez, J.F.; Wang, W. Quality-of-service in cloud computing: Modeling techniques and their
applications. J. Internet Serv. Appl. 2014, 5, 1–17. [CrossRef]

13. Viriyasitavat, W.; Da Xu, L.; Bi, Z.; Hoonsopon, D.; Charoenruk, N. Managing qos of internet-of-things services using blockchain.
IEEE Trans. Comput. Soc. Syst. 2019, 6, 1357–1368. [CrossRef]

14. Tan, W.; Zhu, H.; Tan, J.; Zhao, Y.; Xu, L.D.; Guo, K. A novel service level agreement model using blockchain and smart contract
for cloud manufacturing in industry 4.0. Enterp. Inf. Syst. 2022, 16, 1939426. [CrossRef]

15. Rashid, A.; Chaturvedi, A. Cloud computing characteristics and services: A brief review. Int. J. Comput. Sci. Eng. 2019, 7, 421–426.
[CrossRef]

16. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

17. Kshetri, N. The Economics of Central Bank Digital Currency [Computing’s Economics]. Computer 2021, 54, 53–58. [CrossRef]
18. Yang, G.; Lee, K.; Lee, K.; Yoo, Y.; Lee, H.; Yoo, C. Resource Analysis of Blockchain Consensus Algorithms in Hyperledger Fabric.

IEEE Access 2022, 10, 74902–74920. [CrossRef]
19. Peng, Z.; Zhang, Y.; Xu, Q.; Liu, H.; Gao, Y.; Li, X.; Yu, G. NeuChain: A Fast Permissioned Blockchain System with Deterministic

Ordering. Proc. VLDB Endow. 2022, 15, 2585–2598. [CrossRef]
20. Sanka, A.I.; Cheung, R.C. Efficient High Performance FPGA based NoSQL Caching System for Blockchain Scalability and

Throughput Improvement. In Proceedings of the 2018 26th International Conference on Systems Engineering (ICSEng), Sydney,
NSW, Australia, 18–20 December 2018; pp. 1–8. [CrossRef]

21. Gao, S.; Peng, Z.; Tan, F.; Zheng, Y.; Xiao, B. SymmeProof: Compact Zero-Knowledge Argument for Blockchain Confidential
Transactions. IEEE Trans. Dependable Secur. Comput. 2022, 1. [CrossRef]

22. Cai, C.; Xu, L.; Zhou, A.; Wang, C. Toward a Secure, Rich, and Fair Query Service for Light Clients on Public Blockchains. IEEE
Trans. Dependable Secur. Comput. 2022, 19, 3640–3655. [CrossRef]

http://doi.org/10.1142/S2424862219500192
http://dx.doi.org/10.1016/j.dcan.2021.02.001
https://ethereum.org/en/whitepaper/#a-next-generation-smart-contract-and-decentralized-application-platform
http://dx.doi.org/10.1109/TPDS.2021.3113873
http://dx.doi.org/10.1109/ICDE53745.2022.00190
http://dx.doi.org/10.3390/app9091788
http://dx.doi.org/10.1002/widm.1436
http://www.ncbi.nlm.nih.gov/pubmed/35865106
http://dx.doi.org/10.1109/ACCESS.2020.2993759
http://dx.doi.org/10.1002/ett.4139
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102
http://dx.doi.org/10.1186/s13174-014-0011-3
http://dx.doi.org/10.1109/TCSS.2019.2919667
http://dx.doi.org/10.1080/17517575.2021.1939426
http://dx.doi.org/10.26438/ijcse/v7i2.421426
http://dx.doi.org/10.1109/MC.2021.3070091
http://dx.doi.org/10.1109/ACCESS.2022.3190979
http://dx.doi.org/10.14778/3551793.3551816
http://dx.doi.org/10.1109/ICSENG.2018.8638204
http://dx.doi.org/10.1109/TDSC.2022.3179913
http://dx.doi.org/10.1109/TDSC.2021.3103382


Electronics 2023, 12, 1429 21 of 21

23. Ruan, P.; Chen, G.; Dinh, T.T.A.; Lin, Q.; Ooi, B.C.; Zhang, M. Fine-Grained, Secure and Efficient Data Provenance on Blockchain
Systems. Proc. VLDB Endow. 2019, 12, 975–988. [CrossRef]

24. Peng, Z.; Xu, J.; Chu, X.; Gao, S.; Yao, Y.; Gu, R.; Tang, Y. Vfchain: Enabling verifiable and auditable federated learning via
blockchain systems. IEEE Trans. Netw. Sci. Eng. 2021, 9, 173–186. [CrossRef]

25. Onik, M.M.H.; Miraz, M.H. Performance Analytical Comparison of Blockchain-as-a-Service (BaaS) Platforms. In Emerging
Technologies in Computing; Miraz, M.H., Excell, P.S., Ware, A., Soomro, S., Ali, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 3–18.

26. Samet, H. K-nearest neighbor finding using MaxNearestDist. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 243–252. [CrossRef]
27. Martínez, F.; Frías, M.P.; Pérez-Godoy, M.D.; Rivera, A.J. Dealing with seasonality by narrowing the training set in time series

forecasting with kNN. Expert Syst. Appl. 2018, 103, 38–48. [CrossRef]
28. Li, T.; Qian, Z.; Deng, W.; Zhang, D.; Lu, H.; Wang, S. Forecasting crude oil prices based on variational mode decomposition and

random sparse Bayesian learning. Appl. Soft Comput. 2021, 113, 108032. [CrossRef]
29. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN Classification With Different Numbers of Nearest Neighbors. IEEE

Trans. Neural Netw. Learn. Syst. 2018, 29, 1774–1785. [CrossRef] [PubMed]
30. Fix, E. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Dayton,

OH, USA, 1985; Volume 1.
31. Mahfouz, M.A.; Shoukry, A.; Ismail, M.A. EKNN: Ensemble classifier incorporating connectivity and density into kNN with

application to cancer diagnosis. Artif. Intell. Med. 2021, 111, 101985. [CrossRef] [PubMed]
32. Song, Z.H.; Sang, W.J.; Yuan, S.Y.; Wang, S.X. Gas-Bearing Reservoir Prediction Using k-nearest neighbor Based on Nonlinear

Directional Dimension Reduction. Appl. Geophys. 2022, 1–11. [CrossRef]
33. Cui, L.; Zhang, Y.; Zhang, R.; Liu, Q.H. A Modified Efficient KNN Method for Antenna Optimization and Design. IEEE Trans.

Antennas Propag. 2020, 68, 6858–6866. [CrossRef]
34. Castro, M.; Liskov, B. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design

and Implementation, New Orleans, LA, USA, 22–25 February 1999; Volume 99, pp. 173–186.
35. FISCO BCOS Platform. Available online: https://github.com/fisco-bcos (accessed on 28 January 2023).
36. Abu Alfeilat, H.A.; Hassanat, A.B.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.S. Effects of

distance measure choice on k-nearest neighbor classifier performance: A review. Big Data 2019, 7, 221–248. [CrossRef]
37. Wettschereck, D.; Aha, D.W.; Mohri, T. A review and empirical evaluation of feature weighting methods for a class of lazy

learning algorithms. Artif. Intell. Rev. 1997, 11, 273–314. [CrossRef]
38. FISCO BCOS Performance Demo Program. Available online: https://github.com/FISCO-BCOS/java-sdk-demo/blob/main/

src/main/java/org/fisco/bcos/sdk/demo/perf/PerformanceOk.java (accessed on 28 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14778/3329772.3329775
http://dx.doi.org/10.1109/TNSE.2021.3050781
http://dx.doi.org/10.1109/TPAMI.2007.1182
http://dx.doi.org/10.1016/j.eswa.2018.03.005
http://dx.doi.org/10.1016/j.asoc.2021.108032
http://dx.doi.org/10.1109/TNNLS.2017.2673241
http://www.ncbi.nlm.nih.gov/pubmed/28422666
http://dx.doi.org/10.1016/j.artmed.2020.101985
http://www.ncbi.nlm.nih.gov/pubmed/33461685
http://dx.doi.org/10.1007/s11770-022-0980-0
http://dx.doi.org/10.1109/TAP.2020.3001743
https://github.com/fisco-bcos
http://dx.doi.org/10.1089/big.2018.0175
http://dx.doi.org/10.1023/A:1006593614256
https://github.com/FISCO-BCOS/java-sdk-demo/blob/main/src/main/java/org/fisco/bcos/sdk/demo/perf/PerformanceOk.java
https://github.com/FISCO-BCOS/java-sdk-demo/blob/main/src/main/java/org/fisco/bcos/sdk/demo/perf/PerformanceOk.java

	Introduction
	Related Work
	Evolution of Consensus Algorithms
	QoS Assurance

	Problem Definition
	Preliminaries
	BaaS
	Cloud Computing SLAs in BaaS
	KNN

	KNN-Based Consensus Algorithm
	The Priority-Queue-Enabled Transaction Pool
	Attribute Selection in the KNN-Based Consensus Algorithm
	Transactions Classified to a Different Priority Queue by Adopting the KNN-Based Consensus Algorithm

	Simulation Experiments and Analysis
	TPS Limit Measured from the Existing BaaS System
	Simulation Experiments with the Existing Consensus Algorithm
	Simulation Experiments with the KNN-Enabled Enhanced Consensus Algorithm
	First Round of k Value Selection
	Choose a k Value in K-Fold cross-Validation
	Performance Optimization and Evaluation


	Conclusions
	References

