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Abstract: Deep neural network (DNN) models are usually built based on the i.i.d. (independent and
identically distributed), also known as in-distribution (ID), assumption on the training samples and
test data. However, when models are deployed in a real-world scenario with some distributional
shifts, test data can be out-of-distribution (OOD) and both OOD detection and OOD generalization
should be simultaneously addressed to ensure the reliability and safety of applied AI systems. Most
existing OOD detectors pursue these two goals separately, and therefore, are sensitive to covariate shift
rather than semantic shift. To alleviate this problem, this paper proposes a novel adversarial mixup
(AM) training method which simply executes OOD data augmentation to synthesize differently
distributed data and designs a new AM loss function to learn how to handle OOD data. The
proposed AM generates OOD samples being significantly diverged from the support of training
data distribution but not completely disjoint to increase the generalization capability of the OOD
detector. In addition, the AM is combined with a distributional-distance-aware OOD detector at
inference to detect semantic OOD samples more efficiently while being robust to covariate shift
due to data tampering. Experimental evaluation validates that the designed AM is effective on
both OOD detection and OOD generalization tasks compared to previous OOD detectors and data
mixup methods.
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1. Introduction

Deep neural networks (DNNs) have proven their excellence in a variety of practical
applications such as commercializing chatbots to provide convenient Q&A services to
customers and unmanned autonomous vehicles [1]. Although DNNs have made great
progress in recent years, the many failed examples reveal the vulnerability of the model
when dealing with differently distributed data [2]. Most existing DNN models are trained
based on the i.i.d. (independent and identically distributed) assumption where the test
data is assumed to be drawn independently from the same distribution as the training data,
known as in-distribution (ID) [3]. However, when models are deployed in a real-world
scenario, test samples may be out-of-distribution (OOD), and therefore, there are growing
issues related to the reliability and safety of DNNs utilized in real-world applications.

Especially in safety-critical systems, high reliability should be guaranteed for predic-
tions because any wrong prediction may lead to a large number of casualties. A trustworthy
DNN-based visual recognition system used in autonomous driving, medical diagnosis, or
re-identification applications [4–6], should not only produce accurate predictions on known
context but also detect unknown samples, and the DNN model should not make any predic-
tion on unknown data [3]. For example, in medical diagnosis, the model should hand them
over to human experts for safe and reliable handling instead of blindly predicting them.

Both OOD detection and OOD generalization are critical to ensuring the reliability
and safety of DNNs. OOD samples with distributional shifts away from the training data
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can be caused by either semantic shift (e.g., OOD samples drawn from different classes) or
covariate shift (e.g., OOD samples drawn from a different domain or corrupted samples
due to data tampering) [3]. The OOD detection task focuses on detecting a semantic shift
due to the occurrence of unknown classes and classifies ID and OOD data from input
through a model. In addition, a real-world safe and reliable DNN should be robust to
the covariate shift while being aware of the semantic shift [3]. However, most existing
works pursue these two goals separately [2,3,7,8]. Figure 1 describes the OOD detection
problem [9] and OOD generalization problem [10], respectively.
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First, the OOD detection problem is caused by the notorious overconfidence phe-
nomenon. The last layer of the DNN model uses the softmax function, in general, to
predict a classification output by mapping a probability value into each class between 0
and 1, known as the confidence score. The model can predict correctly by allocating the
highest confidence score when the data with similar attributes to the training data are input.
However, even when the data are entirely unrelated to the training data such as OOD, it
may make incorrect predictions due to overconfidence which deduces a wrong output with
almost probability 1. Figure 1a shows the misclassified OOD samples when some noise
images are input to the model trained with MNIST and ImageNet, respectively.

Second, in the case of the OOD generalization problem, test data can be slightly
corrupted because of different environmental factors due to weather, illumination, or defo-
cusing. The human vision system is quite robust to the above-mentioned data tampering.
Humans easily recognize the original object even after such negligible data tampering
because the attributes of the corrupted image do not change. However, a DNN-based
machine vision system is quite sensitive to a little data corruption as depicted in Figure 1b.
In this work, OOD generalization is assumed to be a problem concerned with whether
or not a model learned from the training data can perform well on unseen test data with
covariate shift.

Several training or inference methods have recently been studied to solve the above
problems of OOD detection and OOD generalization [11–28]. However, most of the previ-
ous works only focus on one side of distributional shifts, either semantic OOD detection
or covariate OOD generalization. This paper proposes a distance-aware adversarial mixup
(AM) OOD detector to classify semantic OOD samples while being robust to negligible
covariate shift. Full spectrum OOD detection highlights the effects of covariate-shifted
in-distribution and shows that most existing OOD detectors are susceptible to covariate
shift rather than semantic shift [3,29]. This paper proposes a simple and novel OOD sample
augmentation technique to increase the generalization capability of OOD detectors and
analyzes how OOD detection and OOD generalization can better enable each other, in
terms of both algorithmic design and comprehensive performance evaluation [3].

We argue that the reason why the existing model failed when dealing with differently
distributed data is due to overconfidence because the model was never taught how to
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handle OOD samples [8]. To mitigate the problem, this paper proposes a novel AM training
method that simply executes OOD data augmentation to synthesize differently distributed
data and designs a new AM loss function to learn how to handle OOD data. The main
idea is to make input significantly diverge from the support of training data distribution
but not completely disjoint. The proposed AM simply combines an idea of existing data
mixup with adversarial training to generate new adversarial OOD samples so that the
model may provide higher reliability for OOD data. Furthermore, the AM is combined
with a distributional-distance-aware OOD detector at inference to detect semantic OOD
samples more efficiently while being robust to covariate shift due to data tampering.
The experimental results validate that the designed AM is quite effective on both OOD
detection and OOD generalization tasks compared to previous OOD detectors and data
mixup methods, by using a variety of benchmarking datasets for both tasks.

The major contributions of this paper are the following: (1) We provide a novel
unified insight trying to solve both problems of OOD detection and OOD generalization
simultaneously for more reliable and safe DNNs robust to covariate shift. (2) To this
end, this paper proposes a simple training strategy called adversarial mixup (AM) that can
effectively solve both OOD detection and OOD generalization tasks. (3) Furthermore, the
data augmentation capability of the proposed AM method makes its OOD generalization
performance increase as well.

This paper is organized as follows. Section 2 describes the previous related works in
the fields of OOD detection and OOD generalization. Section 3 presents the proposed AM
training method in detail and explains how the proposed method differs from conventional
data mixup and adversarial training methods. Section 4 provides a methodology, the
datasets, and evaluation metrics used in experimental environment. Section 5 analyzes
the evaluation results and validates a superior performance of the proposed method
including diverse ablation studies. Finally, Section 6 concludes and discusses a future
research direction.

2. Related Works

Lots of previous studies have been conducted in various directions to solve the prob-
lems related to OOD detection and OOD generalization [11–28]. For OOD detection, a
decision boundary that distinguishes OOD data by training the model is automatically
discovered to induce a low confidence score of OOD data, thus producing reliable inference
results. Using a pre-trained model helps find hyper-parameters that induce the confidence
score of OOD data to be low by applying some heuristics. OOD data are detected by
comparing the output of the model with a series of reference threshold values. For OOD
generalization, most of the studies are conducted on augmentation techniques in which
various types of data can be arbitrarily generated for training in a fixed training dataset
environment.

2.1. OOD Detection and Generalization Methods

OOD detection methods involve model training. One of the studies used a generative
adversarial network (GAN) to arbitrarily generate OOD data having a similar distribution
as that of the data used for training and proposed a loss function that induces a low
confidence score for the generated data [11]. Another study proposed a method of outlier
exposure (OE) where model parameters are finely adjusted by intentionally adding the
data consisting only of OOD data during the training of the model [12]. Among all the
methods, supervised learning exhibits the best OOD detection performance but entails
significant overhead during the data labeling process for training.

Using an autoencoder is a common unsupervised learning method where reconstruc-
tion error between original data and reconstructed data is calculated to distinguish in-
distribution (ID) and OOD data by comparing the error with a specific threshold value [13].
Self-supervised outlier detection (SSD) combines supervised learning with OOD detection
in which contrastive learning was applied where the vectors with similar features become
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closer [14]. SSD also measured outlier scores and utilized additional OOD datasets to
show the possibility of improving OOD detection performance [15]. Methods based on
unsupervised or semi-supervised learning do not have any overheads during data labeling.
However, the performance is lower than that of supervised-learning-based methods. There-
fore, the methods appropriate for specific circumstances need to be selected for designing
OOD detection models.

Various methods have been proposed to solve OOD detection problems by using
pre-trained models. The maximum softmax probability (MSP) method designates the
largest confidence score as the threshold value and OOD data are detected by comparing
the confidence score and the data input during the inference process [16]. The ODIN
method using an OOD detector for neural networks induces a low-confidence score for
OOD data by applying a pre-processing step to remove small perturbation that causes
misclassification of DNN in the input data [17]. Using a pre-trained model may not be
highly universal as the hyper-parameters used during the inference process vary depending
on the type of OOD data.

Clustering in DNNs occurs among the data points having similar features as training
is repeated. Based on this property, distance-aware OOD detection methods to measure
the distance between data clusters were proposed [18,19]. When the distance measuring
method is used, the data having the same type as the data used for training are measured
to be relatively closer, or farther otherwise. Based on this principle, a previous study
compared the OOD detection performance using the Euclidean method, which measures
the distance between data distributions, and the Mahalanobis Distance (MD) method, in
which statistical modeling of data distribution is applied [18]. Another study proposed a
method where a confidence score is calculated using the MD method instead of the softmax
function in the last layer of a DNN to solve the overconfidence problem that occurs due
to the monotonic increasing of an exponential function when the conventional softmax
function is used [19]. An appropriate layer should be selected as the performance of the
distance measuring method varies depending on the location of the layer from which
feature maps of DNN are extracted.

Additional OOD detection studies [20–22] have recently been proposed to focus only
on detecting semantic shifts, such as most previous OOD detectors sensitive to covariate
shift. This paper proposes a distance-aware AM method detecting semantic OOD samples
while being robust to negligible covariate shift.

2.2. Data Augmentation Methods

All the data existing in the real world may be transformed naturally or artificially.
Ideally, the inherent characteristics of data do not change even when the data is transformed.
Thus, the DNN must be able to classify as the original class. However, a model trained with
fixed data lacks diversity, which may result in misclassification as another class. Several
studies have been conducted on the augmentation of learning data to solve this problem.

The CutOut [23] method involves cutting out a portion of an image of a specific class,
while the CutMix [24] method involves attaching an image cut from a specific class to an
image of a different class for ensuring weights are given to other parts of an object without
training using biased data. Both methods involve cutting a specific part of an image, which
may result in losing an essential part of data or affect the performance depending on the
size of the window for cutting an image.

The mixup [25] method, in which two data types are mixed at a certain ratio instead
of cutting or attaching. The AugMix [26] method, in which multiple types of data applied
with various augmentation techniques are mixed, and the MTLAT [27] method, in which
the robustness to tampering is strengthened by arbitrarily adding noise to the data applied
with augmentation, have been proposed. These three methods overcome the drawbacks
of CutOut and CutMix methods and improve the generalization performance. However,
it is inefficient to apply different methods to different cases every time as it is uncertain
which augmentation scheme is optimal for the data of the same class with various charac-



Electronics 2023, 12, 1421 5 of 18

teristics. The Auto-Augment [28] method, thus, involves automatically finding the optimal
augmentation scheme for various transformation functions such as rotation by using a
search algorithm.

The proposed adversarial mixup (AM) method is presented in Section 3 to simultane-
ously solve both OOD detection and OOD generalization problems explained thus far. The
AM method can not only resolve the problems occurring due to the softmax function and
hyper-parameters used for inference but also improve the OOD generalization performance
through effective data augmentation.

3. Distance-Aware OOD Detection with Adversarial Mixup Training

The data mixup and adversarial training techniques used in the proposed AM method
are presented in detail in this section. In addition, a distance-aware method for combining
the AM-based OOD detector with Mahalanobis Distance is presented for solving the
overconfidence problem, which can be exploited when the softmax function for calculating
the confidence score during inference is used.

3.1. Data Mixup

DNNs aim to find a parameter θ that minimizes the loss by identifying the relationship
between data X and the label Y. An ideal situation is when data X includes the information
of all objects, which is realistically impossible. Thus, the data collected from a limited
environment is used. Minimizing the loss using the data given from a specific environment
is called empirical risk minimization (ERM).

In the ERM, a model memorizes the data itself because it is trained with data of limited
distribution. Therefore, this method is vulnerable to untrained data distribution where
OOD or transformed data are input due to the overfitting phenomenon from bias toward
the fixed distribution. For solving this issue, vicinal risk minimization (VRM) was proposed,
wherein the features in the vicinity of the training data distribution are also trained outside
a limited space [30].

Data augmentation is a common method for obtaining information around a specific
space and generates data similar to a given sample. A virtual sample that is arbitrarily
created is used along with the existing training data for obtaining data diversity and has
been proven to improve generalization performance by preventing overfitting [25]. In
addition, VRM achieved higher performance in OOD detection than ERM-based models in
the experiment described in Section 5.2. Mixup is a popular data augmentation method
in which two pairs of training data are randomly selected and mixed at a certain ratio to
create a new sample, as shown in Figure 2.
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Equation (1) shows how mixed-up data are generated in the mixup method.

∼
x = λxi + (1− λ)xj,
∼
y = λyi + (1− λ)yj

(1)

where (xi, yi),
(

xj, yj
)

represent two randomly selected data and corresponding answers,
and λ is a weight coefficient determining the data mixup ratio. The amount of information
being mixed can be flexibly adjusted.
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3.2. Adversarial Training

DNN technology has advanced far enough to exceed the visual cognition ability
of humans, but several problems arising from the vulnerability of models have been
discovered in many studies [31]. Figure 3 shows an example of the problem where DNN
completely misclassifies the data of the adversarial sample mixed with the original image
and adversarial noise, as shown in the far-right image, based on overconfidence.
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Inducing misclassification of DNN using adversarial perturbation is called adversarial
attack. The fast gradient sign method (FGSM) is a common adversarial attack method
in which a small perturbation obtained by calculating the gradient in the direction of
increasing the loss during a backward pass is added to the original data x. Therefore,
misclassification is induced by entering the decision boundary of a different class instead
of the original class.

When x is the original data, ε is the intensity of generating an adversarial sample, and
J(θ, x, y) is the loss function of DNN, Equation (2) below shows a method for generating
the adversarial sample xadv.

xadv = x + εsign(∇x J(θ, x, y)) (2)

As shown in Figure 3, the accuracy of a trained model is substantially reduced by
adding a small perturbation in the input data. When the FGSM attack is applied to the
models trained with MNIST and CIFAR10, the accuracy considerably decreases from 98%
to 40% and from 93% to 40%, respectively, regardless of the data type or model size. Other
kinds of adversarial attacks include basic iteration [32] for which FGSM is repeated n
times and using an adversarial patch. Several studies have been conducted on defense
mechanisms for preventing the accuracy of a DNN from being degraded by adversarial
attacks. If the adversarial perturbation generated by the FGSM induces misclassification,
the adversarial training involves training adversarial attacks along with the original data to
defend against attacks [33]. This method increases robustness to adversarial attacks while
simply improving the generalization performance by training the additional data instead
of using supplementary methods such as proposing a new training algorithm.

3.3. Generating Adversarial Mixup OOD Samples

Using a pre-trained model to design DNN for OOD detection can save time and cost
for training a model and result in high OOD detection performance if appropriate hyper-
parameters are chosen. However, this method assumes ERM where certain techniques such
as data augmentation are not applied. As mentioned in Section 3.1, ERM-based models
are only trained with limited data distributions, and thus they are vulnerable to OOD or
tampered data. Even if training is perfectly performed and the hyper-parameters used for
detecting OOD or tampered data are optimized, the characteristics of various environments
are not taken into consideration because the models are only applicable to data distribution
within a certain range.
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This paper, therefore, proposes an adversarial mixup (AM) training algorithm based on
VRM for overcoming the limitations of ERM-based OOD detection models. In this method,
data mixup is effective to improve generalization performance with data augmentation,
which, combined with adversarial training, is helpful in strengthening the robustness of
DNN. The advantage of combining both techniques is that data mixup provides efficient
data augmentation regardless of data type and improves generalization performance, while
adversarial training clearly distinguishes the decision boundary between ID and OOD.
Unlike the conventional data mixup methods generating mixed-up data only for the given
data, the proposed AM has a distinction of arbitrarily generating adversarial samples to be
mixed with the original data in a certain mixup ratio. Therefore, it can train more expanded
marginal distribution than previous mixup methods by providing a strategy to additionally
train the data having various characteristics in realistic conditions where data can only be
trained in a limited environment.

Figure 4 shows the schematic diagram of the AM method proposed in this paper
where a new training sample is created by mixing the adversarial sample generated from
the FGSM attack and the original data at a certain ratio. Original data is combined with
the adversarial sample xadv generated based on Equation (2) to ultimately create an AM
sample xam as shown in Equation (3).

xam = λxx + (1− λx)xadv, (3)

where λx represents a random number extracted from Beta distribution B(α, β) ∈ [0, 1]
and the data mixup ratio is determined by two seed numbers α, β. Two seed numbers
being identical is referred to as symmetric Beta distribution where random numbers of a
symmetrical structure are generated so that the data can be mixed up at a certain ratio.
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For the loss function used in AM training, the cross-entropy loss widely used for
classification is mixed up with the original data and AM sample as shown in Equation (4).

ltotal = λl ∗ lin(θ; x, y)
+(1− λl) ∗ ladv(θ; xam, y)

(4)

where lin indicates the loss of the original data, ladv indicates the loss of the adversarial
sample data. In the AM method, a random number λl extracted from symmetrical Beta
distribution is used in the linear weighted sum of loss values to prevent the loss value of
one data type from being biased.
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3.4. Mahalanobis-Distance-Based OOD Detector

To infer the output y for the input data x during the inference process of DNN, the
output values of the model are mapped with the probability values of each class using
the softmax function in the last layer for the classification task. An exponential function
used for the softmax function has the advantage of clarifying probability values of each
class as well as easily computing derivatives during backpropagation. However, the
monotonic increasing nature of an exponential function also has a disadvantage of the
overconfidence problem by deducing a high confidence score for OOD data. To solve this
problem, an OOD detection method through density function estimation for identifying
essential characteristics of data has been proposed instead of directly inferring the output
for the input as the softmax function in the last layer of DNN [19].

Estimating the distance between data clusters using a distance measuring method is a
typical density function estimation method. Euclidean and Mahalanobis distance (MD)-
based methods are commonly used for distance measuring, but the Euclidean distance
method cannot efficiently detect OOD data because it simply measures the distance between
two data clusters in a multidimensional space [18]. The MD method, in contrast, considers
distributional characteristics by calculating how dispersed the input data is from the
population by computing the covariance which represents the correlation between two
random variables. Equation (5) defines the MD, where x is the input data, m is the mean
of data population, Cov−1 is the inverse matrix of covariance for the population, and the
operator · represents a matrix product.

D =

√
(x−m)·Cov−1·(x−m)T (5)

Using the MD for OOD detection involves distinguishing ID and OOD by comparing
them with a specific threshold value based on the distance calculated by Equation (5). The
AM method is used in the training process and combined with the Mahalanobis-distance-
based OOD detector in the inference process. The proposed distance-aware AM method
automatically finds efficient training parameters for OOD detection so that it may not
only gain further performance improvement but also detect OOD abnormal situations
effectively, different from the previous studies. Figure 5 describes a functional architecture
of the MD-based OOD detector, which distinguishes ID Data from OOD Data by measuring
the Mahalanobis distance based on the feature extracted from the input data.
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4. Experimental Methodology
4.1. Datasets Configuration

A different type of dataset is used for evaluating the proposed AM training algorithm
according to OOD detection and OOD generalization tasks. Both tasks have different data
characteristics as shown in Table 1.

From a realistic perspective, the range of OOD cannot be assumed as OOD is con-
stituted at a much higher rate than ID, and the characteristics of the data input in the
inference process are unknown. Therefore, different data types were configured for training
and inference in the experiment on OOD detection. For example, if CIFAR10 is used for
training, all the remaining datasets excluding CIFAR10 on the left column in Table 1 are
input during the inference process. CIFAR10 is a dataset containing nature images such as
animals and objects and consists of 10 classes, while SVHN consists only of three-channel
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digit data from 0 to 9. ImageNet is the largest open dataset with a total of 1000 classes and
more than one million pieces of data. The large-scale scene understanding (LSUN) dataset
contains the data of specific places such as a tower or kitchen, which have been collected to
help understand scenes. The iSUN dataset contains a portion of the LSUN dataset. Both
ImageNet and LSUN use cropped and resized versions of the original data.

Table 1. Datasets used for evaluating OOD detection and OOD generalization performance.

For OOD Detection Task For OOD Generalization Task

CIFAR10
CIFAR10-C

ImageNet-C
SVHN

ImageNet-P
ImageNet (Crop)

ImageNet-A
ImageNet (Resize)

ImageNet-V2
LSUN (Crop)

ObjectNet
LSUN (Resize)

ImageNet-Vid-Robust
iSUN YouTube-BB-Robust

In the experiment on OOD generalization, the same data type as the one used for
training is selected, but a dataset containing images with tampering such as blurring
or noise is used. CIFAR10-C was mostly used with 15 types of corruptions applied to
the original data, including noise, blurring, weather, and digital type. Other datasets
include ObjectNet, which contains the data of observing one object from various arbitrary
perspectives, and ImageNet-C, -P, and -V2, which applied corruption or perturbation to
the original ImageNet or contains the data that could not be classified by the existing
model, respectively. The CIFAR10-C dataset is only used in this paper for evaluating the
performance of OOD generalization.

4.2. Evaluation Metrics

In OOD detection, a general binary classification framework is used where the input
data distinguishes ID and OOD. Four scenarios may occur in binary classification, as shown
in Table 2, depending on the actual answer and the prediction result of the model. ID and
OOD in the table represent in-distribution and out-of-distribution, respectively.

Table 2. Confusion matrix used in binary classification.

Result
Actual Predicted

True Positive OOD OOD
False Negative OOD ID
True Negative ID ID
False Positive ID OOD

For OOD detection, the performance of the algorithm is evaluated in terms of FPR@TPR
95, area under the receiver operation characteristic (AUROC), and area under the precision
recall (AUPR), respectively. FPR@TPR 95 represents the false positive rate (FPR) when
the true positive rate (TPR) is 95%. The better OOD detector must have a higher TPR and
lower FPR. The AUROC evaluates the performance of a binary classifier and depends on
various threshold values based on the receiver operation characteristic (ROC) curve. The
AUROC visualizes the detection performance by comparing an area under the ROC curve.
The AUPR is an index where precision (that is, the rate of actual OOD data among the OOD
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data predicted by the model) and recall (that is, the rate indicating how well the model
detects OOD among the actual OOD data) are visualized in one graph. This index also
involves finding an area under the precision recall (AUPR) curve for the evaluation. The
AUROC and AUPR closer to 1 indicate higher performance for both methods. In OOD
generalization, a correct prediction must be made for the original class even when the data
is corrupted, and the minimum loss must be recorded using the original accuracy. In recent
studies, both corruption error (CE), an error rate of each tampering subtracted from 100,
and its mean, the mean corruption error (mCE), have been used.

5. Experimental Evaluation
5.1. AM OOD Detection Performance

A threshold-value-based detector was used for evaluating OOD detection performance
based on the confidence score of test data, in which it is classified as OOD if the confidence
test score is higher than the threshold value and as ID otherwise. ResNet18 and VGG16
are used for training the model. Tables 3 and 4 present the OOD detection performance
evaluation metrics of the model trained with CIFAR10 in ResNet18 and VGG16. Among
the four metrics, a lower value of FPR@TPR 95 and higher values of the other three metrics
signify higher performance. A comparison with previous MSP [12] and MD [15] methods
is made to evaluate the performance of the AM method. ID and OOD in the table represent
the dataset used for training and testing, respectively, whereas (C) and (R) in the OOD
column represent that they are cropped and resized, respectively. The best performance
values are marked in bold font.

Table 3. OOD detection performance evaluation of the model trained with CIFAR10 dataset
in resnet18.

ID Data OOD Data
FPR@TPR 95 AUROC AUPR In AUPR Out

MSP [16]/MD [19]/AM (Proposed)

CIFAR10

SVHN 86.7/8.8/80 76.9/98.0/83.7 73.5/94.8/87 70/99.2/77.1
ImageNet(C) 69/16.8/11.8 88.1/96.9/98.2 90.3/97.3/98.5 83.8/96.2/97.3
ImageNet(R) 73/35.1/21.7 87.1/94.1/96.9 90.1/95.2/97.6 82.1/92.1/95.7

LSUN(C) 66/6.2/17.8 90.3/98.5/97.3 92.7/98.7/97.8 86/98.3/96.7
LSUN(R) 72.5/33.9/18.9 87.5/94.5/97 90.2/95.7/97.6 82.6/91.5/96.1

iSUN 73.7/27.6/19.3 87.3/95.4/97.1 90.2/96.7/97.7 82.1/92.3/96.2

Table 4. OOD detection performance evaluation of the model trained with CIFAR10 data set
in VGG16.

ID Data OOD Data
FPR@TPR 95 AUROC AUPR In AUPR Out

MSP [62]/MD [19]/AM (Proposed)

CIFAR10

SVHN 81.1/2.4/75 83.3/99.4/86.4 86.2/98.6/89.6 77.1/99.8/80.6
ImageNet(C) 74.6/12.5/11 97.1/97.7/98.3 90.3/98.2/97.8 82.1/97.0/97.8
ImageNet(R) 62.5/31.3/18.7 90.8/94.6/97.3 93/95.3/96.7 87.3/94.0/96.7

LSUN(C) 55.8/1.0/11.5 92.1/99.7/98 94/99.7/98.6 89.6/99.7/97.7
LSUN(R) 60.5/46/17.1 91.3/91.7/97.4 93.6/92.9/96.9 88/93.3/96.9

iSUN 60.8/30.5/19.4 91.4/94.6/97.1 93.7/95.7/96.6 88/93.4/96.6

Table 3 presents the OOD detection performance of the model trained with the CI-
FAR10 dataset in ResNet18. The AM method records 11.8% for ImageNet (C) in the
FPR@TPR 95 index, which is 5% improvement over the MD method which has 16.8%.
It also achieves the highest performance with an average of 97.3% in the AUPR Out in-
dex, which indicates how well OOD is classified as OOD, excluding SVHN and LSUN
(C) datasets. Similarly, 1.3% higher performance is achieved than the MD method in the
AUROC metrics. Accordingly, it is confirmed that the AM method can classify the data
of ImageNet, LSUN, or iSUN that contain the same natural images as CIFAR10 used for
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training but have a different type of data to OOD. The MD method achieves higher perfor-
mance for SVHN and LSUN (C) datasets. In particular, the mixup method of adversarial
data actually has a reduced performance for the data containing only digits as in SVHN.

Table 4 presents the OOD detection performance of the model trained with the CI-
FAR10 dataset in VGG16. Compared to the MD method, the AM method improves the
performance for both ImageNet (C) and ImageNet (R) data by approximately 7% and for
both LSUN (C) and LSUN (R) data by 13% on average in the FPR@TPR 95 metric. The AM
method records 97.5% on average, which is a 2.8% performance improvement compared
with the MD method in the AUROC metric, excluding SVHN and LSUN (C) datasets.
Likewise, the AM method records 97% on average in the AUPR Out metric, which is 2.6%
improvement over the MD method.

Taken together, it is experimentally proven that the proposed AM method can effi-
ciently perform OOD detection regardless of the size and type of DNNs. The performance
of ResNet and VGGNet models is increased by up to 15% and 11%, respectively, showing an
overall superiority of the naïve AM method. However, both ResNet and VGGNet models
show higher performance in the existing MD method than the naïve AM method in the
case of SVHN and LSUN (C) datasets. Section 5.2 will address this inferiority problem by
combining the naïve AM method with distance awareness. The modified AM method with
an MD-based OOD detector proposed in the following section will resolve this issue.

5.2. Improved OOD Detection by Combining AM with Distance Awareness

The proposed AM method is combined with the Mahalanobis distance (MD)-based
OOD detector to solve the above exceptional inferiority problem in the specific datasets.
After executing the AM method during the training process, the modified method exploits
the MD awareness instead of the softmax function generally used in conventional methods.

Figure 6 shows the performance improvement rate when the MD-based OOD detector
is combined with the AM method, in which the x-axis represents OOD data and the y-axis
represents four evaluation metrics in each graph. If the bar graph points upward with
respect to the x-axis (y = 0), it indicates that the performance is increased by using the
MD-based OOD detector. The experimental results show that the combination of two
proposed methods can increase the performance by 10% on average compared with one
in the case where only the AM method is applied. In particular, the performance of two
exceptional datasets is improved by up to 75% for the SVHN dataset and by 17% for the
LSUN (C) dataset in FPR@TPR 95. Furthermore, the performance for the SVHN and LSUN
(C) is considerably improved in the AUPR Out metric, and the average improvement rate
is 4.6% in the AUROC metric. Therefore, the modified MD-combined AM training method
for a more reliable OOD detector can additionally resolve the inferiority issue of the naïve
AM method compared with the MD method in the case of SVHN and LSUN (C) datasets.

5.3. Ablation Study: Effect of Adversarial Mixup Ratio

The AM ratio refers to the degree of adversarial data mixed with the original data
during the training process. In this section, the performance of OOD detection depending
on the AM ratio is investigated.

For measuring the OOD detection performance, 30% or 50% of the data is randomly
selected from a mini-batch to generate adversarial data. FPR@TPR 95 is used to evaluate
the performance where a lower index value indicates higher performance. Figure 7 shows
the comparison result in which the x-axis shows the input OOD data and the y-axis shows
the value of the FPR@TPR 95 index. The performance is better at 30% for all datasets in the
model trained with the CIFAR10 dataset in ResNet18, except for the SVHN dataset, which
has a similar level of performance at both 30% and 50%. Moreover, the performance is 30%
higher for all datasets when the model is trained with SVHN, except CIFAR10. Based on
this result, it can be concluded that the higher adversarial mixup ratio may degrade the
OOD detection performance by showing that the 30% AM ratio is more appropriate than



Electronics 2023, 12, 1421 12 of 18

50%. Therefore, the AM ratio is set as 30% in this paper. The optimal AM ratio would be a
good candidate for future research directions.
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5.4. Ablation Study: Comparison of ERM-Based and VRM-Based Models

The ERM-based models can be vulnerable to OOD data, as mentioned in Section 3.1,
which implies the necessity of VRM-based models. Figure 8 compares the performance
between the ODIN method corresponding to ERM, Mixup method and the proposed AM
method corresponding to VRM, using FPR@TPR 95 and AUROC. The first and second rows
show the performance of FPR@TPR 95 and AUROC, respectively, whereas ODIN, Mixup,
and AM on the x-axis indicates three compared methods.
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In terms of FPR@TPR 95, the VRM-based AM method shows 22% and 10% improve-
ment over the ERM-based ODIN in ResNet18 and VGG16 models, respectively. With
respect to AUROC, the VRM-based AM method records 95% in both DNN models, im-
proving performance by 9% and 6%, respectively, compared to the ERM-based ODIN
method. Therefore, it can be concluded that the VRM method in which the surrounding
distributions are simultaneously trained shows more efficient OOD detection improving
performance compared with the ERM-based method, thus demonstrating the effectiveness
of the proposed VRM-based AM method.

5.5. AM OOD Generalization Performance

The CIFAR10-C dataset in which a total of 15 tampering cases with four categories
have been applied to the original CIFAR-10 is used for evaluating the OOD generalization
performance of the proposed AM method. The 15 data tampering cases include noise
(Gauss, Shot, Impulse), blurring (Defocus, Glass, Motion, Zoom), weather (Snow, Frost,
Fog, Bright), and digital (Contrast, Elastic, Pixel, JPEG) tampering. In this section, the
average performance for the four types of tampering is compared by using the mCE metric
described in Section 4.2. The overall OOD generalization performance of 15 tampering
cases is evaluated by comparing the proposed AM method with the previous studies in the
case of ResNet18 and VGG16 models with the CIFAR-10 dataset in Figures 9 and 10.
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Figure 10. OOD generalization performance comparison according to 15 data tampering cases
in VGG16.

Figure 11 describes the mCE for the four types of tampering in the ResNet18 model.
While the previous methods record approximately 36% mCE on average, the proposed AM
method records 20% which is a 5% improvement. It can be interpreted that the proposed
AM method is the most robust one for noise-tampered data because it is trained with
arbitrary adversarial data. Previous studies also record an average error rate of 25% for
blurred tampering, but the AM method records 19%, which is a 6% improvement. In
weather tampering, the Auto-Augment [28] achieves the best performance at 11%, followed
by the AM method at 16%. Lastly, compared with the previous study of an average error
rate of 22% for digital tampering, the AM method shows 18%, which is a 4% improvement.
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Figure 12 illustrates the mCE for each type of tampering for the models trained
with VGG16. Similar to the ResNet18 model, the proposed AM method shows the best
performance improvement rate of 12% compared with conventional methods for noise
tampering. CutOut [23] and Auto-Augment [28] show a slightly higher performance than
the proposed method for blurred tampering, but the difference is a little below 1%. In
weather tampering, Auto-Augment shows the best performance, and the AM method
achieves a similar level of performance within a 0.5% difference even though it is designed
for OOD detection, compared with previous methods that mainly focused on improving
generalization performance. As a result, the AM method does not record the highest
performance improvement rate for all types of data tampering, but it still shows a higher
performance improvement rate than conventional methods for noise-related tampering
which can frequently occur in real life.
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Furthermore, the proposed AM method shows a comparable level of performance
as SOTA methods evaluated by the mCE according to 15 tampering cases as shown in
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Figure 13. A straight line along the y-axis in the figure shows the performance level
of Auto-Augment [28] which is a SOTA method that achieves the best performance in
previous studies. The proposed AM method shows a very minor difference of 0.5% from
Auto-Augment and a 9% improvement compared to other previous methods. In the
case of VGGNet, the performance improvement rate is around 8% compared to other
previous methods.
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Auto-Augment has a similar or slightly higher performance than the AM method but
involves finding an optimal augmentation scheme through a search algorithm. Additional
time and cost overhead could be required due to the computational complexity during
the search process, considering the nature of this algorithm. In contrast, the AM method
can increase OOD detection and generalization performance by simply training through
mixing up adversarial data samples. Considering all of these experimental results, it is
proven that the proposed AM method can improve OOD detection and generalization
performance with no time complexity and cost overhead.

6. Conclusions

This paper presents a unified AM training framework to simultaneously solve both
OOD detection and the OOD generalization problem, which are crucial for the better relia-
bility and robustness of DNNs. Experimental evaluation demonstrates that the proposed
method shows more reliable results by inducing a low confidence score for OOD data.
Furthermore, the proposed method can be optimized to show better performance than
that of conventional methods by employing the MD-based OOD detector during inference.
The proposed AM also has a noticeable effect on the generalization of DNNs. Particularly,
it achieves the best performance for noise-related tampering types that frequently occur
in nature and provides a similar level of OOD generalization performance as previous
SOTA methods focusing only on improving generalization performance. In conclusion,
this work contributes to providing a simple AM training method that can solve both OOD
detection and OOD generalization problems at once for more safe and reliable DNNs robust
to covariate shift.

In future work, we will consider adding more adversarial perturbation to the learning
process for AM to develop a universal training algorithm because AM did not always
perform better in all the cases. Furthermore, auto-tuning the adversarial mixup ratio can be
implemented for practitioners.
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