
Citation: Liu, B. SRAM Compilation

and Placement Co-Optimization for

Memory Subsystems. Electronics 2023,

12, 1353. https://doi.org/10.3390/

electronics12061353

Academic Editors: Ahmad Hassan,

Mohamed Ali and Ali Roshanghias

Received: 19 December 2022

Revised: 8 March 2023

Accepted: 9 March 2023

Published: 12 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Communication

SRAM Compilation and Placement Co-Optimization for
Memory Subsystems
Biwei Liu

College of Computer Science, National University of Defense Technology, Changsha 410073, China;
liubiwei04@nudt.edu.cn

Abstract: Co-optimization for memory bank compilation and placement was suggested as a way
to improve performance and power and reduce the size of a memory subsystem. First, a multi-
configuration SRAM compiler was realized that could generate memory banks with different PPA
by splitting or merging, upsizing or downsizing, threshold swapping, and aspect ratio deformation.
Then, a timing margin estimation method was proposed for the memory bank based on placed
positions. Through an exhaustive enumeration of various configuration parameters under the
constraint of timing margins, the best SRAM memory compilation configuration was found. This
method could be integrated into the existing physical design flow. The experimental results showed
that this method achieved up to an 11.1% power reduction and a 7.6% critical path delay reduction
compared with the traditional design method.

Keywords: SRAM; memory compilation; memory placement; co-optimization

1. Introduction

Modern microprocessors and various system-on-chip (SOC) technologies have large-
capacity on-chip memory subsystems [1] composed of SRAM banks that are generated
by a memory compiler. Multiple such memory banks are combined through glue logic to
form cache, scratch-pad memory, shared buffers, or other on-chip memory subsystems.
The capacity of on-chip memory subsystems continues to increase. Their area can reach
30–45% of the total chip area, and their power consumption is above 20% of the total chip
power. At the same time, an on-chip memory subsystem is often involved in the critical
timing path, which determines the full-chip frequency. Therefore, further improving the
PPA of an on-chip memory subsystem is key to improving the PPA of the whole chip.

The present studies of on-chip memory subsystem optimization are carried out in
different aspects. The first aspect is the optimization of memory banks. Some customized
optimization designs have been proposed [2–6]. High-performance and low-power con-
sumption memory compilation technologies have also been studied [7,8]. Efficient memory
bank integration methods have been implemented. Gupta et al. proposed the use of
heterogeneous memory banks to optimize the overall area of chips [9], while Yan et al.
proposed custom optimization techniques [10]. The second aspect is the optimization of
memory bank placement. Some evolution algorithms [11,12] or machine learning meth-
ods [13–15] demonstrated the automatic placement ability of memory banks. Cadence’s
mixed placer tool [16] is able to automatically place memory banks, which is claimed to get
better performance and lower power consumption compared to manual placement. The
third aspect is the optimization of glue logic. This is implemented by existing synthesis
and place-and-route tools. Finally, FastMem [17] was proposed to optimize memory design
at an architectural level.

However, the optimization aspects mentioned above are separated from each other
in the existing design flow. Only the function of the memory bank is considered when
compiling a memory bank. Only the geometric size of the memory bank is considered

Electronics 2023, 12, 1353. https://doi.org/10.3390/electronics12061353 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061353
https://doi.org/10.3390/electronics12061353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061353
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061353?type=check_update&version=1

Electronics 2023, 12, 1353 2 of 10

when a memory bank is placed. Only the timing of the memory bank is considered when
optimizing glue logic. IC designers have to reserve a large timing margin when a memory
bank is compiled, resulting in the unnecessary area and power consumption.

To achieve an on-chip memory subsystem with high performance and low power
consumption, this paper proposes a co-optimization method for memory bank compilation
and placement. The location information of the memory bank is considered at the same
time that the memory bank is compiled so that the memory bank compilation can be
accurately constrained regarding timing. According to the timing constraints, the compiled
memory bank’s speed meets the requirements, and the power consumption is optimized.

2. Multi-Configured SRAM Compiler

The general design of the on-chip memory subsystem is shown in Figure 1. The main
body is an SRAM bank array composed of SRAM banks. Outside the SRAM bank array is
the glue logic, which includes a series of bus-merging, multiplexer, register operation, and
bus protocol conversion logic. Finally, the memory system outputs to an external bus.

Electronics 2023, 12 x FOR PEER REVIEW 2 of 10

compiling a memory bank. Only the geometric size of the memory bank is considered
when a memory bank is placed. Only the timing of the memory bank is considered when
optimizing glue logic. IC designers have to reserve a large timing margin when a memory
bank is compiled, resulting in the unnecessary area and power consumption.

To achieve an on-chip memory subsystem with high performance and low power
consumption, this paper proposes a co-optimization method for memory bank compila-
tion and placement. The location information of the memory bank is considered at the
same time that the memory bank is compiled so that the memory bank compilation can
be accurately constrained regarding timing. According to the timing constraints, the com-
piled memory bank’s speed meets the requirements, and the power consumption is opti-
mized.

2. Multi-Configured SRAM Compiler
The general design of the on-chip memory subsystem is shown in Figure 1. The main

body is an SRAM bank array composed of SRAM banks. Outside the SRAM bank array is
the glue logic, which includes a series of bus-merging, multiplexer, register operation, and
bus protocol conversion logic. Finally, the memory system outputs to an external bus.

glue logic area

SRAM
bank area

high power &
area cost

large delay

ba
nk

ad
dr

es
s

ba
nk

m
ul

tip
le

xe
r

bank
0

bank
1 … bank

2

L2 Cache

SRAM

SRAM

SRAM

SRAM

Figure 1. The structure of the on-chip cache.

Due to the larger size of the memory bank, the distance of the memory bank from the
glue logic varied in different locations. For example, the memory bank in the corner of
Figure 1 was far from the glue logic, so it was necessary to reserve a large timing margin
and use a fast memory bank, as the red line in Figure 1. However, the memory bank in
the center area was very close to the glue logic, and if the same compilation configuration
was used as the memory bank in the corner, it led to waste in both power consumption
and area. Therefore, using different compilation configurations for banks in different lo-
cations reduced area and power consumption, while increasing speed at the same time.

Based on an open-source memory compiler [7], we developed a multi-configuration
SRAM compiler. The compilation configuration included three types: multiple thresholds,
multiple sizes, and multiple aspect ratios.

Figure 1. The structure of the on-chip cache.

Due to the larger size of the memory bank, the distance of the memory bank from the
glue logic varied in different locations. For example, the memory bank in the corner of
Figure 1 was far from the glue logic, so it was necessary to reserve a large timing margin
and use a fast memory bank, as the red line in Figure 1. However, the memory bank in the
center area was very close to the glue logic, and if the same compilation configuration was
used as the memory bank in the corner, it led to waste in both power consumption and
area. Therefore, using different compilation configurations for banks in different locations
reduced area and power consumption, while increasing speed at the same time.

Based on an open-source memory compiler [7], we developed a multi-configuration
SRAM compiler. The compilation configuration included three types: multiple thresholds,
multiple sizes, and multiple aspect ratios.

Electronics 2023, 12, 1353 3 of 10

2.1. Threshold Swapping

Threshold swapping is often used in integrated circuits to alternate between speed
and power consumption. Low-threshold transistors are fast but consume large amounts
of power, while high-threshold transistors are slow but consume less power and are more
common in standard cells. The advantages of threshold replacement are that it occupies
the same area, it does not need to adjust the floorplan of a chip, and it can replace insertion
at any stage in physical design.

As shown in Figure 2b,c, the SRAM mainly included four parts: bit cell arrays, sensitive
amplifications, inputs/outputs (IOs), and address decoders. Threshold replacement is
only performed on the peripheral circuits, such as the address decoder and IO. We did
not consider threshold swapping on the bit cell array because it could affect bit cell noise
tolerance as well as other characteristics.

Electronics 2023, 12 x FOR PEER REVIEW 3 of 10

2.1. Threshold Swapping
Threshold swapping is often used in integrated circuits to alternate between speed

and power consumption. Low-threshold transistors are fast but consume large amounts
of power, while high-threshold transistors are slow but consume less power and are more
common in standard cells. The advantages of threshold replacement are that it occupies
the same area, it does not need to adjust the floorplan of a chip, and it can replace insertion
at any stage in physical design.

As shown in Figure 2b,c, the SRAM mainly included four parts: bit cell arrays, sensi-
tive amplifications, inputs/outputs (IOs), and address decoders. Threshold replacement is
only performed on the peripheral circuits, such as the address decoder and IO. We did
not consider threshold swapping on the bit cell array because it could affect bit cell noise
tolerance as well as other characteristics.

Deformation
169 × 325

Base
103 × 650

LVT
103 × 650

Upsize
115 × 800

Split
96 × 325 × 2

(a) (b) (c) (d) (e)
Figure 2. The multi-configuration of memory compilation.

2.2. Upsizing and Downsizing
Sizing is also a common way to alternate between speed and power consumption.

Increasing size can increase speed, but it also brings increases in area and power con-
sumption. Size adjustment takes a bit cell as the core, increases the size of the bit cell ac-
cording to the performance requirements, and then adjusts the size of the peripheral cir-
cuits, such as the decoder, IO, and column multiplexer, according to the size of the bit cell.
This approach significantly changes the bank area, which inevitably leads to changes in
the floor plan.

2.3. Aspect Ratio Deformation
A memory bank can maintain the same capacity while its aspect ratio changes. One

method is to change the column multiplexer in the memory body, for example, by halving
the number of rows in the bit array but doubling the number of columns while adding a
column multiplexer to select the output data, as shown in Figure 2a. Another way to keep
the capacity the same is to change the depth and width of a bank, such as by halving the
depth and doubling the width or vice versa. There are also other combinations of the
above two methods.

In general, these methods keep both the capacity of a memory bank and the total area
the same but significantly change the lengths of the word line and bit line so that the speed
and power consumption change.

Figure 2. The multi-configuration of memory compilation.

2.2. Upsizing and Downsizing

Sizing is also a common way to alternate between speed and power consumption.
Increasing size can increase speed, but it also brings increases in area and power consump-
tion. Size adjustment takes a bit cell as the core, increases the size of the bit cell according to
the performance requirements, and then adjusts the size of the peripheral circuits, such as
the decoder, IO, and column multiplexer, according to the size of the bit cell. This approach
significantly changes the bank area, which inevitably leads to changes in the floor plan.

2.3. Aspect Ratio Deformation

A memory bank can maintain the same capacity while its aspect ratio changes. One
method is to change the column multiplexer in the memory body, for example, by halving
the number of rows in the bit array but doubling the number of columns while adding a
column multiplexer to select the output data, as shown in Figure 2a. Another way to keep
the capacity the same is to change the depth and width of a bank, such as by halving the
depth and doubling the width or vice versa. There are also other combinations of the above
two methods.

In general, these methods keep both the capacity of a memory bank and the total area
the same but significantly change the lengths of the word line and bit line so that the speed
and power consumption change.

Electronics 2023, 12, 1353 4 of 10

2.4. Bank Splitting and Merging

There are two ways to split an SRAM bank. One is to keep the depth unchanged
and split the bit width. In this case, a small, divided memory bank can keep the same
decoding circuit as the original large memory bank, and only the width of the bit cell array
is reduced by half. The other is to keep the bit width unchanged and split the depth, as
shown in Figure 2e. In this case, the height of a bit cell array is reduced by half, the address
is reduced by 1 bit, and the decoding circuit is reduced accordingly. The two small memory
banks maintain the original data bit width after splitting, which doubles the data lines. A
multiplexer is required to select data externally from the small, multiple memory banks,
which affects the logic design and wire routing.

Both methods shorten the word line or bit line, thus increasing the speed. However,
after splitting, each unit requires peripheral circuits, such as decoding circuits, and the
distance between the memory banks needs to be increased, so the area and power con-
sumption both increase. Conversely, two (or more) memory banks can be combined into
one, reducing area and power consumption while sacrificing performance.

3. Compilation and Placement Co-Optimization

This paper moved away from the original location-independent, homogeneous SRAM
bank compilation method and proposed a bank-location-driven cooperative compilation
process. For memory banks far from the glue logic, the delay was decreased by splitting,
low threshold replacement, and upsizing. For memory banks close to the glue logic, area,
and size were reduced by merging, high-threshold replacement, and downsizing. Power
consumption was evaluated to achieve a balance of timing, power consumption, and area.
The specific process is shown in Figure 3.

The design consisted of glue logic and several SRAM banks. First, based on the
floorplan of the glue logic, the area of the glue logic was obtained, and the convergence
point of the memory bank was selected as the reference point for the distance calculation
of the memory bank. The convergence point could be the center of the glue logic area or
a central location close to the port, and the glue logic area was set as the layout area on
the floorplan.

Then, on the floorplan, the location of the unplaced area closest to the sink point was
selected as the first bank layout location. The timing requirements for placing a bank at
that location were calculated based on the distance from the sink point.

Then, we again exhaustively compiled possible memory banks in several dimensions,
including depth, bit width, threshold, size, aspect ratio, etc., and selected the timing that
met the requirements and had the least area per bit and the least power consumption per bit.
Among these, timing requirements are described in detail in Section 3.1, and the exhaustive
compilation process is described in detail in Section 3.2.

Finally, according to the size of the selected memory bank, we marked the layout area
in the floor plan and recorded the total capacity of the layout. We continued to select the
next closest location for bank compilation until the total size of the placed banks was as
expected. This yielded the configuration and placement locations of all the banks.

After the above process, the memory bank could be split and merged, and the original
glue logic may need to be fine-tuned. We reintegrated and synthesized the RTL code,
performed placement and routing of the memory bank locations generated in the previous
steps, and finally completed the entire design.

The processes of location-dependent setup, delay timing calculation, and exhaustive
compilation are described in further detail below.

Electronics 2023, 12, 1353 5 of 10Electronics 2023, 12 x FOR PEER REVIEW 5 of 10

Start

Floorplan

Find the position nearest
to converge point

outside placed area

Compute present CLK-
>Q delay and setup time

requirement

Exhaustively compile all banks meet the
requirement, and select the one with

lowest power per bit

According to the SRAM
bank size, incrementally

label the placed area

reach total
volume

RTL re-integration, re-
synthesis, re-place&route

End

No

Yes

Figure 3. The compilation and placement co-optimization flow.

3.1. Determination of Position-Related Timing Constraints
In Figure 4, if the compilation and placement of memory bank 1 and memory bank 2

are completed and the layout position of memory bank 3 can be found in the unplaced
area, its timing requirements can be divided into two items: (1) the setup time requirement
from the glue logic to bank 3, and (2) the setup time requirement from bank 3 to the glue
logic. This can be expressed as the following two inequalities:

qm gt d sr mg pt + t + t + t + t < t (1)

qr gf d sm mg pt + t + t + t + t < t (2)

where tqm and tsm are the delay from the memory bank clock to q and the settling time of
the memory bank, respectively, which are the targets to be solved. tgt and tgf are respec-
tively the delays of the combinational logic on the glue logic. tqr and tsr are the delay and
setup time from the clock of the register on the glue logic to q, respectively, and they can
be obtained by looking up the table in the timing library. tmg is a certain margin reserved
to offset the influence of a small amount of wiring and crosstalk during actual wiring. td
is the delay caused by the distance from the sink to the memory bank, which can be cal-
culated using the delay model related to the Manhattan distance [18].

The above two inequalities can be deformed to obtain the timing requirements of the
memory bank:

qm p gt d sr mgt t t t t t< − − − − (3)

sm p qr gf d mgt t t t t t< − − − − (4)

Figure 3. The compilation and placement co-optimization flow.

3.1. Determination of Position-Related Timing Constraints

In Figure 4, if the compilation and placement of memory bank 1 and memory bank
2 are completed and the layout position of memory bank 3 can be found in the unplaced
area, its timing requirements can be divided into two items: (1) the setup time requirement
from the glue logic to bank 3, and (2) the setup time requirement from bank 3 to the glue
logic. This can be expressed as the following two inequalities:

tqm + tgt + td + tsr + tmg < tp (1)

tqr + tgf + td + tsm + tmg < tp (2)

where tqm and tsm are the delay from the memory bank clock to q and the settling time of the
memory bank, respectively, which are the targets to be solved. tgt and tgf are respectively
the delays of the combinational logic on the glue logic. tqr and tsr are the delay and setup
time from the clock of the register on the glue logic to q, respectively, and they can be
obtained by looking up the table in the timing library. tmg is a certain margin reserved to
offset the influence of a small amount of wiring and crosstalk during actual wiring. td is the
delay caused by the distance from the sink to the memory bank, which can be calculated
using the delay model related to the Manhattan distance [18].

Electronics 2023, 12, 1353 6 of 10
Electronics 2023, 12 x FOR PEER REVIEW 6 of 10

glue logic
area

converge
 point

placed
bank 1

placed
bank 2

placing
bank 3 Manhattan

Distance
Figure 4. Co-optimization of memory compilation and placement.

It is also possible to consider using the design simplification constraint of effective
clock skew (useful skew) so that the clock tree construction is more complicated. How-
ever, this does not affect the implementation of this method and is not discussed further
in this paper.

3.2. Exhaustive Compilation of Memory Banks
The exhaustive memory bank compilation process also considered possible memory

bank instance generation in several dimensions, such as depth, bit width, threshold, size,
aspect ratio, etc. This was a large search space. To complete the search in a limited time, it
was necessary to impose some limitations on these dimensions.

In terms of width and depth, they were required to be a power of 2, and the total
capacity did not exceed 1 Mbit, which was convenient for the RTL code writing and phys-
ical implementation and did not skip obviously optimized configurations. In terms of
threshold, three options were considered: high threshold, normal threshold, and low
threshold. In terms of size, only two-bit cell sizes were available. More size options do not
bring more optimization in actual engineering. In terms of multiple selectors, they had a
power of 2, and the maximum did not exceed 16 because the speed of the memory was
greatly reduced when it exceeded 16.

Under the above constraints, the compilation configuration of the memory could be
reduced to 30~120 kinds, so that the exhaustive compilation could be completed in 3–4 h.

4. Experiments and Results
According to Section III, an example was used to illustrate the process and demon-

strate its effect. We used an on-chip shared buffer pool with a total capacity of 48 Mbit, a
depth of 24,576, and a width of 256. It had an AXI bus protocol interface to interconnect
other components on the chip. Based on a 28 nm technology, four implements were car-
ried out for comparison: the traditional method, this paper method, Ref. [9] and Ref. [12]
method. In all implements, the design was run to the post-route stage. Post-route netlists
and spef files were extracted for timing and power analysis.

Figure 5 shows the design of the traditional method. It contained 96 homogeneous
data memory banks (DMem). To realize the frequency of 500 MHz, the memory bank
configuration options shown in the first row of Table 1 were selected. As shown in Table
2, the baseline design had an area of 4.75 × 4.2 = 19.95 um2 and a critical path delay of 2.01
ns.

The configuration and placement of the memory bank shown in Figure 6 were ob-
tained using the co-optimization method, and the selected convergence point was the up-
per area in the middle of the glue logic. It contained four different memory banks to realize
the on-chip cache, and the specific parameters of each memory bank are shown in Table
1. DMemX2H was a memory bank whose depth was two times larger than that of the
DMem and was replaced by high-voltage threshold transistors. The dynamic power con-
sumption per bit of the memory bank at the end corner was reduced by 24.7% compared
with the original memory bank, and the power consumption leakage per bit was basically
the same as that of the reference design. DMemX2′s depth was two times greater than that

Figure 4. Co-optimization of memory compilation and placement.

The above two inequalities can be deformed to obtain the timing requirements of the
memory bank:

tqm < tp − tgt − td − tsr − tmg (3)

tsm < tp − tqr − tgf − td − tmg (4)

It is also possible to consider using the design simplification constraint of effective
clock skew (useful skew) so that the clock tree construction is more complicated. However,
this does not affect the implementation of this method and is not discussed further in
this paper.

3.2. Exhaustive Compilation of Memory Banks

The exhaustive memory bank compilation process also considered possible memory
bank instance generation in several dimensions, such as depth, bit width, threshold, size,
aspect ratio, etc. This was a large search space. To complete the search in a limited time, it
was necessary to impose some limitations on these dimensions.

In terms of width and depth, they were required to be a power of 2, and the total
capacity did not exceed 1 Mbit, which was convenient for the RTL code writing and physical
implementation and did not skip obviously optimized configurations. In terms of threshold,
three options were considered: high threshold, normal threshold, and low threshold. In
terms of size, only two-bit cell sizes were available. More size options do not bring more
optimization in actual engineering. In terms of multiple selectors, they had a power of 2,
and the maximum did not exceed 16 because the speed of the memory was greatly reduced
when it exceeded 16.

Under the above constraints, the compilation configuration of the memory could be
reduced to 30~120 kinds, so that the exhaustive compilation could be completed in 3–4 h.

4. Experiments and Results

According to Section 3, an example was used to illustrate the process and demonstrate
its effect. We used an on-chip shared buffer pool with a total capacity of 48 Mbit, a depth
of 24,576, and a width of 256. It had an AXI bus protocol interface to interconnect other
components on the chip. Based on a 28 nm technology, four implements were carried out
for comparison: the traditional method, this paper method, Refs. [9,12] method. In all
implements, the design was run to the post-route stage. Post-route netlists and spef files
were extracted for timing and power analysis.

Figure 5 shows the design of the traditional method. It contained 96 homogeneous
data memory banks (DMem). To realize the frequency of 500 MHz, the memory bank
configuration options shown in the first row of Table 1 were selected. As shown in Table 2,
the baseline design had an area of 4.75 × 4.2 = 19.95 um2 and a critical path delay of 2.01 ns.

Electronics 2023, 12, 1353 7 of 10

Electronics 2023, 12 x FOR PEER REVIEW 7 of 10

of the DMem. It was arranged on the periphery of DMemX2H, and its dynamic power

consumption per bit was reduced by 8.1% compared with the original DMem. The capac-

ity of DMemR was the same as that of DMem, but the depth was doubled and the width

was reduced by half, which reduced the congestion of the wiring in the memory bank port

as well as the power consumption. DMemR was placed on the outer periphery of

DMemX2 to span a longer distance. DMemRL was a low-voltage threshold replacement

based on DMemR that was only used in the lower left and lower right corners to improve

the speeds of these two key positions.

After trying to increase the size of the configuration, it was found that the unit power

consumption was too large in this configuration, so it was not selected in all the positions.

glue logic

area

SRAM bank

area

Figure 5. SRAM compilation and placement in traditional methodology.

DMemR

DMemX2

DMemX2H

DmemRL

glue logic

area

Figure 6. SRAM placement in co-operative methodology.

Figure 5. SRAM compilation and placement in traditional methodology.

Table 1. DMem bank performances under different configurations.

a tqm (ns) a tsm (ns) Area (um2) b Pleakage (mW) b Pdyn (mW)

DMem 0.80 0.19 1 76 × 650 3.71 2.35
DMemR 0.85 0.20 330 × 325 3.71 2.35

DMemRL 0.68 0.18 330 × 3325 3.73 2.83
DMemX2 0.97 0.19 330 × 3650 7.52 4.32

DMemX2H 1.25 0.29 330 × 3650 7.44 3.54
a Delay time is for WCL (worst-case low-temperature) corner. b Power is for ML (maximum leakage) corner.

Table 2. Design metrics and comparison with existing techniques.

Area (mm2) Wire Length (mm) Critical Path Delay

Traditional 4.75 × 4.2 63.0 2.01 ns@WCL
This paper 4.34 × 4.2 57.4 1.86 ns@WCL

Ref. [9] 4.75 × 4.2 63.0 1.88 ns@WCL
Ref. [12] 4.75 × 4.2 62.8 2.01 ns@WCL

The configuration and placement of the memory bank shown in Figure 6 were obtained
using the co-optimization method, and the selected convergence point was the upper area
in the middle of the glue logic. It contained four different memory banks to realize the
on-chip cache, and the specific parameters of each memory bank are shown in Table 1.
DMemX2H was a memory bank whose depth was two times larger than that of the DMem
and was replaced by high-voltage threshold transistors. The dynamic power consumption
per bit of the memory bank at the end corner was reduced by 24.7% compared with the
original memory bank, and the power consumption leakage per bit was basically the
same as that of the reference design. DMemX2′s depth was two times greater than that
of the DMem. It was arranged on the periphery of DMemX2H, and its dynamic power
consumption per bit was reduced by 8.1% compared with the original DMem. The capacity
of DMemR was the same as that of DMem, but the depth was doubled and the width was
reduced by half, which reduced the congestion of the wiring in the memory bank port as
well as the power consumption. DMemR was placed on the outer periphery of DMemX2
to span a longer distance. DMemRL was a low-voltage threshold replacement based on

Electronics 2023, 12, 1353 8 of 10

DMemR that was only used in the lower left and lower right corners to improve the speeds
of these two key positions.

Electronics 2023, 12 x FOR PEER REVIEW 7 of 10

of the DMem. It was arranged on the periphery of DMemX2H, and its dynamic power

consumption per bit was reduced by 8.1% compared with the original DMem. The capac-

ity of DMemR was the same as that of DMem, but the depth was doubled and the width

was reduced by half, which reduced the congestion of the wiring in the memory bank port

as well as the power consumption. DMemR was placed on the outer periphery of

DMemX2 to span a longer distance. DMemRL was a low-voltage threshold replacement

based on DMemR that was only used in the lower left and lower right corners to improve

the speeds of these two key positions.

After trying to increase the size of the configuration, it was found that the unit power

consumption was too large in this configuration, so it was not selected in all the positions.

glue logic

area

SRAM bank

area

Figure 5. SRAM compilation and placement in traditional methodology.

DMemR

DMemX2

DMemX2H

DmemRL

glue logic

area

Figure 6. SRAM placement in co-operative methodology.

Figure 6. SRAM placement in co-operative methodology.

After trying to increase the size of the configuration, it was found that the unit power
consumption was too large in this configuration, so it was not selected in all the positions.

A comparison of some key metrics of the design implemented by the traditional
method, this paper method, and the other two state-of-the-art methods are shown in
Tables 2 and 3. An industry-renowned STA tool is used for timing measurement. The
analysis corner is set to the WCL (worst-case low-temperature) corner. In the WCL corner,
the voltage is 0.81 V, the process is the worst case, and the temperature is −40 ◦C; the spef
files are extracted as RCMAX.

Table 3. Instance count and comparison with existing technologies.

Initial Inst
Number

Post-Place Inst
Number

Post-Route Inst
Number

Post-Hold-Fix Inst
Number

Traditional 460 K 900 K 1.28 M 1.44 M
This paper 460 K 880 K 1.22 M 1.31 M

Ref. [9] 460 K 900 K 1.28 M 1.44 M
Ref. [12] 460 K 900 K 1.28 M 1.44 M

The area of this paper was reduced by 8.6% because many memory banks with doubled
capacity were used, the gaps between the memory banks were eliminated, and the width
of the whole chip was reduced. The critical path delay of this paper decreased by 7.5%
due to the use of LVT banks in the corner positions. The area of Ref. [9] was kept the same
as the traditional method because it only considered the num_height x num_width bank
array, which limited further optimization. The critical path delay decreased by 6.5%, also
due to the use of LVT banks in the corner positions. The area and critical path delay of
Ref. [12] both stayed the same with the traditional method because it did not use other
configurations of the memory bank and only optimized the placement of the memory bank,
and in the traditional method, the placement is already fine-tuned manually.

Table 3 showed the number of instances of each method. In each design stage, the
instance counts of this paper were significantly lower than the benchmark design. This is
because the DMemX2 and DMemR memory banks were used to move the multiplexer into
the memory bank, reducing the need for an external multiplexer and routing so that the

Electronics 2023, 12, 1353 9 of 10

cell count was reduced by 9.0%. For similar reasons, the wire length was also reduced by
8.9%. Refs. [9,12] were not able to decrease the instance count because the memory bank
configurations were nearly the same as with the traditional method.

Then, we compared the power consumption of this paper and other design methods.
An industry-renowned power analysis tool is used for power measurement. The static
power analysis method is used. The operation frequency was set at 500 MHz, the toggle
rate on the data path was set to 0.2, the toggle rate on the clock path was set to 2, and the
clock gating factor was set to 0.6. The analysis was carried out for the two corners, WCL
and ML (max leakage). In the ML corner, the voltage is 0.99 V, the process is best case, and
the temperature is 125 ◦C; the spef files are extracted as RCMAX. The results are shown
in Table 4. The total power consumption under the optimized design for the WCL corner
was reduced by 9.0%, and the leakage power consumption was basically the same as the
baseline design. The total power consumption was reduced by 9.9% under ML, and the
leakage power consumption was reduced by 5.8%. The total power and leakage power
were both less than Refs. [9,12].

Table 4. Power consumption comparison.

WCL Corner Power ML Corner Power

Total Leakage Total Leakage

Traditional 1.78 W 0.24 W 4.55 W 1.54 W
This paper 1.62 W 0.23 W 4.10 W 1.45 W

Ref. [9] 1.72 W 0.24 W 4.44 W 1.49 W
Ref. [12] 1.75 W 0.24 W 4.49 W 1.51 W

Finally, this co-optimization method was applied to different capacities (32~96 M bits)
of memory subsystems to test its scalability. The results were shown in Table 5. The run-
time increased with capacity, but even the largest design of switching buffer only needed
6.1 h to finish memory compilation and placement. For designs of different capacities, the
critical path delay, power, and area of methods in this paper could all be improved relative
to the traditional method.

Table 5. The scalability with memory capacity.

Capacity Runtime Critical Path Delay Power Area

32 M bits 3.7 h 7.6% 9.7% 9.3%
48 M bits 4.3 h 7.5% 9.9% 8.6%
64 M bits 4.9 h 7.2% 10.4% 8.6%
96 M bits 6.1 h 6.7% 11.1% 8.5%

5. Conclusions

This paper proposes an on-chip cache design method with coordinated bank compila-
tion and layout. Based on the different positions of memory banks on the chip, the method
used various techniques such as splitting and merging, increasing and decreasing size,
threshold replacement, and deformation to optimize the SRAM bank compilation instances,
thereby improving performance and power consumption at the same time as reducing
the area. The experimental results showed that this method achieved up to an 11.1%
power reduction and a 7.6% critical path delay reduction compared with the traditional
design method.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1353 10 of 10

References
1. Liu, S.; Lu, K.; Guo, Y. A self-designed heterogeneous fusion accelerator for ex-class high-performance computing. Comput. Res.

Dev. 2021, 58.
2. Hansraj; Chaudhary, A.; Rana, A. Ultra Low power SRAM Cell for High Speed Applications using 90nm CMOS Technology. In

Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, 4–5 June 2020; pp. 1107–1109.

3. Pousia, S.; Manjith, R. Design of Low Power High Speed SRAM Architecture using SK-LCT Technique. In Proceedings of the
2018 International Conference on Current Trends towards Converging Technologies (ICCCTT), Coimbatore, India, 1–3 March
2018; pp. 1–7.

4. Xue, X.; Kumar, A.S.; Khalaf, O.I.; Somineni, R.P.; Abdulsahib, G.M.; Sujith, A.; Dhanuja, T.; Vinay, M.V.S. Design and Performance
Analysis of 32 × 32 Memory Array SRAM for Low-Power Applications. Electronics 2023, 12, 834. [CrossRef]

5. Barua, S.; Irin, U.H.; Azmir, M.; Bappy, M.A.; Alam, S. In 12 nm FinFET Technology, performance analysis of low power 6T SRAM
layout designs with two different topologies. In Proceedings of the 2022 IEEE 31st Microelectronics Design & Test Symposium
(MDTS), Albany, NY, USA, 23–26 May 2022.

6. Enjapuri, S.; Gujjar, D.; Sinha, S.; Halli, R.; Trivedi, M. A 5 nm Wide Voltage Range Ultra High Density SRAM Design for L2/L3
Cache Applications. In Proceedings of the 2021 34th International Conference on VLSI Design and 2021 20th International
Conference on Embedded Systems (VLSID), Guwahati, India, 20–24 February 2021.

7. Guthaus, M.R.; Stine, J.E.; Ataei, S.; Chen, B.; Wu, B.; Sarwar, M. Openram: An open-source memory compiler. In Proceedings of
the 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 7–10 November 2016;
pp. 1–6.

8. Kamineni, S.; Gupta, S.; Calhoun, B.H. MemGen: An Open-Source Framework for Autonomous Generation of Memory Macros.
In Proceedings of the 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 25–30 April 2021; pp. 1–2.

9. Gupta, P.R.; Visweswaran, G.S.; Narang, G.; Grover, A. Heterogeneous Memory Assembly Exploration Using a Floorplan and
Interconnect Aware Framework. In Proceedings of the SOCC, Seattle, WA, USA, 6–9 September 2016; pp. 290–295.

10. Yan, Z.L.; Sun, Y.J.; Liu, B.W. Customized and Optimized Design of Large Capacity on Chip Memory. In Proceedings of the 17th
Annual Conference on Computer Engineering and Technology, Xining, China, 20–22 July 2013; pp. 70–78.

11. Lin, J.; Deng, Y.; Yang, Y.; Chen, J.; Chen, Y. A Novel Macro Placement Approach based on Simulated Evolution Algorithm.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7
November 2019.

12. Lin, J.; Deng, Y.; Yang, Y.; Chen, J.; Lu, P. Dataflow-Aware Macro Placement Based on Simulated Evolution Algorithm for
Mixed-Size Designs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 973–984. [CrossRef]

13. Gao, X.; Jiang, Y.M.; Shao, L.; Raspopovic, P.; Verbeek, M.E.; Sharma, M.; Rashingkar, V.; Jalota, A. Congestion and Timing Aware
Macro Placement Using Machine Learning Predictions from Different Data Sources: Cross-design Model Applicability and the
Discerning Ensemble. In Proceedings of the ISPD’22: Proceedings of the 2022 International Symposium on Physical Design,
Online with virtual participation, 27–30 March 2022; pp. 195–202.

14. Chen, Y.F.; Huang, C.C.; Chiou, C.H.; Chang, Y.W.; Wang, C.J. Routability-Driven Blockage-Aware Macro Placement. In
Proceedings of the DAC’14: Proceedings of the 51st Annual Design Automation Conference, New York, NY, USA, 1–4 June 2014;
pp. 1–6.

15. Lin, J.-M.; Li, S.-T.; Wang, Y.-T. Routability-driven Mixed-size Placement Prototyping Approach Considering Design Hierarchy
and Indirect Connectivity Between Macros. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC),
Las Vegas, NV, USA, 2–6 June 2019.

16. Available online: https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/innovus-mixed-placer (accessed
on 1 February 2023).

17. Parmar, A.; Prasad, K.; Rao, N.; Mekie, J. FastMem: A Fast Architecture-aware Memory Layout Design. In Proceedings of the
2022 23rd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 April 2022; pp. 120–126.

18. Wang, X.; Liu, W.; Yu, M. A distinctive O(mn) time algorithm for optimal buffer insertions. In Proceedings of the Sixteenth
International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015; pp. 293–297.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/electronics12040834
http://doi.org/10.1109/TVLSI.2021.3057921
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/innovus-mixed-placer

	Introduction
	Multi-Configured SRAM Compiler
	Threshold Swapping
	Upsizing and Downsizing
	Aspect Ratio Deformation
	Bank Splitting and Merging

	Compilation and Placement Co-Optimization
	Determination of Position-Related Timing Constraints
	Exhaustive Compilation of Memory Banks

	Experiments and Results
	Conclusions
	References

