
Citation: Vadan, A.-M.; Miclea, L.-C.

Software Testing Techniques for

Improving the Quality of

Smart-Home IoT Systems. Electronics

2023, 12, 1337. https://doi.org/

10.3390/electronics12061337

Academic Editor: Yeong-Seok Seo

Received: 6 January 2023

Revised: 8 March 2023

Accepted: 9 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Software Testing Techniques for Improving the Quality of
Smart-Home IoT Systems
Andrei-Mihai Vadan and Liviu-Cristian Miclea *

Department of Automation, Faculty of Automation and Computer Science, Technical University Cluj-Napoca,
28 Memorandumului Street, 400114 Cluj-Napoca, Romania; andrei.vadan@hotmail.com
* Correspondence: liviu.miclea@aut.utcluj.ro

Abstract: Software is present in any modern device and is one of the most important components
of a new product. IoT systems for smart homes have become more popular in recent years, and
testing these systems using advanced methods is very important because it should improve software
quality from the beginning of development, resulting in a faster product development overall and
a better user experience for the client. In this paper, we describe methods of how to build fast
quality assurance software for automation testing in comparison with current trends. Those methods
are applicable to teams that are using custom test automation frameworks and working in big
projects. The methods have already been applied with success in testing infotainment systems in
the automotive industry and our custom-made smart-home IoT system. We will present the system
and testing techniques used for testing web interfaces, mobile applications, cross-platform mobile
applications, and backend using a new design pattern, called ‘Locate, Execute, Expect’. We compare
this new design pattern against Page Object Model and will guide you on how to integrate it in an
existing project or how to use it with Gherkin. In conclusion, we will see the main advantages of
using this technique and how much faster it is in a real-life scenario, we will learn how it can replace
Gherkin, and we will also see the main disadvantages.

Keywords: automation; custom automation framework; software testing; IoT; automotive; improve;
quality assurance; API testing; smart home; embedded systems testing

1. Introduction

All modern devices contain pieces of software, and vendors are trying to decrease the
development time of their products. Software testing is a very important component of the
development process, and in order to achieve a fast development process with good quality
assurance, we sometimes need to use custom automation frameworks and apply different
techniques in testing. Those techniques are applied in each team differently and vary from
project to project. In this paper, we will show you how to apply a new design pattern,
Locate, Execute, Expect (LEE), for creating a custom automation tool or framework that can
help teams to scale their testing project with ease and also help quality assurance engineers
to write tests without coding knowhow. We started to use this technique in different
projects in 2018. It was first applied in testing mobile applications using technologies
such as UiAutomator or Espresso for Android and XCUITest for iOS. At this point in time,
we are able to extend the applicability of this technique for web applications, application
programming interface (API) testing, and embedded system testing.

Design patterns describe ways to solve different problems in programming. In the
testing field, the industry standard is Page Object Model, also known as POM, which was
first introduced in the early 2000s. In 2007, Martin Fowler wrote an article titled ‘Page
Object’, in which he described a solution for separating the tests from the implementation
details of the applications. At that point in time, the number of web applications was rising
very fast, and their complexity also started to increase. Because the manual testing was very

Electronics 2023, 12, 1337. https://doi.org/10.3390/electronics12061337 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061337
https://doi.org/10.3390/electronics12061337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3377-7898
https://doi.org/10.3390/electronics12061337
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061337?type=check_update&version=1


Electronics 2023, 12, 1337 2 of 24

time-consuming, test automation solutions started to appear. Selenium community adopted
the POM design pattern quickly, and it became a standard technique. Since that moment,
many design patterns have been created, but only a few of them were specialized for test
automation. In general, in most automation frameworks for testing, we can use design
patterns such as Page Object Model, Model-View-Controller, Test Data Builder, Object
Mother, Singleton, Factory Method, and Decorator. In newer automation frameworks, it is
more common to find different approaches such as Behavior-Driven Development (BDD)
or Test-Driven Development. However, POM and BDD are the most common and the
current state of the art.

One of our goals is to prove that there is room for improvement in the testing area and
that we can use simple techniques to structure the code of a custom automation framework
in a much simpler way, no matter what type of application we are testing. We try to explain
how to use our design pattern in different scenarios, such as web testing, API testing, or
mobile application testing since those are most common use-cases of automation testing.
Another goal is to simplify testing of a system and use a common approach across all parts
of the application or system. We will present the results of using this technique in real-life
projects, used in testing mobile applications, embedded and IoT systems.

We choose to apply this design pattern in a system testing, like our smart-home
system, to prove that it can be applied not only for testing an application but also for the
entire ecosystem, using available programming languages that support object-oriented
programming. We will try to describe main use-cases where a design pattern specifically
for testing might apply. The results should prove that our design pattern can be easily
applied in a project where POM was applied, that it is easy to adopt and replace POM, but
also to extend it to API testing.

In future, we desire to monitor the efficiency of the new design pattern by comparing
multiple factors such as time needed to implement a test case, time spent for maintenance,
reusability of the methods, and whether we can apply this design pattern in already built
programs for automation testing. Another point that we want to focus on in future is to
investigate whether we can use this design pattern to write unit tests.

We will describe next our smart-home system in order to understand the level of
complexity of the system being tested, while we will apply the Locate, Execute, Expect
design pattern. We will demonstrate how to apply the design pattern in situations such
as user interface testing for web, mobile, or desktop applications; in a combination with
Gherkin; in cross-platform mobile applications; for API testing; and in embedded systems.
Our system includes all these types of applications or scenarios. We created our own
smart-home system using popular microcontrollers from different manufacturers, such as
Raspberry Pi, Espressif (ESP), IP cameras, Nvidia Jetson, and Banana Pi. For our system, we
choose all microcontrollers based on one important aspect: connectivity. In the era we are
leaving, connectivity is very important, so most of our data from sensors are collected using
microcontrollers that can send them to a central device wirelessly. An important thing to
mention is the fact that in this article we are not referring to corrections applied to real data
from sensors or any calibration methods for the sensors, and we will not get into details
of how to replicate the system. We will present to you our smart-home system and how
to test the software that is collecting and displaying data to the user. First, let us describe
what hardware we chose for our project and then to look over the software architecture.

1.1. Hardware Required for Our Custom Smart-Home System

For our project, in the beginning, we chose only products from Raspberry Pi because
there were cheap and easy to find. These microcontrollers offer great performance for the
cost, and we can find a large number of sensors compatible with them. After a while, the
semiconductor crisis appeared, and we were not able to find the initial hardware that we
thought was a good choice. Additionally, we discovered that some sensors are very large,
and if we want to create a slim design of the human–machine interface (HMI), we are also
limited. From this point of view, we were very limited in what hardware we could choose.



Electronics 2023, 12, 1337 3 of 24

In the beginning, we developed an API in Python. Some sensors should be monitored
in real time and some just a few times per minute. From this perspective, our hardware
must be powerful enough to support our requirements. At that point, we looked for a
replacement for Raspberry Pi, and we chose Nvidia Jetson Nano. Later, we decided to try
Banana Pi as the main hub. The heat generated by these microcontrollers has a significant
effect on the temperature, humidity, pressure, and TVOC sensors; moreover, they are too
big and expensive to be used solely for data reading. We chose Raspberry Pi Pico in the
beginning, and for wireless data transmission, we selected ESP. Just a few months ago,
Raspberry launched Raspberry Pi Pico W, which has a wireless module integrated. Our list
of microcontrollers is shown in the following table, Table 1 [1–10].

Table 1. List of microcontrollers.

Microcontroller Type CPU Memory Connectivity

Raspberry Pi Zero W 1 Ghz
BCM2835

512 MB RAM,
micro-SD card

40 GPIO pins,
Wi-Fi, Bluetooth

Raspberry Pi Zero 2 W 4 × 1 Ghz
BCM2710A1

512 MB RAM,
micro-SD card

40 GPIO pins,
Wi-Fi, Bluetooth

Raspberry Pi 3A+ 4 × 1.4 Ghz
BCM2838B0

512 MB RAM,
micro-SD card

40 GPIO pins,
Wi-Fi, Bluetooth

Raspberry Pi 4 B 4 × 1.5 Ghz
BCM2711B0

2,4,8 GB RAM,
micro-SD card

40 GPIO pins,
Wi-Fi, Bluetooth

Nvidia Jetson Nano 4 × 1.43 Ghz 2 GB RAM,
micro-SD card

40 GPIO pins,
Wi-Fi and

Bluetooth optional

Banana Pi M5 4 × 2 Ghz S905X3
4 GB RAM, 16 GB

EMMC and micro-SD
card

40 GPIO pins,
Wi-Fi and Bluetooth

are optional

Raspberry Pi Pico 2 × 133 Mhz
RP2040 2 MB 40 GPIO pins,

USB-serial

Raspberry Pi Pico W 2 × 133 Mhz
RP2040 2 MB 40 GPIO pins,

USB-serial, Wi-Fi

ESP-8266 80/160 Mhz 1 L106 4 MB 8 (26, 30) 2 GPIO
pins, Wi-Fi

ESP-32 2 × 160/240 Mhz 1

LX6
8 MB 16 (or more) 2 GPIO

pins, Wi-Fi
1 The frequency can be set during programming. 2 The number of pins might be different based on the
board maker.

We designed a web interface to display the data collected from sensors and installed
it on all microcontrollers with 512 MB of RAM or more. Each system is equipped with a
touch screen display, with screen size ranging from 4 to 10 inches. The screen resolutions
vary from 840 × 465 pixels to 2560 × 1440 pixels due to different sizes and screen densities.
We used multiple screen formats, such as 1 × 1 or 16 × 9, because we also studied how
the performance of the microcontrollers is affected by the screen size, and we took into
consideration what options we can offer to a real user. Customers usually have different
budgets or wishes, so when we think about developing an IoT system, we need to imagine
how the customer will use the final product and cover the most important aspects. In this
case, we tried to use displays available on the market that can be used with our selection of
microcontrollers, and the main characteristics are shown in Table 2 below.

The entire system can run headless or with a virtual display if a display is not attached.
We can access the web interface based on the IP address of the microcontroller. Because the
small microcontrollers do not have capabilities to run a complex application, the data are
sent to a host wirelessly, or we can read the data output via a serial connection.



Electronics 2023, 12, 1337 4 of 24

Table 2. List of microcontrollers and display configuration.

Microcontroller Type Display Resolution (pixels) Connectivity

Raspberry Pi Zero 2 W 4 inches 720 × 720 HDMI + USB
Raspberry Pi 3A+ 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI
Raspberry Pi 3A+ 7 inches 1024 × 600 HDMI + USB
Raspberry Pi 3A+ 10 inches 1280 × 800 HDMI + USB

Raspberry Pi 4 B (8 GB) 5.5 inches 2560 × 1440 HDMI + USB
Raspberry Pi 4 B (4 GB) 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI
Raspberry Pi 4 B (2 GB) 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI

1 Typical screen resolution is 840 × 465, but it can be forced to 1920 × 1080 pixels.

Most of the sensors are connected to microcontrollers via the I2C interface. Some of
them have a proprietary interface using one wire or they use a serial communication. In
Figure 1, we can observe a generic schema of sensor connection to a Raspberry Pi [11].

Electronics 2023, 12, x FOR PEER REVIEW 4 of 24 
 

 

Table 2. List of microcontrollers and display configuration. 

Microcontroller Type Display Resolution (pixels) Connectivity 
Raspberry Pi Zero 2 W 4 inches 720 × 720 HDMI + USB 

Raspberry Pi 3A+ 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI 
Raspberry Pi 3A+ 7 inches 1024 × 600 HDMI + USB 
Raspberry Pi 3A+ 10 inches 1280 × 800 HDMI + USB 

Raspberry Pi 4 B (8 GB) 5.5 inches 2560 × 1440 HDMI + USB 
Raspberry Pi 4 B (4 GB) 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI 
Raspberry Pi 4 B (2 GB) 5 inches 840 × 465 (1920 × 1080) 1 MIPI DSI 

1 Typical screen resolution is 840 × 465, but it can be forced to 1920 × 1080 pixels. 

The entire system can run headless or with a virtual display if a display is not at-
tached. We can access the web interface based on the IP address of the microcontroller. 
Because the small microcontrollers do not have capabilities to run a complex application, 
the data are sent to a host wirelessly, or we can read the data output via a serial connection. 

Most of the sensors are connected to microcontrollers via the I2C interface. Some of 
them have a proprietary interface using one wire or they use a serial communication. In 
Figure 1, we can observe a generic schema of sensor connection to a Raspberry Pi [11]. 

 
Figure 1. Example of sensors connection with a Raspberry Pi [11]. 

The schema can be applied to all microcontrollers, in general. For example, the 
ESP8266 that we are using is a small board and does not have a 5-volt VCC, and it has 
only two IO ports that can be used, so we can use only one type of interface at once. Some 
sensors require 5-volt VCC; they have the IO ports working with 3.3 volts, and in case of 
failure, they can burn the GPIO ports of the controller. In this case, is recommended to 
protect the GPIO ports with some resistors or you can use an adapter in case you are using 

Figure 1. Example of sensors connection with a Raspberry Pi [11].

The schema can be applied to all microcontrollers, in general. For example, the
ESP8266 that we are using is a small board and does not have a 5-volt VCC, and it has
only two IO ports that can be used, so we can use only one type of interface at once. Some
sensors require 5-volt VCC; they have the IO ports working with 3.3 volts, and in case
of failure, they can burn the GPIO ports of the controller. In this case, is recommended
to protect the GPIO ports with some resistors or you can use an adapter in case you are
using a serial communication. As we can see in Figures 2 and 3, some sensor modules and
adapters already have integrated protections.



Electronics 2023, 12, 1337 5 of 24

Electronics 2023, 12, x FOR PEER REVIEW 5 of 24 
 

 

a serial communication. As we can see in Figures 2 and 3, some sensor modules and adapt-
ers already have integrated protections. 

 
Figure 2. Example of sensor connection with a Raspberry Pi Pico W. 

 
Figure 3. Example of ambient light LED matrix connection with an ESP8266. 

In Figure 2, we can observe a picture of a Raspberry Pi Pico W and the custom adapter 
where we wired four temperature sensors. The sensors are arranged on three boards, the 
red board having an HTU21D sensor, followed by an SHT40, and the last board having 
two sensors, a BMP280 and an AHT20. We are using a module like this when we calibrate 
the temperature sensors attached to a single board computer such as Raspberry Pi due the 
fact that those powerful microcontrollers are dissipating heat, and the sensors attached to 
them are reading wrong values of the ambient temperature. The wiring allows us to move 
the sensors at about 20 cm away from the microcontroller. In this way, we make sure we 
can obtain relevant data, closer to reality. Moreover, we are using a combination of sensors 
because each sensor can have a small error, they are built by different manufacturers, and 

Figure 2. Example of sensor connection with a Raspberry Pi Pico W.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 24 
 

 

a serial communication. As we can see in Figures 2 and 3, some sensor modules and adapt-
ers already have integrated protections. 

 
Figure 2. Example of sensor connection with a Raspberry Pi Pico W. 

 
Figure 3. Example of ambient light LED matrix connection with an ESP8266. 

In Figure 2, we can observe a picture of a Raspberry Pi Pico W and the custom adapter 
where we wired four temperature sensors. The sensors are arranged on three boards, the 
red board having an HTU21D sensor, followed by an SHT40, and the last board having 
two sensors, a BMP280 and an AHT20. We are using a module like this when we calibrate 
the temperature sensors attached to a single board computer such as Raspberry Pi due the 
fact that those powerful microcontrollers are dissipating heat, and the sensors attached to 
them are reading wrong values of the ambient temperature. The wiring allows us to move 
the sensors at about 20 cm away from the microcontroller. In this way, we make sure we 
can obtain relevant data, closer to reality. Moreover, we are using a combination of sensors 
because each sensor can have a small error, they are built by different manufacturers, and 

Figure 3. Example of ambient light LED matrix connection with an ESP8266.

In Figure 2, we can observe a picture of a Raspberry Pi Pico W and the custom adapter
where we wired four temperature sensors. The sensors are arranged on three boards, the
red board having an HTU21D sensor, followed by an SHT40, and the last board having
two sensors, a BMP280 and an AHT20. We are using a module like this when we calibrate
the temperature sensors attached to a single board computer such as Raspberry Pi due the
fact that those powerful microcontrollers are dissipating heat, and the sensors attached to
them are reading wrong values of the ambient temperature. The wiring allows us to move
the sensors at about 20 cm away from the microcontroller. In this way, we make sure we
can obtain relevant data, closer to reality. Moreover, we are using a combination of sensors
because each sensor can have a small error, they are built by different manufacturers, and
they use different technologies. In Figure 3, we have an ESP8266 with eight GPIO pins used
to control the LED matrix. This ESP8266 can be found in different implementations, with
eight pins like in this example or with more, in general with 26 pins if the board includes a



Electronics 2023, 12, 1337 6 of 24

screen or up to 30 pins without a screen. Some boards integrate a camera connector, where
you can plug in a camera with a resolution of up to 2 megapixels.

In Figure 4, there are three examples of cooling methods we tried to use for Raspberry
Pi boards and the first version of the web interface running on a 5-inch screen [11].

Electronics 2023, 12, x FOR PEER REVIEW 6 of 24 
 

 

they use different technologies. In Figure 3, we have an ESP8266 with eight GPIO pins 
used to control the LED matrix. This ESP8266 can be found in different implementations, 
with eight pins like in this example or with more, in general with 26 pins if the board 
includes a screen or up to 30 pins without a screen. Some boards integrate a camera con-
nector, where you can plug in a camera with a resolution of up to 2 megapixels. 

In Figure 4, there are three examples of cooling methods we tried to use for Raspberry 
Pi boards and the first version of the web interface running on a 5-inch screen [11]. 

 
Figure 4. Example of the web interface and cooling methods for a Raspberry Pi [11]. 

In our research, we noticed that the temperature readings are not closer to reality 
because our case design was wrong. We put the sensors closer to the Raspberry Pi, and 
because the CPU generates a lot of heat, the data can include errors of more than 5° Celsius 
in the case of temperature sensors. Some manufacturers split the cases into two modules, 
but they are still wrong. For example, we can find nice, small products that have a tradi-
tional size of a normal European wall switch or plug adapter, 86 mm by 86 mm. One part 
contains the relays and the power supply, while the other part contains the screen, the 
microcontroller, and the temperature sensor. The problem in this design is that the screen 
and the microcontroller generate enough heat to modify the output of the temperature 
sensor by 4° Celsius, depending of course by the ambient temperature. We studied this 
problem a little, and our final Raspberry Pi design includes the temperature, humidity, 
and pressure sensors in a separate compartment on the left or right side of the screen. The 
microcontroller is installed in a compartment which will be inside the wall, while the 
screen box is on top of the microcontroller box, and the left and right sides of the screen 
are not in contact with a heat source. In Figure 5, you can see the box containing the screen 
and sensor compartments. The temperature, humidity, pressure, and air quality sensor 
compartment must have a very good ventilation, so it must have holes on the right side. 
If we want to provide a good air flow for the microcontroller, we can have holes in the 
compartments marked in gray. 

Figure 4. Example of the web interface and cooling methods for a Raspberry Pi [11].

In our research, we noticed that the temperature readings are not closer to reality
because our case design was wrong. We put the sensors closer to the Raspberry Pi, and
because the CPU generates a lot of heat, the data can include errors of more than 5◦

Celsius in the case of temperature sensors. Some manufacturers split the cases into two
modules, but they are still wrong. For example, we can find nice, small products that have
a traditional size of a normal European wall switch or plug adapter, 86 mm by 86 mm. One
part contains the relays and the power supply, while the other part contains the screen, the
microcontroller, and the temperature sensor. The problem in this design is that the screen
and the microcontroller generate enough heat to modify the output of the temperature
sensor by 4◦ Celsius, depending of course by the ambient temperature. We studied this
problem a little, and our final Raspberry Pi design includes the temperature, humidity,
and pressure sensors in a separate compartment on the left or right side of the screen. The
microcontroller is installed in a compartment which will be inside the wall, while the screen
box is on top of the microcontroller box, and the left and right sides of the screen are not in
contact with a heat source. In Figure 5, you can see the box containing the screen and sensor
compartments. The temperature, humidity, pressure, and air quality sensor compartment
must have a very good ventilation, so it must have holes on the right side. If we want to
provide a good air flow for the microcontroller, we can have holes in the compartments
marked in gray.

1.2. Custom Smart-Home Software Overview

We are using multiple types of microcontrollers, but we can categorize them into two
categories: single-board computers (SBCs) and single-chip computers (SCCs). We use SCCs
with sensors connected to transmit the data from sensors to a backend or to control the
microcontrollers from the main SBC. For example, ESP8266 is used to send data from a
Raspberry Pi Pico over Wi-Fi or to control ambient lights in a room, as we saw in Figure 3.
It has a small configuration backend, where you can specify the Wi-Fi network and the
main microcontroller to send data. If we use a USB-to-serial adapter, we can also configure
it via serial interface.



Electronics 2023, 12, 1337 7 of 24Electronics 2023, 12, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 5. Display and sensor box arrangement. 

1.2. Custom Smart-Home Software Overview 
We are using multiple types of microcontrollers, but we can categorize them into two 

categories: single-board computers (SBCs) and single-chip computers (SCCs). We use 
SCCs with sensors connected to transmit the data from sensors to a backend or to control 
the microcontrollers from the main SBC. For example, ESP8266 is used to send data from 
a Raspberry Pi Pico over Wi-Fi or to control ambient lights in a room, as we saw in Figure 
3. It has a small configuration backend, where you can specify the Wi-Fi network and the 
main microcontroller to send data. If we use a USB-to-serial adapter, we can also configure 
it via serial interface. 

The backend is written in Python, and it is responsible for all the communication 
between the main board, sensors, other microcontrollers, and client applications. We can 
observe in Figure 6 the main responsibilities. 

 
Figure 6. Main backend responsibilities. 

On the left side of the diagram, in the green boxes, we have the frontend, which con-
sists of a web interface launched directly when the SBC starts. The main screen of the 
interface is presented in Figure 7. We can see the rooms configured in the entire system 
and have an overview of sensor data. We can also see different parameters of the micro-
controller, and in future the user will be able to configure it. At this point in time, the 
configuration of the microcontroller is possible only from other clients, such as Android, 
iOS, or Windows client. The architecture of the system can be considered a generic one 
and is similar to what other researchers are building in their IoT systems [12,13]. 

Figure 5. Display and sensor box arrangement.

The backend is written in Python, and it is responsible for all the communication
between the main board, sensors, other microcontrollers, and client applications. We can
observe in Figure 6 the main responsibilities.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 5. Display and sensor box arrangement. 

1.2. Custom Smart-Home Software Overview 
We are using multiple types of microcontrollers, but we can categorize them into two 

categories: single-board computers (SBCs) and single-chip computers (SCCs). We use 
SCCs with sensors connected to transmit the data from sensors to a backend or to control 
the microcontrollers from the main SBC. For example, ESP8266 is used to send data from 
a Raspberry Pi Pico over Wi-Fi or to control ambient lights in a room, as we saw in Figure 
3. It has a small configuration backend, where you can specify the Wi-Fi network and the 
main microcontroller to send data. If we use a USB-to-serial adapter, we can also configure 
it via serial interface. 

The backend is written in Python, and it is responsible for all the communication 
between the main board, sensors, other microcontrollers, and client applications. We can 
observe in Figure 6 the main responsibilities. 

 
Figure 6. Main backend responsibilities. 

On the left side of the diagram, in the green boxes, we have the frontend, which con-
sists of a web interface launched directly when the SBC starts. The main screen of the 
interface is presented in Figure 7. We can see the rooms configured in the entire system 
and have an overview of sensor data. We can also see different parameters of the micro-
controller, and in future the user will be able to configure it. At this point in time, the 
configuration of the microcontroller is possible only from other clients, such as Android, 
iOS, or Windows client. The architecture of the system can be considered a generic one 
and is similar to what other researchers are building in their IoT systems [12,13]. 

Figure 6. Main backend responsibilities.

On the left side of the diagram, in the green boxes, we have the frontend, which
consists of a web interface launched directly when the SBC starts. The main screen of the
interface is presented in Figure 7. We can see the rooms configured in the entire system and
have an overview of sensor data. We can also see different parameters of the microcontroller,
and in future the user will be able to configure it. At this point in time, the configuration of
the microcontroller is possible only from other clients, such as Android, iOS, or Windows
client. The architecture of the system can be considered a generic one and is similar to what
other researchers are building in their IoT systems [12,13].

The Android, iOS, and Windows applications, exemplified in Figure 8, are built using
Xamarin and interact directly with the main module, which we configure in the application
itself. The main module can be represented by any SBC microcontroller. A microcontroller
can be used to define multiple rooms, and since we can use wireless sensors, we can
choose what sensors are present in a room. The backend has a redirect endpoint which
is responsible for getting data from the correct module. Each module is automatically
configuring sensors found on the I2C interface or directly connected via USB or serial at
each startup. In configuration, we have a property that sets the I2C address of the sensor
and IP address of the module where the sensor is connected, so in this way, we make
sure that we retrieve data for correct sensor, even if we are using the redirect endpoint.



Electronics 2023, 12, 1337 8 of 24

However, the configuration of the rooms is stored only on the main module. Under the
‘Main device networking settings’ section from the client application, you can define a web
address, so you can access the backend via the internet. As a result, all endpoints that are
not defined will redirect you to a 404 page. As a security feature, if someone tries bad
endpoints multiple times, the connection to that machine is denied, and that person is no
longer able to reach the module. In future, we plan to also encrypt the requests data for
extra security.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 7. Main frontend screen. 

The Android, iOS, and Windows applications, exemplified in Figure 8, are built using 
Xamarin and interact directly with the main module, which we configure in the applica-
tion itself. The main module can be represented by any SBC microcontroller. A microcon-
troller can be used to define multiple rooms, and since we can use wireless sensors, we 
can choose what sensors are present in a room. The backend has a redirect endpoint which 
is responsible for getting data from the correct module. Each module is automatically con-
figuring sensors found on the I2C interface or directly connected via USB or serial at each 
startup. In configuration, we have a property that sets the I2C address of the sensor and 
IP address of the module where the sensor is connected, so in this way, we make sure that 
we retrieve data for correct sensor, even if we are using the redirect endpoint. However, 
the configuration of the rooms is stored only on the main module. Under the ‘Main device 
networking settings’ section from the client application, you can define a web address, so 
you can access the backend via the internet. As a result, all endpoints that are not defined 
will redirect you to a 404 page. As a security feature, if someone tries bad endpoints mul-
tiple times, the connection to that machine is denied, and that person is no longer able to 
reach the module. In future, we plan to also encrypt the requests data for extra security. 

Figure 7. Main frontend screen.

The backend is started at the system boot, via a ‘cron’ job which is executing a script.
The script starts a browser with a loading screen and, in the background, checks for
operating system updates and backend dependencies. If some requirements are not met,
the script will automatically request an operating system update and will install the required
updates. In future, we will also finish the automatic update of the system and backend. For
this feature to be completed, we also need a backup mechanism. For future development,
we would like to add features such as security cameras. The backend should be able to



Electronics 2023, 12, 1337 9 of 24

save pictures from the security cameras. At this point in time, we are able to see a live feed
from the security cameras using RTP protocol.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 8. Android application room and settings screens. 

The backend is started at the system boot, via a ‘cron’ job which is executing a script. 
The script starts a browser with a loading screen and, in the background, checks for oper-
ating system updates and backend dependencies. If some requirements are not met, the 
script will automatically request an operating system update and will install the required 
updates. In future, we will also finish the automatic update of the system and backend. 
For this feature to be completed, we also need a backup mechanism. For future develop-
ment, we would like to add features such as security cameras. The backend should be able 
to save pictures from the security cameras. At this point in time, we are able to see a live 
feed from the security cameras using RTP protocol. 

1.3. Design Patterns and Automation Frameworks 
In general, when we discuss testing an entire system, we must have automation test-

ing in mind. Complex systems or applications require custom automation frameworks 
because current software testing solutions might not cover all requirements. For mobile 
applications, such as native Android or iOS applications, we can use built-in tools, which 
are more powerful and provide better results in general, and of course, we can benefit 

Figure 8. Android application room and settings screens.

1.3. Design Patterns and Automation Frameworks

In general, when we discuss testing an entire system, we must have automation
testing in mind. Complex systems or applications require custom automation frameworks
because current software testing solutions might not cover all requirements. For mobile
applications, such as native Android or iOS applications, we can use built-in tools, which
are more powerful and provide better results in general, and of course, we can benefit
from white-box testing or, in a worst-case scenario, gray-box testing. When we discuss
applications built for testing or testing a website or API, we generally use black-box testing
techniques. Further on, we will describe how to build a custom testing framework using
simple techniques that will simplify the work, reduce the development time, and provide
faster results when testing, no matter what technology we use. Of course, there are multiple
applications built for automation, and you can probably apply our methods using these
kinds of applications, but we did not try them. We will continue to focus on custom



Electronics 2023, 12, 1337 10 of 24

automation frameworks. We picked our smart-home system because it has a web interface,
an API, and a mobile client, which means that we will present to you how we can apply this
design pattern in testing a system with a complexity like ours. Because we are discussing a
design pattern, we can choose any programming language that we desire, so we will show
you some pseudo-code that should give you an idea about how you can apply the design
pattern. When we refer to user interface testing, we are thinking about web, mobile, or
desktop applications. First, we will present a small introduction about design patterns and
Page Object Model, and then we will discuss Locate, Execute, Expect and its application in
different scenarios.

When they design new applications or features, developers usually try to create an
architecture of the application using design patterns. For the first time, the term design
patterns appeared in building construction [14], and in 1994, for the first time, four devel-
opers wrote a book about design patterns in coding [15]. Since then, in building custom
automation frameworks, automation developers have used the Page Object Model design
pattern. This design pattern has multiple code layers and is very complex. An example
diagram can be found in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 24 
 

 

from white-box testing or, in a worst-case scenario, gray-box testing. When we discuss 
applications built for testing or testing a website or API, we generally use black-box test-
ing techniques. Further on, we will describe how to build a custom testing framework 
using simple techniques that will simplify the work, reduce the development time, and 
provide faster results when testing, no matter what technology we use. Of course, there 
are multiple applications built for automation, and you can probably apply our methods 
using these kinds of applications, but we did not try them. We will continue to focus on 
custom automation frameworks. We picked our smart-home system because it has a web 
interface, an API, and a mobile client, which means that we will present to you how we 
can apply this design pattern in testing a system with a complexity like ours. Because we 
are discussing a design pattern, we can choose any programming language that we desire, 
so we will show you some pseudo-code that should give you an idea about how you can 
apply the design pattern. When we refer to user interface testing, we are thinking about 
web, mobile, or desktop applications. First, we will present a small introduction about 
design patterns and Page Object Model, and then we will discuss Locate, Execute, Expect 
and its application in different scenarios. 

When they design new applications or features, developers usually try to create an 
architecture of the application using design patterns. For the first time, the term design 
patterns appeared in building construction [14], and in 1994, for the first time, four devel-
opers wrote a book about design patterns in coding [15]. Since then, in building custom 
automation frameworks, automation developers have used the Page Object Model design 
pattern. This design pattern has multiple code layers and is very complex. An example 
diagram can be found in Figure 9. 

 
Figure 9. Page Object Model design pattern applied on a webpage testing. 

The main issue with this design pattern is that most of the automation engineers im-
plement it incorrectly, and instead of providing advantages, it usually ends up resulting 
in disadvantages. For example, on many occasions, we found people mixing object 

Figure 9. Page Object Model design pattern applied on a webpage testing.

The main issue with this design pattern is that most of the automation engineers im-
plement it incorrectly, and instead of providing advantages, it usually ends up resulting in
disadvantages. For example, on many occasions, we found people mixing object repository
class with page classes and duplicate methods from Page A in Page B. Another issue is that
these are also not able to create component pages. When a developer creates an application
or designs it, he identifies the common components and defines them in code once, then
he reuses them over and over again. The problem in automated testing is that a lot of
automation quality assurance engineers are lacking in programming skills, especially the
object-oriented programming ones. This means that they cannot identify correctly reused
components by programmers and create a single page for the component, one class for



Electronics 2023, 12, 1337 11 of 24

steps, etc. To give you an example from a real-life scenario, we should imagine a media
player that can play music from different sources. You can find this kind of media player
in cars for example. A tester tends to create a separate page for each media source page,
even if most of the components and behaviors are identical. For this kind of issue, instead
of using the Page Object Model design pattern, we are going to show you how to use
the Locate, Execute, Expect design pattern. We will present how to apply it in testing a
smart-home system such as the one presented in the introduction. We will discuss testing
web applications, user interface testing, and use it to test the API. Before that, we will
shortly discuss design patterns and describe in a few words both Page Object Model and
Locate, Execute, Expect [16].

We can classify design patterns into three types: behavioral, creational, and structural.
The behavioral patterns describe interactions between objects and focus on how objects
communicate with each other. They can reduce complex flow charts to mere interconnec-
tions between objects of various classes. Behavioral patterns are concerned with algorithms
and the assignment of responsibilities between objects. Behavioral patterns describe not
just patterns of objects or classes but also the patterns of communication between them.
These patterns characterize complex control flow that is difficult to follow at run-time. They
shift your focus away from the flow of control to let you concentrate just on the way objects
are interconnected.

Behavioral class patterns use inheritance to distribute behavior between classes. The
most common design patterns are the Template Method and Interpreter pattern. Creational
patterns are used to create objects for a suitable class that serves as a solution for a problem.
They support the creation of objects in a system and allow objects to be created in a system
without having to identify a specific class type in the code, so you do not have to write large,
complex code to instantiate an object. Structural patterns define how classes and objects
form larger structures. Structural class patterns use inheritance to compose interfaces or
implementations [17–19].

1.4. Page Object Model Design Pattern

There are many conceptual maps of what Page Object Model looks like, and in the
following sentences, we will briefly describe its components or code abstraction layers,
which were shown in Figure 9 above. The Test Method level is the layer where test case is
described using action and validation steps. This file handles all inputs and is responsible
for data source binding. Page Factory is an optional layer, and it is used if you want
to ‘pre-initialize’ the UI elements before run-time. This is done using Selenium ‘FindBy’
annotations. To do so, you need to create properties for elements of a page class and use
an attribute to set the identifier that will be used to find the element. In this way, you will
make an alternative of the ‘driver.FindElement(s)’ function from Selenium. In our opinion,
the ‘FindElement’ function gives you more flexibility, and it is easier to find, wait, try to
validate that an element is not in the page, or iterate through a list of elements. Page object
classes and their methods represent each logical division of an application. For example,
each page from the application should have its own page class. Of course, if we have
multiple reused components, we can divide them into subcomponents, so we create a page
for each subcomponent of a page. An example of this kind of usage is if we have a media
player. The main controls are the same; instead of creating a page for music and a page
for videos, we can reuse the player buttons, and we define a class for that. Driver Factory
initializes the driver to provide support for testing. In Selenium, it is used to initialize the
browser or to connect to a remote browser. For Appium, it can be used to connect to device
for example. Object Repository is not always implemented by automation engineers, but it
is useful. In this layer, you abstract the automation identifiers from the page class and keep
all the UI element properties in a file that can be queried from an object repository class.
This reduces maintenance time in case of application updates. Having an object repository
adds another level of modularity to your solution and separates the object locators from
the page classes. Helper or wrapper classes are very useful to create a class where you



Electronics 2023, 12, 1337 12 of 24

write wrappers or different functions. Implementing wrappers can help users to manage
error handling, create smarter waits, timeouts, fail safes, or retries, but can also help with
logging steps or errors. In the test data source layer, you can define a data source for the
test method and use test data from a file such as a CSV, XML, Excel, or even a SQL database.
Data-driven testing is vital to cover more terrain by executing multiple test iterations of the
same test case with different data scenarios, saving code and time [17,18].

1.5. Locate, Execute, Expect Design Pattern

The Locate, Execute, Expect design pattern has less code layers than POM. We have
a layer called Locate, where we define the methods to identify the UI elements and the
automation identifiers of the UI elements. It is recommended that you create files for each
page and define identifiers in a page or create nested dictionaries for UI elements. To
give you a concrete example, if you go back to Figure 8, you will see some of the mobile
application screens. The application has four main screens, ‘Dashboard’, ‘Favorites’, ‘Chat’,
and ‘Settings’. When we click on a room on the ‘Dashboard’ page, we open a page that
displays information collected from sensors, and we can perform different actions and
open other pages. For each page in the application, we create a page class in code, and we
describe the automation identifiers. For menu, we can create a separate page as we will
normally do using POM. In the ‘Locate’ class, we will create a nested dictionary, where
the main dictionary will have multiple sub-dictionaries. The ‘Execute’ layer contains a
class which should contain main methods that perform actions or handle waits. If we are
testing systems and we have a large number of methods, we can split the code into multiple
classes based on the pages we are using or applications. The ‘Expect’ layer is similar to
‘Execute’, but here we put just the verification steps. One important thing to mention is
that the verification layer does not include methods from the action layer, but the ‘Execute’
layer can include methods from ‘Expect’. In this way, we avoid circular dependencies. In
Figure 10, we can notice the generic diagram of the LEE design pattern [16].

Electronics 2023, 12, x FOR PEER REVIEW 12 of 24 
 

 

initialize the browser or to connect to a remote browser. For Appium, it can be used to 
connect to device for example. Object Repository is not always implemented by automa-
tion engineers, but it is useful. In this layer, you abstract the automation identifiers from 
the page class and keep all the UI element properties in a file that can be queried from an 
object repository class. This reduces maintenance time in case of application updates. 
Having an object repository adds another level of modularity to your solution and sepa-
rates the object locators from the page classes. Helper or wrapper classes are very useful 
to create a class where you write wrappers or different functions. Implementing wrappers 
can help users to manage error handling, create smarter waits, timeouts, fail safes, or re-
tries, but can also help with logging steps or errors. In the test data source layer, you can 
define a data source for the test method and use test data from a file such as a CSV, XML, 
Excel, or even a SQL database. Data-driven testing is vital to cover more terrain by exe-
cuting multiple test iterations of the same test case with different data scenarios, saving 
code and time [17,18]. 

1.5. Locate, Execute, Expect Design Pattern 
The Locate, Execute, Expect design pattern has less code layers than POM. We have 

a layer called Locate, where we define the methods to identify the UI elements and the 
automation identifiers of the UI elements. It is recommended that you create files for each 
page and define identifiers in a page or create nested dictionaries for UI elements. To give 
you a concrete example, if you go back to Figure 8, you will see some of the mobile appli-
cation screens. The application has four main screens, ‘Dashboard’, ‘Favorites’, ‘Chat’, and 
‘Settings’. When we click on a room on the ‘Dashboard’ page, we open a page that displays 
information collected from sensors, and we can perform different actions and open other 
pages. For each page in the application, we create a page class in code, and we describe 
the automation identifiers. For menu, we can create a separate page as we will normally 
do using POM. In the ‘Locate’ class, we will create a nested dictionary, where the main 
dictionary will have multiple sub-dictionaries. The ‘Execute’ layer contains a class which 
should contain main methods that perform actions or handle waits. If we are testing sys-
tems and we have a large number of methods, we can split the code into multiple classes 
based on the pages we are using or applications. The ‘Expect’ layer is similar to ‘Execute’, 
but here we put just the verification steps. One important thing to mention is that the 
verification layer does not include methods from the action layer, but the ‘Execute’ layer 
can include methods from ‘Expect’. In this way, we avoid circular dependencies. In Figure 
10, we can notice the generic diagram of the LEE design pattern [16]. 

 
Figure 10. LEE design pattern diagram. 

If it is a must, we can include helper classes, but those are not considered a part of 
the LEE. If we want to combine this design pattern, we can also use it along with POM 

Figure 10. LEE design pattern diagram.

If it is a must, we can include helper classes, but those are not considered a part of
the LEE. If we want to combine this design pattern, we can also use it along with POM
without any problem. This is because the ‘Locate’ layer is basically represented by the object
repository and page classes, we need to reuse methods defined in an action and verification
class. In this way, the methods from page object classes are using generic methods and the
maintenance of the code is much simpler. Having a combination of those design patterns is
not ideal however, because when used with a combination of wrappers, they can result in a
lot of problems, especially with interpreted programming languages. Additionally, when
we try to debug, we go from method to method, and for beginners, it can be a hassle.



Electronics 2023, 12, 1337 13 of 24

2. Testing the System by Applying the Locate, Execute, Expect Design Pattern
2.1. Applying the Locate, Execute, Expect Design Pattern for UI Testing in General

In this paragraph, we will demonstrate how to apply the Locate, Execute, Expect
design pattern in a generic framework for testing UI in general. For this example, we
should imagine a simple login page of an application. What should be visible on a login
page? We must have a text box input for the username and password and a login button at
the least. We tried to give a basic example in Figure 11. When we click on the ‘Login’ button,
if the credentials we provide in the test work, we should be redirected to another page, and
if these credentials are not correct, we should see a pop-up with an error message [16].

Electronics 2023, 12, x FOR PEER REVIEW 13 of 24 
 

 

without any problem. This is because the ‘Locate’ layer is basically represented by the 
object repository and page classes, we need to reuse methods defined in an action and 
verification class. In this way, the methods from page object classes are using generic 
methods and the maintenance of the code is much simpler. Having a combination of those 
design patterns is not ideal however, because when used with a combination of wrappers, 
they can result in a lot of problems, especially with interpreted programming languages. 
Additionally, when we try to debug, we go from method to method, and for beginners, it 
can be a hassle. 

2. Testing the System by Applying the Locate, Execute, Expect Design Pattern 
2.1. Applying the Locate, Execute, Expect Design Pattern for UI Testing in General 

In this paragraph, we will demonstrate how to apply the Locate, Execute, Expect de-
sign pattern in a generic framework for testing UI in general. For this example, we should 
imagine a simple login page of an application. What should be visible on a login page? 
We must have a text box input for the username and password and a login button at the 
least. We tried to give a basic example in Figure 11. When we click on the ‘Login’ button, 
if the credentials we provide in the test work, we should be redirected to another page, 
and if these credentials are not correct, we should see a pop-up with an error message 
[16]. 

 
Figure 11. Login page example. 

We will apply the following test case to test this page: the user will insert 
‘my_email@email.com’ in the ‘Username’ field, ‘mypassword’ in the ‘Password’ field, and 
will press the ‘Login’ button. Because the credentials are not working, we should see a 
pop-up displaying this message: ‘Sorry, your credentials did not work!’. This translated 
in code should result in ‘Test variables’ constant class, where we should see the username, 
the password, and the error message. The Locate layer should contain two classes, one 
related to the login page and one related to the error pop-up page. In these pages, we 
define the automation identifiers or locators. The Execute layer should contain a class, 

Figure 11. Login page example.

We will apply the following test case to test this page: the user will insert
‘my_email@email.com’ in the ‘Username’ field, ‘mypassword’ in the ‘Password’ field,
and will press the ‘Login’ button. Because the credentials are not working, we should see a
pop-up displaying this message: ‘Sorry, your credentials did not work!’. This translated in
code should result in ‘Test variables’ constant class, where we should see the username,
the password, and the error message. The Locate layer should contain two classes, one
related to the login page and one related to the error pop-up page. In these pages, we define
the automation identifiers or locators. The Execute layer should contain a class, Actions,
where we should define two methods, ‘click_on_element’ and ‘type_text_into_textfield’.
In the Expect layer, we can create a class Verifications, where we also need two methods,
‘compare_text’ and ‘check_if_element_is_displayed’. In Figure 12, there is a pseudo-code of
the implementation using a Selenium approach [16].

In our pseudo-code, in the test definition zone, you can notice the sequence of ‘execute’
and ‘expect’ keywords, followed by the methods. If we use correct keywords in method
naming, the test itself becomes easy to read even for non-technical people. Another
important thing to mention is the fact that a test should end with a verification, because we
have an enumeration of steps, and the final verification should be the purpose of the test
case. When using this approach, you create verification methods, and you make sure in the
methods that a check is performed. Once a method was checked and used, we know that



Electronics 2023, 12, 1337 14 of 24

the method is working correctly, and we can reuse it over and over again. For example,
when we use POM, one of the common mistakes is that the automation engineer is copying
the method from another class and duplicates code, and they usually make changes just in
one place. This can be corrected by having LEE integrated with POM.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 24 
 

 

Actions, where we should define two methods, ‘click_on_element’ and 
‘type_text_into_textfield’. In the Expect layer, we can create a class Verifications, where 
we also need two methods, ‘compare_text’ and ‘check_if_element_is_displayed’. In Fig-
ure 12, there is a pseudo-code of the implementation using a Selenium approach [16]. 

 
Figure 12. Pseudo-code of the login test example [16]. Figure 12. Pseudo-code of the login test example [16].



Electronics 2023, 12, 1337 15 of 24

2.2. Applying the Locate, Execute, Expect Design Pattern with Gherkin

Previously we demonstrated what a simple login test looks like using pseudo-code.
With LEE, we do not have limitations in terms of programming languages, and we can
optionally use the current international BDD approach, Gherkin. This is widely used in
most custom automation frameworks, and one of the reasons for this is because it makes
reading a test case much easier. If we want to apply this to our test from Figure 12, we need
to create additional files for step implementation and change the way we define the test
case. We can reuse all other methods because they can remain the same. An example of
this approach is displayed in Figure 13 [16].

Electronics 2023, 12, x FOR PEER REVIEW 15 of 24 
 

 

In our pseudo-code, in the test definition zone, you can notice the sequence of ‘exe-
cute’ and ‘expect’ keywords, followed by the methods. If we use correct keywords in 
method naming, the test itself becomes easy to read even for non-technical people. An-
other important thing to mention is the fact that a test should end with a verification, 
because we have an enumeration of steps, and the final verification should be the purpose 
of the test case. When using this approach, you create verification methods, and you make 
sure in the methods that a check is performed. Once a method was checked and used, we 
know that the method is working correctly, and we can reuse it over and over again. For 
example, when we use POM, one of the common mistakes is that the automation engineer 
is copying the method from another class and duplicates code, and they usually make 
changes just in one place. This can be corrected by having LEE integrated with POM. 

2.2. Applying the Locate, Execute, Expect Design Pattern with Gherkin 
Previously we demonstrated what a simple login test looks like using pseudo-code. 

With LEE, we do not have limitations in terms of programming languages, and we can 
optionally use the current international BDD approach, Gherkin. This is widely used in 
most custom automation frameworks, and one of the reasons for this is because it makes 
reading a test case much easier. If we want to apply this to our test from Figure 12, we 
need to create additional files for step implementation and change the way we define the 
test case. We can reuse all other methods because they can remain the same. An example 
of this approach is displayed in Figure 13 [16]. 

 
Figure 13. Login test example using Gherkin [16]. 

When we test a system or a very complicated application, steps should be separated 
into two files, one containing the actions and one the verifications. Additionally, we 
should create files for steps based on what functionality we are testing. This will help 
reduce the number of code lines in files and also improve code quality. Instead of defining 
methods inside classes, we can create generic steps. One of the problems with generic 
steps is that we use them on different pages, and we need to provide the elements we 

Figure 13. Login test example using Gherkin [16].

When we test a system or a very complicated application, steps should be separated
into two files, one containing the actions and one the verifications. Additionally, we should
create files for steps based on what functionality we are testing. This will help reduce the
number of code lines in files and also improve code quality. Instead of defining methods
inside classes, we can create generic steps. One of the problems with generic steps is that
we use them on different pages, and we need to provide the elements we interact with. In
this case, we will have a few if–else conditions. From our point of view, combining the
example from Figure 12 with Gherkin as it is exemplified in Figure 13 is the best approach
because it keeps the code easy to read, the number of code lines minimal, and we can define
specific steps. This will be better for junior test automation engineers.

2.3. Applying the Locate, Execute, Expect Design Pattern for API Testing

We explained how to use the LEE design pattern for user interface testing. We can
apply this design pattern for API testing. When we look at an address of a website in our
browser, we notice that most websites with multiple pages have a URL, and this is followed
by a URI or by parameters. If we look at how requests work, when we execute a request,
we expect a result, no matter of what type of request we are executing. If we look carefully,
we can notice a few variables for our tests. We can define URL, URI, or parameters in the
Locate layer, methods that are responsible for executing the request in the Execute layer,



Electronics 2023, 12, 1337 16 of 24

and verification of the response in the Expect layer. In Figure 14, we exemplified a request
test for our login test.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 24 
 

 

interact with. In this case, we will have a few if–else conditions. From our point of view, 
combining the example from Figure 12 with Gherkin as it is exemplified in Figure 13 is 
the best approach because it keeps the code easy to read, the number of code lines mini-
mal, and we can define specific steps. This will be better for junior test automation engi-
neers. 

2.3. Applying the Locate, Execute, Expect Design Pattern for API Testing 
We explained how to use the LEE design pattern for user interface testing. We can 

apply this design pattern for API testing. When we look at an address of a website in our 
browser, we notice that most websites with multiple pages have a URL, and this is fol-
lowed by a URI or by parameters. If we look at how requests work, when we execute a 
request, we expect a result, no matter of what type of request we are executing. If we look 
carefully, we can notice a few variables for our tests. We can define URL, URI, or param-
eters in the Locate layer, methods that are responsible for executing the request in the 
Execute layer, and verification of the response in the Expect layer. In Figure 14, we exem-
plified a request test for our login test. 

 
Figure 14. API test example for login with bad credentials test. 

In our example from Figure 14, we create a method for checking the response code 
and message returned. In a real-word scenario, it is preferable to create a method for each 
thing we want to check. In our test, we have a variable ‘response’ which holds the response 
given by the request execution. If we want to have a sequence of Execute and Expect, we 
need to create a mechanism to get rid of this variable. One way is for example to create a 
global variable or a dictionary in the Execute layer and save data in that dictionary and 
provide the data to the Expect layer. If we use Python in combination with Gherkin to 
perform API testing with the LEE design pattern, we will not have this issue because we 
can use the context variable, which is available globally. 

2.4. Applying the Locate, Execute, Expect Design Pattern for UI Testing of Cross-Platform Mo-
bile Phone Applications 

Figure 14. API test example for login with bad credentials test.

In our example from Figure 14, we create a method for checking the response code
and message returned. In a real-word scenario, it is preferable to create a method for each
thing we want to check. In our test, we have a variable ‘response’ which holds the response
given by the request execution. If we want to have a sequence of Execute and Expect, we
need to create a mechanism to get rid of this variable. One way is for example to create a
global variable or a dictionary in the Execute layer and save data in that dictionary and
provide the data to the Expect layer. If we use Python in combination with Gherkin to
perform API testing with the LEE design pattern, we will not have this issue because we
can use the context variable, which is available globally.

2.4. Applying the Locate, Execute, Expect Design Pattern for UI Testing of Cross-Platform Mobile
Phone Applications

We can use this design pattern with success in testing mobile applications, no matter
what programming language we use. We are not limited to white-box testing, we can
also carry out gray-box or black-box testing, depending on the technology we are using
for developing the application. For example, we created solutions for testing Android
applications using Kotlin and Java, where we had a gray-box approach. For iOS testing, it
is more like a black-box approach, because that is the way XCUITest works. In this case,
however, we used Swift. In Figure 15, we have the Solution Explorer from Visual Studio,
where you can see the main classes used to implement LEE. On the right-hand side of
Figure 15 is a simple test implementation [16].

You can find out more details in ‘Locate, Execute, Expect Design Pattern’ [16], in
chapter IV, section C. We can go further and use this design pattern in a complex way,
where we test embedded systems using one solution, but we will explain how to do this in
the next section.



Electronics 2023, 12, 1337 17 of 24

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24 
 

 

We can use this design pattern with success in testing mobile applications, no matter 
what programming language we use. We are not limited to white-box testing, we can also 
carry out gray-box or black-box testing, depending on the technology we are using for 
developing the application. For example, we created solutions for testing Android appli-
cations using Kotlin and Java, where we had a gray-box approach. For iOS testing, it is 
more like a black-box approach, because that is the way XCUITest works. In this case, 
however, we used Swift. In Figure 15, we have the Solution Explorer from Visual Studio, 
where you can see the main classes used to implement LEE. On the right-hand side of 
Figure 15 is a simple test implementation [16]. 

 
Figure 15. Example of applying LEE in Xamarin [16]. 

You can find out more details in ‘Locate, Execute, Expect Design Pattern’ [16], in 
chapter IV, section C. We can go further and use this design pattern in a complex way, 
where we test embedded systems using one solution, but we will explain how to do this 
in the next section. 

2.5. Applying the Locate, Execute, Expect Design Pattern in Testing Embedded Systems 
We developed a solution in Python for testing an HMI system for car infotainment. 

To succeed in this task, we designed small modules that are responsible for different tasks. 
For example, we designed a module for UiAutomator used for interaction with Android 
devices, one for the system backend, one for the user interface, which is web-based and a 
wrapper for Appium to interact with iOS devices. We can apply the same principle to IoT 
systems, no matter what technology we use to develop the user interface. 

We created the structure in a very simple fashion; we created dedicated folders for 
Gherkin and Behave to support running the tests using those technologies, so we have a 
‘features’ folder where the test cases in feature files are located. Additionally, this requires 
an ‘environment’ file, which is used by the test runner to trigger different events such as 
preparing the environment before test execution or after test execution. Feature files in-
clude the steps, and within the main folder, we need to create a folder for steps. In the 
diagram from Figure 16, we named them ‘Gherkin steps’. These steps can be named how-
ever we want, but we recommend using a naming convention based on functionality, and 
if you have many functions, you can split them into two types: one file should contain 

Figure 15. Example of applying LEE in Xamarin [16].

2.5. Applying the Locate, Execute, Expect Design Pattern in Testing Embedded Systems

We developed a solution in Python for testing an HMI system for car infotainment.
To succeed in this task, we designed small modules that are responsible for different tasks.
For example, we designed a module for UiAutomator used for interaction with Android
devices, one for the system backend, one for the user interface, which is web-based and a
wrapper for Appium to interact with iOS devices. We can apply the same principle to IoT
systems, no matter what technology we use to develop the user interface.

We created the structure in a very simple fashion; we created dedicated folders for
Gherkin and Behave to support running the tests using those technologies, so we have a
‘features’ folder where the test cases in feature files are located. Additionally, this requires
an ‘environment’ file, which is used by the test runner to trigger different events such
as preparing the environment before test execution or after test execution. Feature files
include the steps, and within the main folder, we need to create a folder for steps. In
the diagram from Figure 16, we named them ‘Gherkin steps’. These steps can be named
however we want, but we recommend using a naming convention based on functionality,
and if you have many functions, you can split them into two types: one file should contain
action-related steps and the other the verification steps. In the steps, you can directly use
the generic methods defined for the ‘Execute’ or ‘Expect’ layers and implement only basic
logic if it is needed. Outside of the ‘features’ folder, you can contain the structure how
you desire. In our case, we made it very clear. We have a folder for constants, where we
define different constants used across the project. Besides this folder, we have one with
different helper classes, one with baselines for visual validation, and the actual ‘Object
repository’ or the ‘Locate’ layer. In this folder, we have a small structure; for the embedded
system, we create a dedicated subfolder, and we did the same also for mobile platforms.
For example, things change from one Android version to another, and it is similar for
iOS too. Because iOS users usually receive multiple updates over time, we support only
the latest iOS version, and we update the automation identifiers constantly. The main
problem is with Android, where we support all the systems from Android 10 to the latest
one, Android 13. In this case, instead of creating a structure for each operating system
version, we created a generic class which is used in general, and if the automation identifier
is different, we know what version of Android is installed in our device, and we request



Electronics 2023, 12, 1337 18 of 24

the variable from the class designed for that specific Android version. In our root folder,
we have different utility scripts to sync the test results or set up the project for example and
to interact with the backend.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 24 
 

 

action-related steps and the other the verification steps. In the steps, you can directly use 
the generic methods defined for the ‘Execute’ or ‘Expect’ layers and implement only basic 
logic if it is needed. Outside of the ‘features’ folder, you can contain the structure how you 
desire. In our case, we made it very clear. We have a folder for constants, where we define 
different constants used across the project. Besides this folder, we have one with different 
helper classes, one with baselines for visual validation, and the actual ‘Object repository’ 
or the ‘Locate’ layer. In this folder, we have a small structure; for the embedded system, 
we create a dedicated subfolder, and we did the same also for mobile platforms. For ex-
ample, things change from one Android version to another, and it is similar for iOS too. 
Because iOS users usually receive multiple updates over time, we support only the latest 
iOS version, and we update the automation identifiers constantly. The main problem is 
with Android, where we support all the systems from Android 10 to the latest one, An-
droid 13. In this case, instead of creating a structure for each operating system version, we 
created a generic class which is used in general, and if the automation identifier is differ-
ent, we know what version of Android is installed in our device, and we request the var-
iable from the class designed for that specific Android version. In our root folder, we have 
different utility scripts to sync the test results or set up the project for example and to 
interact with the backend. 

 
Figure 16. Example of a custom automation framework diagram. 

In Figure 16, we exemplified the diagram of our automation framework. Because we 
use Python and virtual environments, the wrappers are actually installed in the ‘venv’ 
folder, but we can consider them as part of the project since these modules were devel-
oped specifically for this kind of activity, and without them, we cannot perform testing. 

3. Results 
In Figure 17, we exemplified the code of a page class from the ‘Locate’ code abstrac-

tion layer and in Figure 18 the same class using POM. Screenshots are taken at different 
stages of development of our automation framework and should clearly point out how 
the LEE design pattern reduces confusion about using POM correctly. Tidiness of the code 
after using LEE is shown in Figure 19. We had a similar approach with our smart-home 

Figure 16. Example of a custom automation framework diagram.

In Figure 16, we exemplified the diagram of our automation framework. Because
we use Python and virtual environments, the wrappers are actually installed in the ‘venv’
folder, but we can consider them as part of the project since these modules were developed
specifically for this kind of activity, and without them, we cannot perform testing.

3. Results

In Figure 17, we exemplified the code of a page class from the ‘Locate’ code abstraction
layer and in Figure 18 the same class using POM. Screenshots are taken at different stages
of development of our automation framework and should clearly point out how the LEE
design pattern reduces confusion about using POM correctly. Tidiness of the code after
using LEE is shown in Figure 19. We had a similar approach with our smart-home system
testing, and the efficiency of using LEE increases with the level of complexity of the project.

The main difference comes in the method definition inside the page class. Using LEE,
this is avoided, and the code is much cleaner and easier to read. In Figure 18, we have four
methods doing in essence the same thing, performing a click on a specific element. Imagine
if we test a system with more than 100 views or pages, and we use the approach shown in
Figure 18. This is a perfect example of how we can increase the reusability of methods using
LEE. In Figure 19, you can notice how we applied LEE in one of our automation frameworks.
However, to make sure that we have a good coding standardization, for example, the name
of the first function should be renamed. Functions or methods describing actions must
have in their name, in general, the type of action, the element, and where is performed. The
verification methods must contain in general only verifications, and the second method is
an example of bad usage. The ‘drag_element_by_text’ and ‘take_screenshot’ can be defined
in two different steps rather than being included in the verification step. We can definitely
agree that it is much easier to spot the mistakes in the step definitions when we apply LEE
in a project.



Electronics 2023, 12, 1337 19 of 24

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24 
 

 

system testing, and the efficiency of using LEE increases with the level of complexity of 
the project. 

 
Figure 17. Example of a page class definition using LEE. 

 
Figure 18. Example of a page class definition using POM. 

Figure 17. Example of a page class definition using LEE.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24 
 

 

system testing, and the efficiency of using LEE increases with the level of complexity of 
the project. 

 
Figure 17. Example of a page class definition using LEE. 

 
Figure 18. Example of a page class definition using POM. Figure 18. Example of a page class definition using POM.

We applied the LEE design pattern for testing several systems and applications since
2018. The initial work was conducted in testing mobile applications for Android and iOS
using native solutions, implemented in Kotlin and Java, respectively, using Swift. On the
initial project, there was a team of about five to ten quality assurance engineers for manual
testing and two automation engineers. By applying the design pattern in the automation
framework, at that point in time, we built an automation framework that can be used easily
by the manual testers and help the managers to understand what we test and what the
results are. Some of the manual testers started to write automation tests, and they were
able to do it very easily. Some of them started to code for their first time and became
independent in writing tests after 3 months. This was possible because we developed most
of the methods needed, and the manual testers learned how to use them.

Then, we started to work on an IoT project, presented briefly in this paper, to study
how we can apply this design pattern to other scenarios, such as backend and web user
interface testing. The project also included a client application which is cross-platform, and



Electronics 2023, 12, 1337 20 of 24

we successfully tested the design pattern using Xamarin technologies and C#, not only the
web version and the API.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 19. Example of correct steps definition with LEE. 

The main difference comes in the method definition inside the page class. Using LEE, 
this is avoided, and the code is much cleaner and easier to read. In Figure 18, we have four 
methods doing in essence the same thing, performing a click on a specific element. Imag-
ine if we test a system with more than 100 views or pages, and we use the approach shown 
in Figure 18. This is a perfect example of how we can increase the reusability of methods 
using LEE. In Figure 19, you can notice how we applied LEE in one of our automation 
frameworks. However, to make sure that we have a good coding standardization, for ex-
ample, the name of the first function should be renamed. Functions or methods describing 
actions must have in their name, in general, the type of action, the element, and where is 
performed. The verification methods must contain in general only verifications, and the 
second method is an example of bad usage. The ‘drag_element_by_text’ and ‘take_screen-
shot’ can be defined in two different steps rather than being included in the verification 
step. We can definitely agree that it is much easier to spot the mistakes in the step defini-
tions when we apply LEE in a project. 

We applied the LEE design pattern for testing several systems and applications since 
2018. The initial work was conducted in testing mobile applications for Android and iOS 
using native solutions, implemented in Kotlin and Java, respectively, using Swift. On the 
initial project, there was a team of about five to ten quality assurance engineers for manual 
testing and two automation engineers. By applying the design pattern in the automation 
framework, at that point in time, we built an automation framework that can be used eas-
ily by the manual testers and help the managers to understand what we test and what the 
results are. Some of the manual testers started to write automation tests, and they were 
able to do it very easily. Some of them started to code for their first time and became 
independent in writing tests after 3 months. This was possible because we developed most 
of the methods needed, and the manual testers learned how to use them. 

Then, we started to work on an IoT project, presented briefly in this paper, to study 
how we can apply this design pattern to other scenarios, such as backend and web user 
interface testing. The project also included a client application which is cross-platform, 
and we successfully tested the design pattern using Xamarin technologies and C#, not 
only the web version and the API. 

While working on the IoT project, we applied the design pattern in testing automo-
tive embedded system, to be precise, the infotainment system of a car manufacturer. In 

Figure 19. Example of correct steps definition with LEE.

While working on the IoT project, we applied the design pattern in testing automotive
embedded system, to be precise, the infotainment system of a car manufacturer. In this
project, previous engineers did not correctly apply the POM design pattern, and this
generated a lot of duplicate code, which was hard to maintain. Because the project tests
the entire system, there are more than 100 user interface pages, containing sometimes
more than 20 elements and 10 methods. The manufacturer installs the same infotainment
system in multiple types of cars, and the tests are executed for each car type. By using this
approach, we managed to merge the code into just one piece and reduced the maintenance
time significantly. One important aspect is that when a new test is automated, the time
is reduced, and the test in most cases can be applied to all car types, so we reduced the
development time by more than 50%. By applying LEE, we managed to make the code
reusable and cleaner, integrate new colleagues more easily, and obtain smoother transitions
from one software version to another. However, we had some challenges on this project,
due to the wrappers created over generic functions of Selenium, Appium, and the fact that
Python is an interpreted language, and we need to assure that we are using the correct type
of objects. Overall, applying it to new projects or to existing projects can bring benefits on a
longer term. We used the wrappers created initially on a second project, and the effect was
that we had a mature framework built in a few days and reused the generic methods to
implement more than 30 test cases in a month, everything made by just one automation
engineer. This means that once you create your main structure using LEE, you can reapply
it to any project using the same technology, no matter how sophisticated is.

One of the intrigues of the colleagues was that we can apply this principle to software
development in general, but we could not identify a scenario where it excels and can be
better than current design patterns that we already have at our disposal. You might en-
counter issues if you tend to create multiple code abstraction layers and you use interpreted
languages like Python, but those issues rarely occur and can be fixed easily by specifying
the type of parameters or correctly applying principles of object-oriented programming.

In Table 3, we wrote a comparison between LEE and POM and relevant points for a
test automation framework and test automation team. Some of them are also noticed due
to overtime usage and not necessary described in this paper.



Electronics 2023, 12, 1337 21 of 24

Table 3. Result of using LEE in comparison with POM.

Main Points LEE POM

Used for testing of User interface and API testing User interface
Types of application under test Almost any Almost any

Programming languages Any object-oriented
programming language

Any object-oriented programming
language

Abstraction code layers Only three More than three, depends on project and
implementation

Page class definition Just automation identifiers and properties Automation identifiers, properties, and
duplicated methods

Steps definition

If project complexity is low, one file per
feature is enough.

If project complexity is high, one file for
actions and one for verifications

is required.

All steps are in one file in general,
resulting in very long files. Design

pattern does not describe how to split
code in different conditions.

Code reusability

Because the methods defined in the
execute or expect layer are all clearly

defined and have just one purpose, we
can easily reuse them as many times as

we want.

In general, methods are strictly created
for a page class and reused only inside

that page class.
Even if it is possible to create generic

methods, people tend to copy and paste
methods from one page class to another

and duplicate methods over and
over again. 1

Code readability

In steps, we usually use keywords such
as action, verification, execute, expect,

and steps. This provides a
standardization method and increases the

readability in steps. Applying
conventions to method definitions

increases the readability of the code
even more.

This is at developer disposal, and usually
because there is no standardization or

conventions, naming of methods
is chaotic.

Code maintainability

A change applied in one place applies to
all use cases, no matter how complex a

project is. Sometimes, in very rare cases,
this is not a desired situation, but is very

easy to identify a situation like this.

A change is applied only to a method. It
requires more effort to check all the

places where a certain change is needed,
and this increases by the complexity of

the project.

Debugging
Much easier, due to a reduced number of

abstraction code layers and increased
readability of the code.

Much difficult when a lot of code
abstraction layers are present.

Adoption in a new project 1

Very easy to implement, and because the
main functions are generic, these

methods can be transferred easily into a
library or a new project.

Methods are project-specific in general;
everything should be created from

scratch in case of a new project.

Ease to use 1
Level of complexity is low, and based on
feedback, this technique is very easy to

use in general.

Level of complexity is higher and harder
to be applied correctly, especially by

junior test automation engineers.

Integration with BDD Very easy and it can also replace it.

More difficult to integrate it due to an
increased number of code

abstraction layers.
It cannot replace BDD. 1

Test case creation 1 Appling generic methods results in a
high speed of test case creation.

Each page requires specific methods,
resulting in reduced the speed of test

case creation.

Framework stability 1
Generic methods are proven to be

reliable, and this provides higher stability
for new test cases and also overall.

Poor stability and requires higher effort
to create a stable framework overall.



Electronics 2023, 12, 1337 22 of 24

Table 3. Cont.

Main Points LEE POM

Trust in results 1 Level of trust increases due to reusability
and robustness of the framework overall.

Level of trust can be decreased due to
copy-paste errors or changes not applied
in all places. Require an increased level of

attention to details in order to have a
high level of trust.

Applying the design pattern incorrectly 1

We can end up with action steps in
verifications ones. Bad naming of
methods or functions can lead to

confusion and duplicated methods.

A huge number of methods that are
performing the same thing overall. What

methods should be used creates
confusion, especially when the project is
complex, and testers usually duplicate

steps and pages.

Our results from real-life usage
in production 1

In the first project where we tested native
mobile applications, we constantly

achieved 95 to 99% tests passing on 32
devices and even 100% in a few days in a
row, considering having around 700 tests.

In the second project, we tested an
embedded system, we increased the

percentage of passing tests from 40% to
over 60% after first week of applying LEE.
After some refactoring, we managed to

achieve consistent results and more than
80% passes for more than 5000 tests. It

required more than one month to
perform the refactoring, and three

automation engineers were needed.

In our first project, we never used POM.
In the second project, using POM we

managed to achieve only 40% to 60% of
tests passing, with the value varying
from one day to another. After a big

system update, the percentage dropped
under 40%. One automation engineer

was required to conduct maintenance on
a regular basis to maintain 50% of tests
passing from day to day, considering

having about 5000 testcases.

1 These results are from overall experience with LEE and POM over time.

4. Conclusions

LEE design pattern is very good when applied in testing, especially on custom au-
tomation frameworks, because we are able to use it in most common scenarios, such as
testing a website, a mobile application, or to test an API with high efficiency. It helps
automation engineers to maintain clean code and ease the integration of newcomers. It
can easily replace POM or other design patterns used in current projects and increases the
reusability of common methods. Integration with the continuous integration or continuous
delivery systems is very easy because it does not require additional plugins.

In future, we want to extend the main usage of the design pattern and study how
it can be applied in unit testing for example. Additionally, to prove the efficiency of a
framework using this design pattern, we would like to monitor some parameters in a
team of test automation engineers. To do this, we must take in consideration the most
important aspects, such as the time needed to implement a test case, the time spent for
maintenance, and methods reusability, for example. We also want to study if there is
an impact in what type of network we use in our smart-home automation, similar to
what the authors of ‘Comparative Evaluation of the Performance of ZigBee and LoRa
Wireless Networks in Building Environment’ [20] discovered, and there is an impact of
what programming language we used for testing the same system, by trying to apply
algorithms and methods presented in ‘Performance Evaluation of C/C++, MicroPython,
Rust and TinyGo Programming Languages on ESP32 Microcontroller’ [21].

There are multiple automation testing programs on the market, and because of this,
we want to study if we can apply this design pattern in an already built program for
automation testing.



Electronics 2023, 12, 1337 23 of 24

Author Contributions: Conceptualization, A.-M.V. and L.-C.M.; methodology, A.-M.V.; software,
A.-M.V.; validation, A.-M.V.; formal analysis, A.-M.V. and L.-C.M.; investigation, A.-M.V.; re-
sources, A.-M.V. and L.-C.M.; data curation, A.-M.V.; writing—original draft preparation, A.-M.V.;
writing—review and editing, A.-M.V.; visualization, A.-M.V.; supervision, L.-C.M.; project admin-
istration, A.-M.V.; funding acquisition, A.-M.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper was financially supported by the project ‘Network of excellence in applied
research and innovation for doctoral and postdoctoral programs/InoHubDoc’, project co-funded by
the European Social Fund financing agreement no. POCU/993/6/13/153437.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was financially supported by the project ‘Network of excellence
in applied research and innovation for doctoral and postdoctoral programs/InoHubDoc’, project
co-funded by the European Social Fund financing agreement no. POCU/993/6/13/153437.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raspberry Pi. Available online: https://en.wikipedia.org/wiki/Raspberry_Pi#Raspberry_Pi_Zero (accessed on 15 May 2020).
2. Raspberry Pi Zero 2W Product Brief. Available online: https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-

product-brief.pdf (accessed on 27 March 2022).
3. Raspberry Pi 3A+ Product Brief. Available online: https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-a-plus-product-

brief.pdf (accessed on 19 July 2021).
4. Raspberry Pi 4 Model B Datasheet. Available online: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

(accessed on 10 May 2020).
5. NVIDIA Jetson Nano 2GB Developer Kit. Available online: https://cdn.sparkfun.com/assets/7/9/7/b/d/Jetson_Nano_2GB_

datasheet.pdf (accessed on 19 February 2022).
6. Banana Pi BPI-M5 Banana Pi Wiki. Available online: https://wiki.banana-pi.org/Banana_Pi_BPI-M5 (accessed on

10 November 2022).
7. Raspberry Pi Pico Datasheet. Available online: https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf (accessed on

15 March 2021).
8. Raspberry Pi Pico W Datasheet. Available online: https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf (accessed

on 15 August 2022).
9. ESP8266 Technical Reference. Available online: https://www.espressif.com/sites/default/files/documentation/esp8266-

technical_reference_en.pdf (accessed on 20 March 2022).
10. ESP32 Technical Reference. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_technical_

reference_manual_en.pdf (accessed on 20 March 2022).
11. Vadan, A.M.; Miclea, L.C. Detect Data Deviation for Temperature and Ambient Light Sensors, and Create a Simple Calibration

Method. In Proceedings of the 2022 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR),
Cluj-Napoca, Romania, 19–21 May 2022; pp. 1–6. [CrossRef]

12. Habib, S.; Alyahya, S.; Islam, M.; Alnajim, A.M.; Alabdulatif, A.; Alabdulatif, A. Design and Implementation: An IoT-Framework-
Based Automated Wastewater Irrigation System. Available online: https://www.mdpi.com/2079-9292/12/1/28 (accessed on
14 February 2023).

13. Yar, H.; Imran, A.S.; Khan, Z.A.; Sajjad, M.; Kastrati, Z. Towards Smart Home Automation Using IoT-Enabled Edge-Computing
Paradigm. Available online: https://www.mdpi.com/1424-8220/21/14/4932 (accessed on 4 December 2022).

14. Alexander, C.; Ishikawa, S.; Silverstein, M. A Pattern Language: Towns, Buildings, Construction; Oxford University Press: New York,
NY, USA, 1977.

15. Gamma, E.; Johnson, R.; Helm, R.; Johnson, R.E.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;
Addison-Wesley: Boston, MA, USA, 1994.

16. Vadan, A.M.; Miclea, L.C. Locate, Execute, Expect Design Pattern. In Proceedings of the 2022 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19–21 May 2022; pp. 1–6. [CrossRef]

17. Sirutavicius, R. Top Design Patterns for Test Automation Frameworks. Available online: https://www.devbridge.com/articles/
top-design-pattern-test-automation-frameworks/ (accessed on 20 November 2020).

18. Maynez, E.H. UI Automation—Page Object Model and Other Design Patterns. Available online: https://techcommunity.
microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242 (accessed on
20 November 2020).

https://en.wikipedia.org/wiki/Raspberry_Pi#Raspberry_Pi_Zero
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-a-plus-product-brief.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-a-plus-product-brief.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://cdn.sparkfun.com/assets/7/9/7/b/d/Jetson_Nano_2GB_datasheet.pdf
https://cdn.sparkfun.com/assets/7/9/7/b/d/Jetson_Nano_2GB_datasheet.pdf
https://wiki.banana-pi.org/Banana_Pi_BPI-M5
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
http://doi.org/10.1109/AQTR55203.2022.9801986
https://www.mdpi.com/2079-9292/12/1/28
https://www.mdpi.com/1424-8220/21/14/4932
http://doi.org/10.1109/AQTR55203.2022.9801987
https://www.devbridge.com/articles/top-design-pattern-test-automation-frameworks/
https://www.devbridge.com/articles/top-design-pattern-test-automation-frameworks/
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242


Electronics 2023, 12, 1337 24 of 24

19. Hall, G.M. Adapive Code: Agile Coding with Design Patterns and SOLID Principles; Microsoft Press: Unterschleissheim, Germany, 2017.
20. Liu, Z.; Li, Y.; Zhao, L.; Liang, R.; Wang, P. Comparative Evaluation of the Performance of ZigBee and LoRa Wireless Networks in

Building Environment. Available online: https://www.mdpi.com/2079-9292/11/21/3560 (accessed on 14 February 2023).
21. Plauska, I.; Liutkevičius, A.; Janavičiūtė, A. Performance Evaluation of C/C++, MicroPython, Rust and TinyGo Program-

ming Languages on ESP32 Microcontroller. Available online: https://www.mdpi.com/2079-9292/12/1/143 (accessed on
14 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mdpi.com/2079-9292/11/21/3560
https://www.mdpi.com/2079-9292/12/1/143

	Introduction 
	Hardware Required for Our Custom Smart-Home System 
	Custom Smart-Home Software Overview 
	Design Patterns and Automation Frameworks 
	Page Object Model Design Pattern 
	Locate, Execute, Expect Design Pattern 

	Testing the System by Applying the Locate, Execute, Expect Design Pattern 
	Applying the Locate, Execute, Expect Design Pattern for UI Testing in General 
	Applying the Locate, Execute, Expect Design Pattern with Gherkin 
	Applying the Locate, Execute, Expect Design Pattern for API Testing 
	Applying the Locate, Execute, Expect Design Pattern for UI Testing of Cross-Platform Mobile Phone Applications 
	Applying the Locate, Execute, Expect Design Pattern in Testing Embedded Systems 

	Results 
	Conclusions 
	References

