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Abstract: The rapid development of the automobile industry has made life easier for people, but
traffic accidents have increased in frequency in recent years, making vehicle safety particularly impor-
tant. This paper proposes an improved YOLOv5s algorithm for vehicle identification and detection
to reduce vehicle driving safety issues based on this problem. In order to solve the problems of a
disappearing model training gradient in the YOLOv5s algorithm, difficulty in recognizing small ob-
jects and poor recognition accuracy caused by the boundary frame regression function, it is necessary
to implement a new function. These aspects have been enhanced in this article. On the basis of the
traditional YOLOv5s algorithm, the ELU activation function is used to replace the original activation
function. The attention mechanism module is then added to the YOLOv5s algorithm’s backbone
network to improve the feature extraction of small and medium-sized objects. The CIoU Loss function
replaces the original regression function of YOLOv5s, thereby enhancing the convergence rate and
measurement precision of the loss function. In this paper, the constructed dataset is utilized to
conduct pertinent experiments. The experimental results demonstrate that, compared to the previous
algorithm, the mAP of the enhanced YOLOv5s is 3.1% higher, the convergence rate is 0.8% higher,
and the loss is 2.5% lower.

Keywords: deep learning; vehicle detection; YOLOv5; attention mechanism; artificial intelligence

1. Introduction

In recent years, with the rapid development of China’s industrial modernization, the
number of Chinese automobiles has far surpassed the initial development of the industry.
However, the frequency of traffic accidents has made the issue of safe driving one of the
major research foci. Increasing attention has been paid to the development of Advanced
Driver Assistance Systems (ADAS) [1] in an effort to reduce the number of accidents.
ADAS systems primarily evaluate and predict the driving environment of vehicles by
combining a number of sensors; in the event of a hazardous situation, the signal can be
transmitted to the driver in a timely manner to ensure safe driving. Increasing numbers
of people are becoming devoted to the research and development of ADAS systems as
society evolves. Current ADAS systems include numerous subsystems, including Forward
Collision Warning (FCW) [2]. The FCW system is an important functional component of the
ADAS system, providing warning messages when a potential collision hazard is imminent,
thereby preventing or reducing the severity of accident-related damage. Computer vision
technology can now use advanced algorithms to detect, identify, and track objects in
video [3–7] as a result of the ongoing research into computer vision by domestic and
international researchers in recent years. Vehicle detection technology is a vital component
of the system, and at present computer vision is primarily used to detect domestic and
international targets. Using various advanced algorithms, computer vision identifies and
detects objects in video [8–10].

In 2012, the proposal of the AlexNet [11,12] network sparked a new wave of deep
learning algorithms, which became the predominant object detection algorithms at that
time. Since then, improved object detection algorithms such as Fast RCNN [13,14], Faster
RCNN [15], and R-FCN [16] have emerged. The accuracy of these proposed algorithms
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has reached the optimal level, but in some instances the recognition speed falls short of the
requirements. In 2016, Redmon J. proposed the YOLO [5] algorithm to improve calculation
speed and ensure calculation accuracy. In the same year, the SSD [17] (Single Shot Multibox
Detector) algorithm based on VGG16 (Visual Geometry Group Network) was proposed to
achieve multi-scale Feature Map prediction. The algorithm employs the feature layer to
detect and enhance YOLO’s inadequate detection of small targets. In 2018, the Redmon
J. team improved YOLOv2 [18] and obtained YOLOv3 [19] algorithm, enhanced YOLO’s
inadequate detection of small targets.

Zhang Fukai et al. [20] enhanced the YOLOv3 algorithm to detect vehicles. Wang
Fujian et al. [21] accomplished the enhancement of the YOLO algorithm dataset’s target
detection. By screening VOC datasets, Ding Bing et al. [22] improved the YOLOv3 algorithm
and implemented the detection of parking in highway tunnels. On the basis of the concept
of transfer learning, Fu Jingchao et al. [23] enhanced the adjustment learning strategy of
YOLO to improve its target detection capability. YOLOv4 [24] and YOLOv5 [25] were born
in 2020. The speed and accuracy of image recognition have been significantly enhanced,
and the size of the YOLOv5 model has been reduced, allowing for improved detection
results in the current environment. This paper employs the YOLOv5 algorithm as its
starting point for vehicle target detection.

YOLOv5’s engineering practicability has improved with each iteration of the YOLO
series, making it the most widely used target detection algorithm at present. According
to model size, YOLOv5 is available in four variants: YOLOv5s, YOLOv5m, YOLOv5l
and YOLOV5x. The only difference between the Backbone and the Neck and Prediction
settings is the model’s depth and width settings. More feature maps are available the
deeper the backbone network, and a deeper network is more complex. In addition, the
YOLOV5s network has the narrowest depth feature map width and the fastest processing
speed. This paper proposes an enhanced vehicle detection algorithm based on YOLOV5s,
which improves the detection accuracy of small targets and accelerates the convergence
rate in response to the issues of low detection accuracy and the gradient disappearance of
small targets.

2. Materials and Methods
2.1. Development of Experimental Datasets

Currently, the most popular databases for vehicle detection are the KITTI database,
the general dataset VOC and COCO dataset, and the general dataset VOC. In order to
improve the applicability of the model, this paper combines the KITTI open-source dataset
and Internet-collected road images to create a traffic target dataset. The dataset’s format
is VOC, and it contains images captured from various viewing angles and orientations.
Figure 1 is a schematic representation of a portion of the dataset. This article selects the
three dataset categories of Car, Van, and Trunk.

Python and Qt are used to develop labeling tools. When labeling datasets, rectangular
boxes are used to frame vehicles and vehicle information is noted. The precise labeling
procedure is depicted in Figure 2.

Once the annotation is complete, you must use the split.py file for classification,
followed by the txt2yolo_label.py file to finish the conversion from .xml to .txt. You need to
use the split.py file for classification, and then use the txt2yolo_label.py file to complete the
conversion from .xml to .txt. The five values represent object-class, x_center, y_center, width
and height attributes. In the end, 5000 images were used for training. The experiment
has a training set of 4500 and a test set of 500. The ratio of the two sets was 9:1, with
approximately 12,000 vehicle targets.
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2.2. YOLOv5s Network Design

The YOLOV5s model is an improvement over its predecessor. The adaptive anchor
frame is utilized, initially. In the training process, an expected frame is created to roughly
estimate the target’s position, which is then compared to the actual frame. The coordinate
algorithm is used to iteratively calculate their difference. Based on this calculation, reverse
update is conducted. As depicted in Figure 3, the initial predicted anchor coordinates of
YOLOv5 can be obtained after multiple iterations.
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YOLOv5s will optimize the algorithm so that the network’s backbone can adapt to
various image inputs. Before training, the majority of algorithms will, thus, unify and
standardize the input images. For instance, the image size can be scaled or expanded to the
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sizes that YOLO uses most frequently, which significantly reduces the interference caused
by the picture’s unnecessary information to the running speed.

Additionally, YOLOv5s includes the CBL module, the Focus module, the SPP module,
and the CSP module. It firstly performs convolution, batch standardization, and activation
functions, which are then transferred to the Focus module for slicing processing, thereby
minimizing the loss of image data. Then, it performs downsampling and the SPP module
combines all parts, integrates the extracted features, and sends them to the CSP module for
integration processing. The YOLOv5 network model is depicted in Figure 4.
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YOLOv5s also adds CBL, Focus, SPP and CSP modules to the previous version. The
CBL module mainly carries out convolution, batch standardization and function activation,
and then gives it to the Focus module for slicing processing, which will greatly reduce the
loss of picture information. Next, it carries out down sampling. SPP module pools all parts,
fuses the extracted features, and finally sends it to CSP module for integration processing.
The network model of YOLOv5 is shown in Figure 5.
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3. Methods

Due to the fact that the YOLOv5s algorithm is suitable for deployment on embed-
ded devices with limited memory, while also meeting the accuracy requirements of the
algorithm during driving and the algorithm’s response speed, the YOLOv5s algorithm is
currently a popular object detection algorithm. However, the YOLOv5s algorithm has nu-
merous drawbacks: (1) YOLOv5s combines multiple activation functions in the activation
function section. When multi-activation functions are combined, the training model will
exhibit gradient disappearance and other issues that will further reduce its accuracy. (2)
YOLOv5s has trouble identifying small objects that require identification; therefore, the
algorithm’s precision must be improved. (3) When a particular case exists between the
detection box and the prediction box, the convergence speed of the loss function is slowed.
Based on the aforementioned issues with the YOLOv5s algorithm, this chapter is based on
the YOLOv5s method for vehicle detection. The activation function of YOLOv5s is first
replaced. The attention mechanism module is then introduced to the backbone network in
order to improve the extraction of features by YOLOv5s. The algorithm’s loss function is
optimized, utilizing complete intersection ratio function. Experiments were carried out to
examine the algorithm’s performance before and after its enhancement.

3.1. Activation Function Improvements

The CSP module of the original YOLOv5s used the Leaky ReLU function [26] and the
Mish function as activation functions. When these two activation functions are utilized
concurrently, the gradient will gradually diminish during back propagation and may
eventually disappear. The Exponential Linear Units (ELU) activation function replaces the
Leaky ReLU function and Mish function to tackle this issue. The formula for calculating
the ELU activation function is depicted in the figure:

ELU(s) =
{

x
α(ex − 1)

x > 0
x ≤ 0

(1)

The ELU function curve is depicted in Figure 6.
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The ELU function has a better linear distribution on the right side of the coordinate axis
than the Leaky ReLU function, which effectively mitigates the disadvantage of gradient
descent of the Leaky ReLU function. The left side of the coordinate axis is nonlinear,
which may improve noise input robustness. In order to demonstrate the benefits of ELU
function in a more intuitive manner, this activation function is compared to other activation
functions in the COCO dataset and the results are presented in Table 1.
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Table 1. Comparison table of activation functions under the COCO dataset.

Mosaic Label
Smoothing

Leaky
ReLU Mish ELU Top-1 Err

(%)
Top-5 Err

(%)
√ √ √

22.4 5.8√ √ √ √
21.5 5.4√ √ √
21.0 5.1

Table 1 demonstrates that the first and fifth error rates decreased by 0.9% and 0.4%
when the Leaky ReLU function and Mish function were combined as compared to the
Leaky ReLU function alone, and that the first and fifth error rates decreased by 0.5% and
0.3% when the ELU function was utilized alone. According to the experimental findings, it
is possible to achieve the gradient descent caused by the combination of the two activation
functions. The enhanced activation function can decrease the error rate and increase the
calculation’s precision.

3.2. Enhanced Attention Mechanism Module

The attention process resembles the attention mechanism used by humans for object
recognition. The primary information is gained by allocating sufficient resources. Important
data are collected and retrieved using a convolutional neural network, which significantly
enhances the precision of data collecting. The attention mechanism module may typically
be added to the backbone network, and the module’s parameters are simple to alter,
which significantly improves the model’s performance. Currently, the attention mechanism
is primarily separated into two types: a channel attention mechanism represented by
SE [27] (Squeeze and Excitation) and a spatial attention mechanism represented by the
Convolutional Block Attention Module (CBAM [28]).

In this paper, CBAM modules were added to three main parts of YOLOv5, as shown
in Figure 7. In Figure 7a, the module is added to CSP1_3(feature fusion); in Figure 7b, the
CBA module is added to the Neck part of YOLOv5s after the Concat layer; in Figure 7c, the
CBMA module is added before the convolution of YOLOv5’s prediction module.
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The comparison results of three CBAM modules in different positions and unfused
YOLOv5s are shown in Table 2.

Table 2. Comparison of CBAM modules after fusion.

Network Model
AP 50% P

(%)
R

(%)
mAP
(%)Small Goal Medium Goal Big Goal

YOLOv5s 83.0 97.9 99.3 76.4 92.5 92.7
CBAM_YOLOv5s-Backbone 90.4 98.2 99.4 81.2 93.8 94.1

CBAM_YOLOv5s-Neck 80.3 96.4 99.0 71.7 93.7 91.6
CBAM_YOLOv5s-Prediction 82.7 97.1 99.1 75.9 92.8 92.4

As can be seen from the table, not every fusion mode’s accuracy is improved after
CBAM module fusion is performed on different components of YOLOv5s. When CBAM
modules are integrated into Backbone, the detection capability of small targets is greatly



Electronics 2023, 12, 1323 8 of 14

improved and mAP is increased by 1.4%. Since the semantic information in Backbone
networks is not rich, CBAM is added to these modules to improve the accuracy. However,
for Neck and Prediction, there is no improvement in accuracy. Therefore, this document
adds the CBAM module to Backbone.

3.3. Improvement of CIoU Loss Function

An Intersection over Union (IoU) [29] is typically utilized to calculate the location
relationship between the predicted and actual boxes in target detection using the follow-
ing formula:

IoU =
A ∩ B
A ∪ B

(2)

As depicted in Figure 8, the original IoU formula includes several weaknesses that
have been rectified. In Figure 8a, when there is no intersection between the prediction
box and the real box, the result of IoU computation is 0, impeding further training and
algorithm execution. In Figure 8b,c, when the prediction box is the same size as the actual
box, the IoU calculation yields the same result; therefore, no judgment can be formed.
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Therefore, in this paper, GIoU [30] (Generalized Intersection over Union) is used
instead of IoU, In Figure 8, B is the yellow box, A is the blue box, and C is the red box
(Figure 9). And the formulas for GIoU are shown in Equations (3) and (4):

GIoU = IoU − |C− (A ∪ B)|
|C| (3)

GIoU_loss = 1− GIoU = 1− (IoU − |C− (A ∪ B)|
|C| ) (4)
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GIoU introduced the test box C, which consisted of the combination of the yellow
prediction box B and the blue actual box A. The GIoU calculation diagram is shown in
Figure 9. In addition to considering the relationship between the prediction box and the
actual box, GIoU also introduces the test box. Nevertheless, GIoU cannot play the actual
effect while the two boxes are in the horizontal state. Here, the CIoU [31] function is
substituted by the GIoU function, and the loss function equation for DIoU [32] is given in
Equation (5):

DIoU_Loss = 1− IoU +
ρ2(b, bgt)

c2 (5)

here, b, bgt denotes the center points of the prediction box and the real box, respectively,
ρ represents the distance between the two center points, and c represents the diagonal
distance of the minimal closure region that can encompass both the prediction box and
the real box. In addition, the impact factor av is introduced, along with the horizontal to
vertical ratio.

The improved formulas of GIoU and CIoU_Loss are shown in Equations (6) and (7).

CIoU = IoU −
ρ2(b, bgt)

c2 + αvzt = σ(Wz·[ht−1, xt]) (6)

CIoU_Loss = 1− IoU +
ρ2(b, bgt)

c2 + αv (7)

The parameter expression representing the penalty in the formula α is shown in
Equation (8), and v represents the standard that can measure whether the aspect ratio is
consistent, and the expression is shown in Equation (9):

α =
v

(1− IoU) + v
(8)

v =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
)2 (9)

The modified formula demonstrates that the convergence rate of CIoU is substantially
faster than that of IoU.

4. Test and Result Analysis
4.1. The Experiment Platform

Ubuntu18.06 is the operating system version of the training experiment machine for
the model presented in this paper. Tables 3 and 4 detail the experimental setting and
hardware and software configurations.

Table 3. The development environment.

Hardware Name Version Number

Processor AMD Ryzen 5 5600X 6-Core Processor (3701 MHz)
Graphics card NVIDIA GeForce RTX 3060 12G

Memory 16 GB

Table 4. Software environment.

The Specific Environment Version Number

Python Python3.8
CUDA 11.1

CUDNN 11.3

4.2. Comparison of Training Results

Beginning with an initial learning rate of 0.01, SDG was used to optimize algorithm
parameters and the cosine annealing approach was employed to dynamically modify the
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learning rate. The weight attenuation coefficient was set to 0.0005, the learning momentum
was set to 0.937, and the Batch-Size to 8. In this experiment, 300 epochs were trained to
examine the overfitting issue in the training process. Model A is denoted by the black
curve, while model B is defined by the red curve. Models A and B are trained together, and
the training outcomes are depicted in Figure 10.
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Figure 10a demonstrates that, compared to the loss value before improvement, the im-
proved model exhibits a more pronounced drop and a faster convergence speed. Figure 10b
demonstrates that the mAP value of the enhanced model is 3.1% greater than that of the
previous model. Overall, the new model is more precise and has a faster convergence rate.
The comparison of model performance before and after loss function enhancement is shown
in Table 4. As shown in the Table 5, the loss value of model B’s parameter was lowered by
2.8% compared to the model before improvement, showing that the convergence speed
of the revised model was greatly increased. The mAP% value of the new model was 2.1%
greater than previously, and its accuracy was enhanced. Furthermore, both Recall and
Precision are greatly enhanced following enhancement. In conclusion, the enhancements
to the YOLOv5 model presented in this research greatly increase the performance and
convergence speed and precision.

Table 5. Performance comparison between model A and model B.

Model Loss mAP@0.5:0.95 Precision (%) Recall (%)

Model A 0.0068 0.651 91.9 92.5
Model B 0.0070 0.672 93.9 94.5

4.3. Algorithm Improves Visual Contrast

The same image is used to examine the effect difference of the activation function
of YOLOv5’s algorithm improvement before and after, in order to more intuitively illus-
trate the improvement of the algorithm’s accuracy and speed in image recognition. As
shown in Figure 11a depicts the original input image, Figure 11b depicts the accuracy
of vehicle recognition before the activation function is enhanced, and Figure 11c depicts
the vehicle recognition after the activation function has been enhanced. After an object is
discovered, there will be text indicating the sort of object detected, along with a recognition
accuracy indicator.
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As shown in the picture above, the confidence level increases when the activation
function in YOLOv5’s algorithm is enhanced, the accuracy of target recognition is enhanced,
and the model’s performance is further enhanced.

The diagram depicts the experimental outcomes of adding the CBAM module to
the YOLOV5s network architecture. As shown in Figure 12, Figure 12a is the original
image, Figure 12b is the detection image before CBAM improvement, and Figure 12c is the
detection image after CBAM improvement. The results indicate that the modified CBAM
algorithm has significantly enhanced the detection of small objects. Tiny items that were
previously undetectable can now be detected, and the confidence level has been increased;
nevertheless, the improvement effect on the identification of large objects is not readily
apparent. Hence, the algorithm’s performance is further enhanced with the addition of the
CBAM module.
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Figure 13 is a comparison of the experimental outcomes before and after the improve-
ment of the loss function. Figure 13a is the original picture, Figure 13b is the detection
graph before the improvement of the loss function, and Figure 13c is the detection graph
after the improvement of the loss function. The preceding graph demonstrates that the
modified algorithm increases the accuracy of vehicle detection, as well as the convergence
speed of the loss function and the recognition speed.
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4.4. Experimental Verification of the Improved Algorithm

To further demonstrate the superiority of the enhanced algorithm, an ablation ex-
periment was undertaken to evaluate the model’s performance. The enhanced activation
function, attention mechanism and loss function were utilized to validate the model’s
performance.

Table 6 demonstrates that after the activation function was enhanced the mAP value
grew by 2.1%, while Precision and Recall also increased slightly. Adding the attention
mechanism to the Backbone network increased the mAP value by 2.9%. mAP value
increased by 1.5%, Precision increased by 0.9%, and Recall increased by 1.1% after the loss
function was adjusted. After enhancing the three algorithmic components, the algorithm’s
Precision and Recall are enhanced by 2% and 2%, respectively. In conclusion, based on
the ablation experiment conducted after the algorithm improvement, it can be concluded
that the improved model performance was significantly enhanced in terms of confidence,
precision, and recall compared to that of the previous model, thereby effectively improving
the model performance.

Table 6. Comparison table of ablation experiments.

YOLOv5s Activation
Function

Mechanism of
Attention Loss Function mAP@

0.5:0.95(%) P (%) R (%)

√
65.1 91.9 92.5√ √
66.5 92.2 92.8√ √
67.0 93.1 94.1√ √
66.1 92.8 93.6√ √ √ √
67.2 93.9 94.5

In addition, YOLOv5s is compared to YOLOv4, YOLOV4-Tiny, and Faster-RCNN,
which are typically used to evaluate the performance of each algorithm. Table 7 compares
the performance of several algorithms.

Table 7. Performance comparison of different detection methods.

Method Model Storage
Size (MB)

mAP@0.5
(%) P (%)

Faster-RCNN 186 83.7 83.8
YOLOv4 113.9 93.1 93.3

YOLOv4-tiny 30 83.4 87.3
YOLOv5s 24.5 87.4 91.9

Our approach 24.7 91.5 94.5

As seen in the table above, the YOLOv5s algorithm requires the minimum amount of
memory to operate and performs well in terms of confidence level and precision. Following
the enhancement of the experimental algorithm, the mAP@0.5 value and accuracy have
been further enhanced and the method’s overall performance has been enhanced.

In conclusion, the improved algorithm is superior to the previous algorithm in terms
of object recognition speed and accuracy, effectively addresses the disadvantage of low
accuracy in the recognition of small objects, and improves the shortcomings of the previous
algorithm, such as vanishing gradient and low confidence, making the algorithm more
practical and efficient.

5. Conclusions

In this paper, the original YOLOv5s algorithm was enhanced in order to address
the issues present in the basic YOLOv5s algorithm, including the disappearing model
training gradient, tiny target object recognition accuracy and poor convergence speed of
loss function. First, the new activation function is substituted for the old model’s activation
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function, which successfully mitigates the gradient descent of the Leaky ReLU function.
Then, to address the issue that the YOLOv5s algorithm has a low recognition rate for
small objects, the CBAM module is included to improve the algorithm’s feature extraction
for small and medium-sized objects. Lastly, the CIoU loss function replaces the original
YOLOv5s loss function. The improved detection algorithm proposed in this paper is
superior to the YOLOv5s algorithm prior to the improvement in terms of accuracy, mAP,
Recall, etc., so the improvement of the algorithm can effectively solve the problems of
gradient loss, low accuracy of small object recognition, and slow reasoning speed in the
original algorithm, and the improved method has clear benefits.
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