
Citation: Sun, Y.; He, Q.

Computational Offloading for MEC

Networks with Energy Harvesting:

A Hierarchical Multi-Agent

Reinforcement Learning Approach.

Electronics 2023, 12, 1304. https://

doi.org/10.3390/electronics12061304

Academic Editors: Jimmy Ming-Tai

Wu, Matin Pirouz and Shahab Tayeb

Received: 15 February 2023

Revised: 3 March 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Computational Offloading for MEC Networks with Energy
Harvesting: A Hierarchical Multi-Agent Reinforcement
Learning Approach
Yu Sun † and Qijie He *,†

School of Computer and Electronics and Information, Guangxi University, Nanning 530004, China
* Correspondence: 2013391019@st.gxu.edu.cn
† These authors contributed equally to this work.

Abstract: Multi-access edge computing (MEC) is a novel computing paradigm that leverages nearby
MEC servers to augment the computational capabilities of users with limited computational resources.
In this paper, we investigate the computational offloading problem in multi-user multi-server MEC
systems with energy harvesting, aiming to minimize both system latency and energy consumption
by optimizing task offload location selection and task offload ratio.We propose a hierarchical com-
putational offloading strategy based on multi-agent reinforcement learning (MARL). The proposed
strategy decomposes the computational offloading problem into two sub-problems: a high-level task
offloading location selection problem and a low-level task offloading ratio problem. The complexity
of the problem is reduced by decoupling. To address these sub-problems, we propose a computational
offloading framework based on multi-agent proximal policy optimization (MAPPO), where each
agent generates actions based on its observed private state to avoid the problem of action space
explosion due to the increasing number of user devices. Simulation results show that the proposed
HDMAPPO strategy outperforms other baseline algorithms in terms of average task latency, energy
consumption, and discard rate.

Keywords: multi-access edge computing; multi-agent reinforcement learning; energy harvesting;
offloading strategy

1. Introduction

Multi-access edge computing (MEC) is an innovative computing paradigm that has
gained increasing attention in recent years. This computing model utilizes servers located at
wireless access points (APs) to provide additional computing resources for mobile devices
with limited computational capabilities [1]. The deployment of MEC servers facilitates
the collaborative processing of computing tasks, reducing the computational latency and
energy consumption of mobile devices. This, in turn, enhances the battery life of these
devices and enables them to handle computationally intensive tasks more efficiently [2–4].

Computation offloading is a widely studied area in mobile computing which aims to
address the computational demands of mobile devices by leveraging additional computing
resources, thereby reducing their computational workloads. It has been widely recognized
as an effective solution to resolve the computational constraints of mobile devices [5,6].
However, one of the major challenges associated with computation offloading is the limited
energy of mobile devices powered by batteries, which can impact the local execution
or offloading of tasks to MEC servers, resulting in tasks dropping due to timeouts. To
mitigate this issue, researchers have proposed energy harvesting (EH) mechanisms [7].
Wireless power transfer (WPT) technology, in particular, allows for the transfer of electrical
energy without the need for conductors as transmission links. The technology operates
by generating a time-varying electromagnetic field, which transfers energy to a receiver
device in the spatial field. The receiver device then extracts electrical energy from the field

Electronics 2023, 12, 1304. https://doi.org/10.3390/electronics12061304 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061304
https://doi.org/10.3390/electronics12061304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061304
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061304?type=check_update&version=1

Electronics 2023, 12, 1304 2 of 18

to power electrical devices, effectively reducing the reliance on wires and batteries. WPT
technology is therefore considered a promising solution to address the energy supply and
access problems of Internet of Things (IoT) devices [8].

In order to explore the application of WPT in MEC computation offloading, this
paper considers a wireless power transfer MEC system with multiple MEC servers and
multiple users. The wireless access point provides power to the users through energy
transmission beams and the users use the collected energy to execute tasks. Key issues
that need to be addressed in computation offloading are: task offloading location selection:
determining appropriate MEC servers for task offloading is crucial, as it is essential to
consider not only the energy conditions but also the feasibility of offloading to avoid
wasting of battery energy; offloading ratio optimization: the offloading ratio of a task
can be determined by dividing it into independent parts, which can be executed locally
and offloaded, respectively. However, optimizing computation offloading strategies in
a dynamic MEC environment, where wireless radio signals are dynamic and task size is
random, is challenging. The complex nature of the MEC environment further exacerbates
this challenge [9,10], making the task of determining the optimal offloading ratio even
more difficult.

In this paper, we study the computational offloading problem for multi-user multi-
server MEC systems with energy harvesting with the aim of minimizing system latency and
energy consumption by optimizing task offload location selection and task offload ratio.

We propose a reinforcement learning-based computational offloading approach that
formulates the problem of balancing and minimizing system-average task latency, energy
consumption, and task discard rate as a Markov decision process (MDP), and solves it using
reinforcement learning. Our proposed approach differs from other reinforcement learning-
based approaches in several ways: First, it is based on the observed partial information of
each UE rather than global information. Second, it employs a multi-agent reinforcement
learning approach, where each UE acts as an intelligent agent collaborating with others
to achieve the goal. Third, it decomposes the computational offloading problem. The
large state and action space in dynamic complex scenes require a computational offloading
method based on hierarchical multi-agent reinforcement learning. The computational
offloading problem is decomposed into two hierarchical sub-problems. The high-level
subproblem is the offload location selection, which aims to control the task offload location
of the UE, in order to improve MEC server resource utilization and preserve UE energy,
thereby improving the reward sum in the medium and long term. The low-level subprob-
lem is the control of the task offloading ratio of each user. To address this, we design a
hierarchical double multi-agent proximal policy optimization (HDMAPPO) task offloading
method, where the high level uses discrete MAPPO [11] to generate server location selection
for each task and the low level uses continuous MAPPO to generate the task offloading
ratio. Our proposed approach outperforms other algorithms. The main contribution of this
paper can be summarized as follows:

• We design a multi-user multi-server MEC network with energy harvesting, and
generate decisions on task offload location and task offload ratio considering the
limited computing resources and battery power of UEs. We optimize the computation
offloading decision to minimize the weighted sum of the average task delay, energy
consumption, and task drop rate.

• We propose a computation offloading framework based on hierarchical multi-agent
reinforcement learning to minimize system costs. The decision of task offloading
location and ratio is optimized to minimize the weighted sum of the average task delay,
energy consumption, and task drop rate, taking into account the limited computing
resources and battery power of user devices. The problem is formulated as a MDP and
solved using the HDMAPPO strategy, consisting of a high-level MAPPO algorithm
and a low-level MAPPO algorithm. The high-level MAPPO algorithm determines the
MEC server location for task offloading and the active dropping of tasks, while the
low-level MAPPO algorithm determines the task offloading ratios. The state space of

Electronics 2023, 12, 1304 3 of 18

the low-level problem is restricted by the output of the high-level problem, with the
results of the high-level problem being part of the state of the low-level problem, thus
reducing the complexity of the state.

• Experimental results demonstrate the effectiveness of our proposed hierarchical multi-
agent reinforcement learning based computational offloading framework in reducing
the weighted sum of the average task delay, energy consumption, and task drop rate
compared to other baseline algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. We describe the system model and formulate the problem in Section 3, including
the system architecture and computation model. In Section 4, we propose a hierarchical
multi-agent reinforcement learning based computational offloading framework to solve the
formulated problem. Section 5 presents simulation results. Finally, our paper is concluded
in Section 6.

2. Related Work

The optimization of offloading decisions is a widely researched topic in edge com-
puting, with the goal of reducing latency and energy consumption in MEC systems. The
use of reinforcement learning as a tool for generating offloading decisions has been widely
studied, as it allows for the agent to interact with the MEC environment by making ad-
justments to offloading decisions based on changes in the environment’s state and reward
values. The authors of [12] studied the joint optimization problem of offloading decision
and computing resource allocation in the time-varying environment with a single MEC
server and multiple users, and proposed a Q-learning based computing offloading method
to minimize the delay and energy consumption cost for all UEs. The authors in [13] studied
the task offloading problem in a multi-CAPs (computational access points) edge computing
environment and proposed a DQN-based offloading strategy that dynamically adjusts the
offloading ratio of tasks based on the states of the CAPs and tasks, in order to balance the
overall delay and energy consumption of the system. The authors in [14] researched the
task offloading problem in a heterogeneous vehicular network, considering the dynamic
channel changes caused by vehicle movement and the random task arrival condition in an
edge computing environment. They proposed a computation offloading method based on
DDPG, with the aim of minimizing the overall energy consumption and task delay of the
system. The authors in [15] studied the task offloading and resource allocation problem in a
multi-site MEC RIoT environment, and proposed a hybrid hierarchical reinforcement learn-
ing method consisting of DDQN and DDPG. DDQN is responsible for generating subcarrier
allocation decisions, while DDPG is responsible for offloading ratio, power allocation, and
computing resource allocation decisions. The proposed method effectively reduces the
weighted sum of energy consumption and delay. The authors in [16] studied a computation
offloading problem with multiple users competing for resources, aiming to minimize the
delay and energy consumption. The authors proposed a computation offloading method
based on DDPG, which determines the offloading location and ratio for the task MEC.
The authors in [17] proposed an actor–critic based computation offloading algorithm that
generates offloading decisions and resource allocation in an energy harvesting computation
offloading environment to maximize the number of offloaded tasks. The authors in [18]
propose a DDQN algorithm based on an attention mechanism to generate task offloading
strategies composed of computation resource allocation and power allocation. The goal is
to minimize task completion delay and energy consumption in the long term. The authors
in [19] propose a DQN-based action decomposition algorithm which decomposes the action
space recursively into multiple actions and generates the decisions for server selection,
offloading, and collaboration with multiple agents, in order to minimize delay cost. The
authors in [20] study the problem of computational offloading with task dependencies and
propose a sequence-to-sequence based deep reinforcement learning method for generating
offloading decisions with the aim of minimizing latency and energy consumption. The
increasing number of users leads to the growth of the system’s state and action spaces,

Electronics 2023, 12, 1304 4 of 18

resulting in a heightened complexity of single-agent reinforcement learning methods. In
order to alleviate this complexity, this paper proposes a task offloading approach based on
multi-agent reinforcement learning, in which each user is trained as an independent agent.

Many studies use the framework of MARL to optimize offloading decisions for mul-
tiple users. MARL can solve optimization problems in complex environments through
mutual cooperation between multiple intelligent agents. The authors in [21] investigated
the resource management problem in a vehicular network aided by MEC and UAV. They
proposed a resource allocation algorithm based on multi-agent deep deterministic policy
gradient (MADDPG), which treats each MEC server as an agent and enables the agents
to collaborate in generating spectrum and computing and storage resources to meet the
requirements of latency-sensitive tasks. The authors in [22] study the task offloading prob-
lem of an energy harvesting multi-user MEC system and propose a multi-agent based AC
algorithm to solve the problem, where each user is an agent and the agents collaborate with
each other to generate offloading decisions. The objective is to minimize the execution time
of the task. The authors in [23] study the problem of computing offloading and resource
allocation in a MEC system with multiple users and multiple MEC servers. Given the
large number of users, the random arrival of tasks, and the time-varying nature of the
environment, the authors proposed a multi-agent MADDQN-based offloading method
for determining task offloading ratios and resource allocation decisions, with the aim of
minimizing the weighted sum of delay and bandwidth. The authors in [24] propose a hier-
archical multi-intelligence reinforcement learning framework to solve the computational
offloading problem by decomposing the problem into two subproblems, beamforming
strategy and task allocation ratio, and solving them using the MADDPG and single DDPG
algorithms, respectively, with the aim of maximizing energy efficiency. The authors in [25]
study a joint optimization problem based on computational offloading and interference
coordination for smart small cell networks, and propose a MADDPG-based offloading
method, while adding the idea of federal machine learning to MADDPG in order to reduce
computational complexity, so that the model parameters can be reused by multiple agents.
The objective is to reduce the energy consumption effectively while satisfying the delay
requirements. The authors in [26] study the task offloading problem for NOMA multi-user
MEC systems, aiming to minimize the weighted sum of long-term power consumption and
latency, and propose a computational offloading method for multi-agent reinforcement
learning based on MADDPG, where individual intelligences use the same policy network to
reduce the complexity of training. The authors of [27] studied a multi-UAV and multi-MEC
cooperative edge computing system. By jointly optimizing UAV trajectory, task allocation
decisions, and resource management, the goal is to minimize the weighted sum of delay
and energy consumption. Considering the high-dimensional continuous action space,
the authors proposed a multi-agent reinforcement learning based MATD3 computation
offloading method. The authors of [28] proposed a computation offloading framework
based on MADDPG for solving resource allocation problems in an integrated MEC net-
work for terrestrial applications. The authors in [29] proposed a computation offloading
decision-making method based on QMIX multi-agent reinforcement learning to solve the
problem of offloading server selection and task offloading ratio allocation in computation
offloading. In this method, the agents make decisions based on both local observation
information and global state, effectively reducing latency and energy consumption costs.
The authors in [15] study the computational offloading and resource allocation problem for
railroad IoT edge computing and propose a hybrid deep reinforcement learning offloading
method. The method is integrated by DDQN and DDPG so that a mixture of action discrete
and continuous policies can be learned, with DDQN used to make subcarrier allocation
decisions and DDPG used to make offload rate, power, and computational resource allo-
cation, effectively reducing the execution time. The authors in [30] study computational
offloading in single-MEC server and multi-server scenarios and propose a MADDPG-based
computational offloading approach to generate decisions such as task scheduling, transfer
power and CPU cycles to minimize energy consumption and latency. In this paper, we

Electronics 2023, 12, 1304 5 of 18

investigate the problem of task offloading location selection and offloading ratio selec-
tion in computational offloading, and propose a hierarchical multi-agent reinforcement
learning based computational offloading framework to solve this problem. We summarize
the advantages and disadvantages of the proposed approach compared to existing work
in Table 1.

Table 1. Comparison of Approaches.

Approaches Advantages Disadvantages

Single-agent reinforcement learning
based methods [12,13,19]

Simple model and easy to implement
algorithm.

The growing number of user devices
results in an explosive action space,

impeding algorithmic learning.

Multi-agent reinforcement learning based
methods [22,25,30]

Centralized training for decentralized
implementation, able to solve

cooperation or competition problems.

Unstable learning processes may occur in
complex scenarios.

The proposed approach
Decomposing problems reduces

complexity and can solve
cooperation problems.

Poor adaptability, requires manual
decomposition of problems.

3. System Model

In this paper, we propose a design for a multi-user multi-server MEC system, as
depicted in Figure 1. The system consists of n UEs and m MEC servers, denoted by
N = {1, 2, 3, . . . , n} andM = {1, 2, . . . , m}, respectively. The UEs are randomly placed
within the wireless network and are equipped with a battery that can be charged through
energy harvesting from the beamforming signal of the nearby MEC server’s AP. The
computing capacity of each UE is denoted by Fue = { f1, f2, f3 . . . , fn} and the transmission
bandwidth is W. The MEC servers are deployed on the APs, providing both wireless access
and computational resources to the UEs, with a processing power denoted as f mec. The
time in the model is discrete and modeled as a sequence of time intervals of length τ,
T = {t1, t2, . . . , tk}, k represents the number of time slots. Due to the limited energy and
computational resources of individual UEs, each UE can offload some of the computational
workload to one of the nearby MEC servers to be processed simultaneously with the
UE’s local processing. UEs can be envisioned as wirelessly powered wearable devices for
monitoring and analyzing healthcare information.

In time slot t, the set of tasks of users in the system is represented by At, At = {at
1, at

2, . . . , at
n}.

Task at
i is composed of two attributes: data size and computation density. The task generated

by the i-th UE at time slot t is denoted by at
i , which can be denoted as at

i = {st
i , wt

i}(i ∈ N); st
i

represents the data size of the task and wt
i represents the computational intensity, i.e., the number

of CPU cycles required to process a bit. The maximum tolerated delay for task at
i is Tmax, which

means that the task must be executed within Tmax or it will be discarded.
At time slot t, the decision of the task offload location is denoted as Lt

i ∈ {0, 1, 2 . . . , m}.
Lt

i = 0 represents the active discard of the task and Lt
i = [1, 2 . . . , m] represents the selection

of the Lt
i -th MEC server. The offloading ratio of tasks is represented byXt

i ∈ [0, 1]. If Xt
i = 1,

it means that all parts of the task are executed locally at the UE and if Xt
i = 0 it means that all

parts of the task are offloaded to the MEC server. If the value of Xt
i is within [0, 1], the part

of Xt
i will be processed locally and (1− Xt

i) will be offloaded to the specified edge server.

Electronics 2023, 12, 1304 6 of 18

Figure 1. System model.

3.1. Local Computing Mode

The performance of the local computation, which refers to the execution of tasks by
the UE itself, is influenced by the CPU frequency. The energy consumption associated
with local computation is also correlated with the CPU frequency and the computational
intensity of the tasks. The delay of local computation for the task at

i in time slot t can be
expressed as:

Dt
i,local =

Xt
i st

i w
t
i

fi
. (1)

where wt
i represents the number of CPU cycles required to process a bit and fi represents the

CPU frequency of the UE. At time slot t, the energy consumption from local computation is
also given by the following formula:

Et
i,local = keXt

i st
i w

t
i fi

2. (2)

ke is the effective capacitance coefficient, which is determined by the structure of the
chip [31]. The energy consumption per CPU cycle can be characterized by ke f 2

i . The CPU
frequency required for local execution is Xt

i st
i w

t
i .

3.2. Mobile Edge Execution Model

According to the offloading decision, in time slot t, (1− Xt
i)s

t
i of the task data will

be transmitted to the MEC server for processing and the frequency of the MEC can be
represented as f mec

Lt
i

. Therefore, the processing time of the task on the MEC server can be

represented as:

Dt
i,mecexe =

(1− Xt
i)s

t
i w

t
i

f mec
Lt

i

. (3)

The execution time of task offloading to the MEC server consists of three stages: task
uploading, task execution, and result return. In this paper, we assume that the result of the
task execution is only a few characters, and the size of the task execution result is much
smaller than the task data size, so the transmission delay of the result is ignored. The
upload rate of the user device can be expressed as:

Rt
i,Lt

i
= W log2(1 +

Piht
i

I
). (4)

Electronics 2023, 12, 1304 7 of 18

where W is the bandwidth of the channel, Pi represents the transmission power of the UE,
I represents the average interference power, and ht

i represents the average channel gain. ht
i

can be expressed as:

ht
i = Ad(

3 · 108

4π fcdi,Lt
i

)de , (5)

where di,Lt
i

is the distance between UE and MEC server, Ad is the signal gain, fc represents
the carrier frequency, and de denotes the path loss. Then the transmission time of the task
at

i can be calculated as:

Dt
i,trans =

(1− Xt
i)s

t
i

Rt
i,Lt

i

. (6)

Therefore the total execution time for task offloading is:

Dt
i,mec = Dt

i,mecexe + Dt
i,trans. (7)

If the execution time of task at
i exceeds the length of time slot, it will be discarded. If the

task is offloaded by the UE to the MEC server, the energy consumption is influenced by the
transmission power and the time required for task transmission. This can be represented as:

Et
i,mec = PiDt

i,trans. (8)

3.3. Energy Harvesting

In time slot t, the energy obtained by the UE through wireless power transfer is
represented by Ehar

i (t) and the total energy consumption is represented by Etot
i (t). The

initial battery level at the beginning of the time slot can be represented by bt
i and the

remaining battery level of the UE can be expressed as:

bt+1
i = max(0, bt

i − Etot
i (t) + Ehar

i (t)). (9)

If there is not enough power to complete the task, the task will be discarded and the
remaining power set to

bt+1
i = 0. (10)

The energy collected in the time slot t can be expressed as

Ehar
i (t) = υη(di,Lt

i
)−ξ G. (11)

where υ represents the energy conversion efficiency, η represents the transmission power, ξ
represents the path loss exponent, and G represents the combined gain of the frequency-
radiating energy transmitter antenna and the user device antenna.

The task at
i execution time is the maximum of the local execution delay and the

offload execution delay. Energy consumption is the total of the local execution and task
offloading consumption.

Dt
i = max(Dt

i,local , Dt
i,mec). (12)

Et
i = Et

i,local + Et
i,mec. (13)

If the task execution time exceeds the size of the time slot or the total energy consump-
tion exceeds the remaining battery power, the task will be discarded.

3.4. Problem Formulation

In this paper, we study a MEC computation offloading problem based on energy
harvesting, with the aim of minimizing the weighted sum of the average task delay, energy
consumption, and task drop rate. The cost loss is composed of three parts: delay, energy
consumption, and punishment for task drop, where punishment is used to describe the

Electronics 2023, 12, 1304 8 of 18

scale of the system’s task dropout rate. α, β, and φ represent the weights of latency, energy
consumption, and task discard rate, respectively, The cost is formulated as follows:

min
Lt ,Xt

lim
τ→∞

1
τ

τ

∑
t=0

[α
∑N

i=1 Dt
i

N
+ β

∑N
i=1 Et

i
N

+ φdropoutt]

s.t.

C1 : Lt
i ∈ {0, 1, 2, . . . , m}, ∀i ∈ N,

C2 : 0 ≤ xt
i ≤ 1, ∀i ∈ N,

C3 : Tt
i < Tmax, ∀i ∈ N,

C4 : Etot
i (t) < bt

i + Ehar
i (t),

(14)

In the set of constraints, C1 indicates that each UE can only actively discard or select
one of the MEC servers for offloading. C2 indicates that the task can be partially offloaded
to the MEC server. C3 indicates that the delay of the task needs to be less than the maximum
tolerable delay of the task. C4 indicates that the energy consumed by the current time slot
execution needs to be less than the sum of the remaining energy of the previous time slot
and the energy harvested by the current time slot.

The above optimization problem can be solved by optimizing the task offload location
and task offload ratio decisions. The objective is to minimize the average task latency,
energy consumption, and task discard rate in the system while satisfying the constraints.
Since the complexity of the problem increases with the number of system UEs, this paper
proposes a hierarchical multi-agent reinforcement learning-based computational offloading
strategy to reduce complexity. To achieve this, the problem is first decomposed into two
subproblems: a high-level task offloading location selection problem and a low-level
task offloading ratio selection problem. Then, a MAPPO-based computational offloading
method is proposed to solve these subproblems.

4. Computation Offloading Decision Strategy

The state and action spaces of the system are prone to growing in size due to the com-
plexity and rapidly changing nature of the environment, as well as the large number of UEs.
To overcome this challenge, this paper proposes a hierarchical multi-agent reinforcement
learning based algorithm framework that decomposes the computation offloading problem
into two sub-problems: server location selection and task offloading ratio. Each of these
sub-problems is then separately solved by a distinct multi-agent reinforcement learning
algorithm, as shown in Figure 2.

4.1. MAPPO Algorithm

The MAPPO is a variant of the PPO algorithm that has been adapted for use with
multiple agents. PPO is a policy optimization algorithm that utilizes a stochastic actor–
critic architecture. The strategy network, represented by πθ(at|ot), outputs the probability
distribution of action at given the state observation ot. The actions are then drawn from this
distribution, resulting in a randomized process that enables exploration of the environment.
This feature of PPO provides increased flexibility in determining the appropriate action in
a given state.

The actor network, which approximates the policy, is represented by πθ and the critic
network, which approximates the value function, is represented by Vω . The parameters of
the actor network are denoted by θ, while the parameters of the critic network are denoted
by ω. The discounted expected future reward is given by:

L(πθ) = Es0,s1,...

[
k

∑
t=0

γtrt

]
. (15)

Electronics 2023, 12, 1304 9 of 18

The value function Vπθ
(s), the state–action value function Qπθ

(s, a), and the advantage
function Aπθ

(s, a) are denoted as:

Vπθ
(s) = Eat ,s1+1,...

[
k

∑
i=t

γi−tri|st = s

]
. (16)

Qπθ
(s, a) = Est+1,at+1,...

[
k

∑
i=t

γi−tri|st = s, at = a

]
. (17)

Aπθ
(s, a) = Qπθ

(s, a)−Vπθ
(s). (18)

Figure 2. The HDMAPPO algorithm framework.

The PPO algorithm utilizes an actor–critic architecture to optimize the policy network,
with the goal of maximizing the long-term rewards. The algorithm works by taking samples
of interactions with the environment and adjusting the probabilities of actions based on the
magnitude of the rewards received from the environment. The calculation of the policy
gradient can be formulated as follows:

∇θ L(πθ) = Es∼ρπθ
,a∼πθ

[∇θ log πθ(s, a)Aπθ
(s, a)]

= Es∼ρπ
θ̂

,a∼πθ̂

[
fθ∇θ log πθ(s, a)Aπθ̂

(s, a)
] (19)

fθ =
πθ(a|s)
πθ̂(a|s) (20)

θ̂ is the vector of policy parameters before updating. In order to accelerate the convergence
of the policy, PPO clips the policy gradient as:

∇θ L(πθ) = Es∼ρπ
θ̂

,a∼πθ̂
[∇θ log πθ(s, a)C(s, a)] (21)

C(s, a) = min
[

fθ Aπθ̂
(s, a), clip(fθ , 1− ε, 1 + ε)Aπθ̂

(s, a)
]

(22)

where ε is a hyperparameter with a value of 0.2 [11] and the function clip (fθ , 1 − ε,
1 + ε) operates to restrict the value of fθ to remain within the interval [1 − ε, 1 + ε]. The
approach adopted in this work involves taking the minimum value between the clipped

Electronics 2023, 12, 1304 10 of 18

and unclipped targets, with the objective of preserving the original, unclipped target as
the lower bound of the final target (pessimistic bound). The loss function for updating the
critic is defined as:

∇ω L(Vω) = Es∼ρπθ

[
Es′ ,a

[
rt + Vω(s′)

]
−Vω(s)

]2 (23)

where s′ is the next state.
The MAPPO algorithm operates in a centralized training and decentralized execu-

tion manner. During the decentralized execution phase, each agent derives its actions
based on its private state observations ot

i . On the other hand, during the centralized train-
ing phase, the critic network aggregates global states St and global actions At to form a
Q-value network that optimizes the reward function. The global states are denoted as
St = {ot

1, ot
2, . . . , ot

n} and global actions are denoted as At = {at
1, at

2, . . . , at
n}. Each agent

has its own actor network and critic network.
The gradient of actor i can be calculated as:

∇θi =
1

Bn

B

∑
j=1

n

∑
k=1
∇θi min

[
πθi (at

k|o
t
k)

πθ̂i
(at

k|o
t
k)

Âi(t), clip(
πθi (at

k|o
t
k)

πθ̂i
(at

k|o
t
k)

, 1− ε, 1 + ε)Âi(t)

]
(24)

where Âi(t) is the estimation of the advantage function, which is defined as follows:

Âi(t) =
∞

∑
l=0

(γλ)l(ri(t + l) + γVi(S(t + 1 + l))−Vi(S(t + l))) (25)

where γ is the discount factor to balance the importance of current and future rewards, λ is the
parameter of GAE for bias–variance tradeoff in estimation, and Vi(S(t)) = ∑∞

l=0 γlri(t + l)
is the cumulative discounted reward, which also represents the state–value function esti-
mated by the critic of agent i as Vωi (S(t)). The loss of critic i is given by:

∇ωi =
1
2
[Vωi (S(t))−Vi(S(t))]

2 (26)

The algorithmic framework of MAPPO is given by Algorithm 1.

Algorithm 1 MAPPO for subproblems

1: Initialize Initialize actor networks θi, critic networks ωi, replay buffer D;
2: for episode = 1, 2, . . . , E do
3: Observe the initialization state S(0) = {ot

1, ot
2, . . . , ot

n}
4: for t = 1, 2, . . . , T do
5: for ni = 1, 2, . . . , N do
6: at

i ∼ πθi (at
i |ot

i).
7: Execution at

i get reward rt
i and next state ot+1

i .

8: Store the trajectory τ = {ot, at, st, rt, ot+1, st+1} to the buffer D.
9: Compute advantage estimate Â by (25).

10: for k = 1, 2, . . . , K do
11: Shuffle and renumber the data’s order.
12: for j = 1, 2, . . . , T

B do
13: randomly choose B group data from D.
14: for ni = 1, 2, . . . , N do
15: Update the actor and critic network parameters according to (23) and (26).
16: Update θ̂ ←− θ and ω̂ ←− ω for each UE.
17: Clear the replay buffer D.

Electronics 2023, 12, 1304 11 of 18

4.2. Offloading Location Selection Strategy

The offloading location selection problem is a discrete problem where the goal of each
agent aligns with the global goal. The high-level problem requires considering the states of
multiple agents, and the size of both state space and action space increases exponentially
with the number of UEs, thus creating the problem of curse of dimensionality. To solve
the above problem the MAPPO algorithm is applied and the strategy is referred to as the
high-MARL (HMARL) strategy. The HMARL strategy is designed such that each agent
generates generative actions from its private states and updates the network parameters
with the global states. The detailed design of the HMARL is listed as follows.

• States: The states consist of the system information observed by each agent at the
beginning of each time slot. The UE can observe the agent’s id ni, the amount of
data st

i , and the computational density wt
i of task at

i as well as the remaining power
bt

i and the collected energy Ehar
i (t) of the UE in the current time slot. In addition

information about the processing power of the MEC Fmec = [f mec
1 , f mec

2 , . . . , f mec
m] is

needed. Therefore, the observation of UE i at step t can be expressed as:

hot
i =

{
ni, st

i , wt
i , bt

i , Ehar
i (t), Fmec

}
(27)

• Action: In the offloading location selection problem, the action space is represented by
hat

i , which has a range of [0, m]. A value of 0 indicates that the task should be directly
discarded and no MEC server is selected for offloading, whereas values in the range
of [1, m] denote the identifier of the selected MEC server. The offloading ratio of the
task is resolved in the lower-level subproblem, therefore the action space does not
encompass the offloading ratio in this context.

hat
i =

{
Lt

i
}

(28)

• Reward: The reward function is designed to reflect the efficiency of the actions exe-
cuted in the environment and must be consistent with the system design for optimal
results. The reward function is designed to consider the task delay, energy consump-
tion, and task drop rate, and can be formulated as follows:

rt
i =

{
−penalt Dt

i > Tmax or hat
i = 0

−(αDt
i + βEt

i + φdropoutt) else
(29)

The action of the higher-level subproblem will be treated as part of the state of the
lower-level subproblem.

4.3. Task Offload Ratio Strategy

The low-level subproblem is the task offloading ratio problem. The algorithm treats
each UE as an individual agent and makes offloading decisions based on local observations
of the system and high-level subproblem action. The decision is to assign the ratio of tasks
to be executed locally and on the server, and the assignment aims to reduce the task delay,
energy consumption, and task drop rate. To improve the accuracy of the task assignment
rate, the offload rate will select actions from a continuous action space, so MAPPO is still
chosen as the low-level algorithm and the strategy is called low-MARL (LMARL).

• States: The state includes the decision of the HMARL and the local information
observed by the agent, which is denoted as:

lot
i =

{
ni, hat

i , st
i , wt

i , fi, bt, Ehar
t , pi, Fmec

hat
i

, ht
i

}
(30)

where fi is the the computing capacity of the UE i; pi is the is the transmitted power of
the UE; and ht

i and hat
i are the channel gain and high-level subproblem action.

Electronics 2023, 12, 1304 12 of 18

• Action: The action is to determine the task offloading ratio after determining the
task offload server location. The range of the action is a continuous range of [0, 1], Xt

i
represents the proportion of task executed locally, and 1−Xt

i represents the proportion
of MEC offloads. The action of the low-level subproblem can be expressed as:

lat
i =

{
Xt

i
}

(31)

• Reward: The purpose of the low-level algorithm is to reduce the task latency, energy
consumption, and task discard rate, which is consistent with the high-level algorithm,
so the reward function of the low-level algorithm is the same as the reward function
of the high-level algorithm. It is calculated by (29).

4.4. HDMAPPO Framework

In each time slot, the task computational offloading is decomposed into two sub-
problems: MEC server selection and task offloading ratio decision. HMARL is used in
a high-level subproblem to solve the MEC server selection problem for task offloading
and LMARL is used in the low-level subproblem to make the decision on the task of-
floading ratio. Both HMARL and LMARL are based on MAPPO. The HMARL starts at
the beginning of each time slot, where each agent generates the action hat

i based on its
observed private state. The LMARL, on the other hand, generates the continuous task
offloading ratio lat

i based on the observed information and the action hat
i obtained from

the HMARL. The generated actions are executed in the environment and rewards are
obtained as a result. MAPPO has the advantage of decentralized execution and centralized
training, with the tracks of the high-level and low-level algorithms stored in their respective
buffers as empirical samples for training. The detailed process of HDMAPPO is shown
in Algorithm 2.

Algorithm 2 Proposed HDMAPPO algorithm

1: Initialize Initialize HMARL’s actor networks hθi, critic networks hωi, replay buffer hD;
2: Initialize Initialize LMARL’s actor networks lθi, critic networks lωi, replay buffer lD;
3: for episode = 1, 2, . . . , E do
4: Observe the initialization state hS1 = {ho1

1, ho1
2, . . . , ho1

n}
5: for t = 1, 2, . . . , T do
6: for ni = 1, 2, . . . , N do
7: Lt

i ∼ πhθi
(at

i |hot
i) and Xt

i ∼ πlθi
(at

i |lot
i).

8: Lt = {Lt
1, Lt

2, . . . , Lt
n} and Xt = {Xt

1, Xt
2, . . . , Xt

n}
9: Execution Lt, Xt get reward rt and next state hSt+1 = {hot+1

1 , hot+1
2 , . . . , hot+1

n }.
10: Store the trajectory hτ = {hot, Lt, hSt, rt, hot+1, hSt+1} to the buffer hD.
11: Store the trajectory lτ = {lot, Xt, lSt, rt, lot+1, lSt+1} to the buffer lD.
12: Compute advantage estimate Âh and Âl by (25) .
13: for k = 1, 2, . . . , K do
14: Shuffle and renumber the data’s order.
15: for j = 1, 2, . . . , T

B do
16: randomly choose Bh group data from hD.
17: randomly choose Bl group data from lD.
18: for ni = 1, 2, . . . , N do
19: Update the actor parameters hθi and lθi according to (23).
20: Update the critic parameters hωi and lωi according to (26).
21: Update HMARL’s parameters hθ̂ ←− hθ and hω̂ ←− hω for each UE.
22: Update LMARL’s parameters lθ̂ ←− lθ and lω̂ ←− lω for each UE.
23: Clear the replay buffer hD and lD.

Electronics 2023, 12, 1304 13 of 18

5. Performance Evaluation

In this section, we evaluate the performance of the proposed HDMAPPO algorithm.
The simulation settings and numerical results are presented as follows.

5.1. Simulation Setup

We consider a multi-user, multi-MEC server edge computing network environment
with three APs, each equipped with an MEC server. The UEs are randomly distributed
within the coverage area of the APs and have varying computing capabilities, uniformly
distributed within a range of [1, 2] GHz. The CPU frequency of the edge server can be
expressed as f mec, uniformly distributed at [2, 3] GHz. The system time is divided into
discrete time slots and, in each time slot, each UE generates computational tasks with data
sizes in the range of [300, 500] Kbits and computational densities in the range of [800, 1200]
cycles/bit. The energy Ehar

i (t) collected by the UE at the beginning of the time slot is
uniformly distributed in [50, 150]mj. The key system parameters are listed in Table 2.

Table 2. Simulation parameter settings.

Parameters Value

CPU frequency of MEC server f mec [2, 3] GHz
CPU frequency of UE fi [1, 2] GHz

Bandwidth of channel W 10 MHz
Average interference power I 2× 10−27 W

Average transmit power of UE Pi 0.5 W
The data size of the task st

i [300, 500] Kbits
Computational density of the task wt

i [800, 1200] cycles/bit
The maximum tolerant delay of task Tmax 1 s

In the HDMAPPO algorithm each UE has two policies for solving the subproblems of
task offload location selection and task offload ratio, respectively. Each policy has an actor
network and a critic network, and the parameters of actor network and critic network are
listed in Table 3.

Table 3. Hyperparameters of HDMAPPO.

Component Network Structure Hyperparameter Value

Actor
fc(state_dim,128),tanh Learning rate of actor 0.0003

fc(128,128),tanh Learning rate of critic 0.0004
fc(128,action_dim),softplus Reward discount 0.99

Critic
fc(state_dim,128),tanh Optimizer Adam

fc(128,128),tanh K_epochs 10
fc(128,1) Clip_rate 0.2

We use latency, energy consumption, and task discard rate as judging metrics [7];
the task discard rate to some extent reflects the quality of service of the system. The
proposed method is compared with the following benchmark algorithm to prove the
simulation results.

• All Local (AL): All parts of the task are executed locally at UE.
• All MEC (AM): All parts of the task are randomly offloaded to one of the MEC servers.
• Random task offloading (RTO): Partial scale tasks will be randomly offloaded to one

of the MEC servers and the percentage of tasks offloaded is random.
• Independent proximal policy optimization offloading (IPPO): The IPPO [32] algorithm

considers each UE as a separate agent, with no direct interdependence between
the individual agents. Each agent independently executes the PPO algorithm and
generates both server selection and task offloading ratio decisions.

• Multi-agent deep deterministic policy gradient offloading (MADDPG): MADDPG [33]
extends deep deterministic policy gradient (DDPG) to a multi-agent environment by

Electronics 2023, 12, 1304 14 of 18

introducing a framework of centralized training and decentralized execution. Each
UE individually trains an actor network to generate actions based on local private
information and a centralized critic network is used to update policy parameters based
on global information.

5.2. Performance Comparison

Figure 3 displays the performance of the reward function as the number of training
iterations increases. In a multi-user multi-server edge computing network environment
with 30 UEs and 3 MEC servers, HDMAPPO, IPPO, and MADDPG all converge to a stable
reward value as the number of training rounds increase. The algorithm plateaus after 5000,
6000, and 8000 iterations for HDMAPPO, IPPO, and MADDPG, respectively. Our proposed
method exhibits faster convergence and a higher reward value compared to the other
algorithms. MADDPG converges the fastest, but with a lower reward value compared to
HDMAPPO and IPPO. IPPO has a reward value close to that of the proposed method, but
a slower convergence rate.

Figure 3. Convergence performance of reinforcement learning-based offloading strategies.

Figure 4 shows the trend of latency and task discard rate of the proposed algorithm
and other baseline algorithms as the number of UEs increases, respectively. The increase in
the number of UEs implies a more complex system environment, while the total number
of edge server resources remains unchanged, leading to intense competition for resources
among UEs. It is apparent that, as the number of UEs increases, the latency and task drop
rate increase for all strategies except for AL. This is because the resources of the MEC server
are limited and cannot accommodate the increased number of UEs. The three reinforcement
learning-based computational offloading strategies, IPPO, MADDPG, and HDMAPPO, all
outperform the other strategies, indicating that the DRL algorithm is able to optimize the
system’s latency. When the number of UEs in the system is 30, HDMAPPO reduces latency
by 4.8%, 9.7%, 56.9%, 59.7%, and 73.3% compared to IPPO, MADDPG, AM, RTO, and AL.
The task discard rate is reduced by 5.4%, 10.2%, 80%, 81.5%, and 89.8% compared to the
same algorithms. This shows that the proposed strategy is effective in reducing the latency
and task discard rate when the number of UEs increases.

Figure 5 shows the performance of the proposed algorithm in terms of reducing
energy consumption. The increase in task data size results in an increase in computational
workload and necessitates balancing energy consumption between local computation
and computation offloading. By increasing the data size of the task, the average energy
consumption of the task for the computational offloading strategy is examined. In the
system environment where the number of UEs is 40 and the computational power of
MEC servers is normally distributed at 5 GHz, the computational density of tasks is

Electronics 2023, 12, 1304 15 of 18

incremented in the range of [300, 500] kbits. It is obvious that the energy consumption of
all policies except AL increases with the size of the task data. The energy consumption
and task drop rate of the reinforcement learning-based approach are much better than
the other three strategies. The low energy consumption of the AM is because the energy
consumption of communication transmission is much lower than the energy consumption
of computing tasks locally, but the computational resources of the MEC server cannot
meet all computational demands, so there will be a higher discard rate. AL leads to high
energy consumption and task drop rate due to insufficient computational resources of UEs.
Three reinforcement learning-based strategies are able to reduce task energy consumption
without discarding tasks, where HDMAPPO reduces energy consumption by 6.41% and
11.2% compared to IPPO and MADDPG, respectively, for the task data volume of 400 kbits.

(a) The average latency of UEs (b) The average task drop rate of UEs

Figure 4. Impact of the number of UEs on the average task latency and task drop rate.

(a) The average energy consumption of UEs (b) The average task drop rate of UEs

Figure 5. Impact of the data size of a task on the average latency of the task and the task dropout rate.

Figure 6 shows the trend of the reward value of each offloading strategy in the system
as the computational density of the task increases. The increase in computational density
results in an increased computational load for the task, which makes it challenging for
the UE to complete the task within the maximum task tolerance time alone and causes
an increase in the task discard rate. The computational density of the task increases from
within [800, 1500] cycles/bit. It can be observe that the reward of all offloading strategies
tends to decrease as the computational density of the task increases. This is due to the
limited computational resources and the increase in computational density leading to a
larger computational load, resulting in lower reward values. AL has the lowest reward
value and the degree of change is not significant, because the UE’s computational power
and energy consumption makes it difficult to complete the task alone, and the drop rate of
the task is high at low task computational density, which leads to a small change in reward
value despite the change in computational density. The change in reward value of the three
reinforcement learning-based strategies first remains relatively stable as the computational

Electronics 2023, 12, 1304 16 of 18

density increases and then increases rapidly. This is because computational resources are
limited and, when the computational load is low, the task can be satisfied by decision
optimization but, when the load is higher than the amount of resources, only part of the
computational demand of the task can be satisfied resulting in a decrease of the reward
value. It is obvious that the proposed strategy is always better than the other strategies.
The proposed strategy improves the reward value by 6.32% and 11.6% compared to IPPO
and MADDPG for a computational density of 1300 cycles/bit of the task.

Figure 6. Impact of the calculation density of the task on the system’s rewards.

6. Conclusions

In this paper, we investigate the computational offloading problem in MEC networks
with energy harvesting, with the aim of optimizing the task offload location selection and
task offload ratio to minimize the system latency, energy consumption, and task drop rate.
To mitigate the issue of an oversized state space resulting from dynamic scenarios and
a large number of UEs in MEC system, we propose a computational offloading strategy
HDMAPPO based on multi-agent reinforcement learning. The strategy decomposes the
offloading problem into two subproblems, i.e., task offloading selection and task offloading
ratio allocation, and solves each subproblem using a multi-agent reinforcement learning
algorithm. This decoupled approach reduces the complexity of the problem. The numer-
ical results demonstrate that the proposed method significantly reduces latency, energy
consumption, and task drop rate compared to other benchmarks. Our proposed approach
has some limitations; it cannot be adapted to all edge computing scenarios. The state infor-
mation and actions need to be adjusted for different kinds of edge computing scenarios. In
the future, we will investigate the application of multi-agent reinforcement learning to the
task offloading problem in vehicular edge computing.

Author Contributions: Conceptualization, Y.S. and Q.H.; methodology, Q.H.; validation, Q.H.; for-
mal analysis, Y.S. and Q.H.; investigation, Q.H.; resources, Q.H.; data curation, Q.H.; writing—original
draft preparation, Q.H.; writing—review and editing, Q.H. and Y.S.; visualization, Q.H.; project
administration, Y.S.; funding acquisition, Y.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant Nos.
61763002 and 62072124), Guangxi Major projects of science and technology (Grants No. 2020AA21077007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1304 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

MEC Multi-access edge computing
AP Access points
MARL Multi-agent reinforcement learning
MAPPO Multi-agent proximal policy optimization
HDMAPPO Hierarchical double multi-agent proximal policy
WPT Wireless power transfer
EH Energy harvesting
IoT Internet of Things
MDP Markov decision process
MADDPG Multi-agent deep deterministic policy gradient
AL All local
AM All MEC
RTO Random task offloading
IPPO Independent proximal policy optimization offloading

References
1. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
2. Zhao, Y.; Hou, F.; Lin, B.; Sun, Y. Joint Offloading and Resource Allocation with Diverse Battery Level Consideration in MEC

System. IEEE Trans. Green Commun. Netw. 2023. [CrossRef]
3. Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z. Energy-efficient dynamic computation offloading and cooperative task scheduling in

mobile cloud computing. IEEE Trans. Mob. Comput. 2018, 18, 319–333. [CrossRef]
4. Yi, C.; Cai, J.; Su, Z. A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive

applications. IEEE Trans. Mob. Comput. 2019, 19, 29–43. [CrossRef]
5. Kumar, K.; Liu, J.; Lu, Y.H.; Bhargava, B. A survey of computation offloading for mobile systems. Mob. Netw. Appl. 2013,

18, 129–140. [CrossRef]
6. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw.

Comput. Appl. 2020, 169, 102781. [CrossRef]
7. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-based computation offloading for IoT devices with energy

harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]
8. Choi, K.W.; Aziz, A.A.; Setiawan, D.; Tran, N.M.; Ginting, L.; Kim, D.I. Distributed wireless power transfer system for Internet of

Things devices. IEEE Internet Things J. 2018, 5, 2657–2671. [CrossRef]
9. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Umar, A.I.; Khan, M.A.; Jhanjhi, N.Z.; Shorfuzzaman, M.; Masud, M. COME-UP:

Computation offloading in mobile edge computing with LSTM based user direction prediction. Appl. Sci. 2022, 12, 3312.
[CrossRef]

10. Zaman, S.K.u.; Jehangiri, A.I.; Maqsood, T.; Haq, N.u.; Umar, A.I.; Shuja, J.; Ahmad, Z.; Dhaou, I.B.; Alsharekh, M.F. LiMPO:
Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput.
2022, 26, 99–117. [CrossRef]

11. Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative, multi-agent games.
arXiv 2021, arXiv:2103.01955.

12. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC.
In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, Barcelona, Spain,
15–18 April 2018; pp. 1–6.

13. Li, C.; Xia, J.; Liu, F.; Li, D.; Fan, L.; Karagiannidis, G.K.; Nallanathan, A. Dynamic offloading for multiuser muti-CAP MEC
networks: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 2021, 70, 2922–2927. [CrossRef]

14. Ke, H.; Wang, J.; Deng, L.; Ge, Y.; Wang, H. Deep reinforcement learning-based adaptive computation offloading for MEC in
heterogeneous vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 7916–7929. [CrossRef]

15. Xu, J.; Ai, B.; Chen, L.; Cui, Y.; Wang, N. Deep Reinforcement Learning for Computation and Communication Resource Allocation
in Multiaccess MEC Assisted Railway IoT Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23797–23808. [CrossRef]

16. Qu, B.; Bai, Y.; Chu, Y.; Wang, L.e.; Yu, F.; Li, X. Resource allocation for MEC system with multi-users resource competition based
on deep reinforcement learning approach. Comput. Netw. 2022, 215, 109181. [CrossRef]

17. Zhang, Z.; Yu, F.R.; Fu, F.; Yan, Q.; Wang, Z. Joint offloading and resource allocation in mobile edge computing systems: An
actor-critic approach. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, Abu Dhabi,
United Arab Emirates, 9–13 December 2018; pp. 1–6.

18. Liu, T.; Zhang, Y.; Zhu, Y.; Tong, W.; Yang, Y. Online computation offloading and resource scheduling in mobile-edge computing.
IEEE Internet Things J. 2021, 8, 6649–6664. [CrossRef]

http://doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/TGCN.2022.3232700
http://dx.doi.org/10.1109/TMC.2018.2831230
http://dx.doi.org/10.1109/TMC.2019.2891736
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1109/JIOT.2018.2790578
http://dx.doi.org/10.3390/app12073312
http://dx.doi.org/10.1007/s10586-021-03518-7
http://dx.doi.org/10.1109/TVT.2021.3058995
http://dx.doi.org/10.1109/TVT.2020.2993849
http://dx.doi.org/10.1109/TITS.2022.3205175
http://dx.doi.org/10.1016/j.comnet.2022.109181
http://dx.doi.org/10.1109/JIOT.2021.3051427

Electronics 2023, 12, 1304 18 of 18

19. Ho, T.M.; Nguyen, K.K. Joint server selection, cooperative offloading and handover in multi-access edge computing wireless
network: A deep reinforcement learning approach. IEEE Trans. Mob. Comput. 2020, 21, 2421–2435. [CrossRef]

20. Wang, J.; Hu, J.; Min, G.; Zhan, W.; Zomaya, A.Y.; Georgalas, N. Dependent task offloading for edge computing based on deep
reinforcement learning. IEEE Trans. Comput. 2021, 71, 2449–2461. [CrossRef]

21. Peng, H.; Shen, X. Multi-agent reinforcement learning based resource management in MEC-and UAV-assisted vehicular networks.
IEEE J. Sel. Areas Commun. 2020, 39, 131–141. [CrossRef]

22. Liu, C.; Tang, F.; Hu, Y.; Li, K.; Tang, Z.; Li, K. Distributed task migration optimization in MEC by extending multi-agent deep
reinforcement learning approach. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1603–1614. [CrossRef]

23. Ke, H.; Wang, H.; Sun, H. Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in
Edge Computing Environment. Electronics 2022, 11, 2394. [CrossRef]

24. Zhou, H.; Long, Y.; Gong, S.; Zhu, K.; Hoang, D.T.; Niyato, D. Hierarchical Multi-Agent Deep Reinforcement Learning for
Energy-Efficient Hybrid Computation Offloading. IEEE Trans. Veh. Technol. 2022, 72, 986–1001. [CrossRef]

25. Huang, X.; Leng, S.; Maharjan, S.; Zhang, Y. Multi-agent deep reinforcement learning for computation offloading and interference
coordination in small cell networks. IEEE Trans. Veh. Technol. 2021, 70, 9282–9293. [CrossRef]

26. Chen, Z.; Zhang, L.; Pei, Y.; Jiang, C.; Yin, L. NOMA-based multi-user mobile edge computation offloading via cooperative
multi-agent deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 350–364. [CrossRef]

27. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.C.; Niyato, D. Multi-agent deep reinforcement learning for task offloading in UAV-assisted
mobile edge computing. IEEE Trans. Wirel. Commun. 2022, 21, 6949–6960. [CrossRef]

28. Lin, W.; Ma, H.; Li, L.; Han, Z. Computing Assistance From the Sky: Decentralized Computation Efficiency Optimization for
Air-Ground Integrated MEC Networks. IEEE Wirel. Commun. Lett. 2022, 11, 2420–2424. [CrossRef]

29. Gan, Z.; Lin, R.; Zou, H. A Multi-Agent Deep Reinforcement Learning Approach for Computation Offloading in 5G Mobile
Edge Computing. In Proceedings of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), IEEE, Taormina, Italy, 16–19 May 2022; pp. 645–648.

30. Gong, Y.; Yao, H.; Wang, J.; Jiang, L.; Yu, F.R. Multi-agent driven resource allocation and interference management for deep edge
networks. IEEE Trans. Veh. Technol. 2021, 71, 2018–2030. [CrossRef]

31. Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In
Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE,
San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

32. de Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv 2020, arXiv:2011.09533.

33. Chen, X.; Liu, G. Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality
in mobile edge networks. IEEE Internet Things J. 2021, 8, 10843–10856. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMC.2020.3043736
http://dx.doi.org/10.1109/TC.2021.3131040
http://dx.doi.org/10.1109/JSAC.2020.3036962
http://dx.doi.org/10.1109/TPDS.2020.3046737
http://dx.doi.org/10.3390/electronics11152394
http://dx.doi.org/10.1109/TVT.2022.3202525
http://dx.doi.org/10.1109/TVT.2021.3096928
http://dx.doi.org/10.1109/TCCN.2021.3093436
http://dx.doi.org/10.1109/TWC.2022.3153316
http://dx.doi.org/10.1109/LWC.2022.3205503
http://dx.doi.org/10.1109/TVT.2021.3134467
http://dx.doi.org/10.1109/JIOT.2021.3050804

	Introduction
	Related Work
	System Model
	Local Computing Mode
	Mobile Edge Execution Model
	Energy Harvesting
	Problem Formulation

	Computation Offloading Decision Strategy
	MAPPO Algorithm
	Offloading Location Selection Strategy
	Task Offload Ratio Strategy
	HDMAPPO FrameworkThe overall algorithm details

	Performance Evaluation
	Simulation Setup
	Performance Comparison

	Conclusions
	References

