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Abstract: The knowledge of heart and respiratory rates (HRs and RRs) is essential in assessing
human body static. This has been associated with many applications, such as survivor rescue in
ruins, lie detection, and human emotion detection. Thus, the vital signal extraction from radar echoes
after pre-treatments, which have been applied using various methods by many researchers, has
exceedingly become a necessary part of its further usage. In this review, we describe the variety
of techniques used for vital signal extraction and verify their accuracy and efficiency. Emerging
approaches such as wavelet analysis and mode decomposition offer great opportunities to measure
vital signals. These developments would promote advancements in industries such as medical and
social security by replacing the current electrocardiograms (ECGs), emotion detection for survivor
status assessment, polygraphs, etc.

Keywords: impulse radio ultra-wideband (IR-UWB) radar; noncontact; short-range; vital signs

1. Introduction

Human vital signs, including cardiopulmonary signals, provide valuable parameters for
the estimation of the physiological state of and the clinical reference for human beings [1,2].
There are quite a few applications in various fields for measuring these vital signs, for ex-
ample, monitoring sleep conditions [3,4], for training processes [5,6], and other areas in
combination with various technologies [7–9]. There are two approaches that manage to ac-
quire these parameters: contact measurement based on physical ergonomics and non-contact
monitoring based on radar signals. Wearable devices based on measurement techniques such
as ECG, PPG, or heart pulses [10–14] still face certain limitations considering the various
circumstances related to continuous monitoring. These can impact the subjects, causing
inconvenience and placing a burden on certain groups such as the elderly, newborns, and
patients with skin problems. Instead, contactless monitoring is capable of handling such prob-
lematic situations [15–17]. Furthermore, the contactless method of human monitoring also
became essential during the COVID-19 pandemic [18], which caused reduced face-to-face
exposure between subjects and system operators, such as patients and nurses.

Instead of obtaining the vital signals directly from the human body, non-contact
monitoring takes advantage of radar signals to collect and evaluate the useful details of
cardiopulmonary activities. Continuous-wave (CW) radar has been introduced for the
remote monitoring of human subjects [19–21]. Frequency-modulated continuous-wave
(FMCW) radar has also been applied by many researchers to measure the HR and the
RR of a single target [22,23] or multiple targets [24] within a distance of a few meters.
Moreover, impulse radio ultrawide-band (IR-UWB) radar has been introduced due to
its capability of monitoring vital signalsin complex circumstances. For close distances,
a type of wireless body area network (WBAN) [25] has been proposed using a UWB
radar sensor for the detection of the respiration rate (RR) and the heart rate (HR) by side
monitoring. For relatively long distances, through-wall monitoring of patients for HR and
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RR estimation [26–28], their body movements [29,30], or also multiple targets [31,32] has
been applied.

For the IR-UWB radar technology, the basic mathematical model describing the relation
between the radar signal and human cardiopulmonary activities was introduced by [33,34],
which helps further develop the estimation of the RR and the HR by revealing the inter-
modulation product and harmonics of the respiration and heartbeat frequencies. To gain
precise values of the RR and the HR, many algorithms have been introduced to process the
extracted signals after various pre-treatments [35]. Thus, the performance of the proposed
algorithms requires the verification of their estimation accuracy and real-time monitoring, as
these two figures are essential for early warning and the timely response to a human subject
who presents an urgent status, which could minimize possible injuries and save precious
time for the intervention. This precious time saved would result from lessening the necessary
processing time needed for and increasing the accuracy of the obtained data on the estimation
of the patient’s status, saving lives [36,37].

In this review, the algorithms used for the vital signals’ extraction are presented and
discussed, especially regarding their accuracy. The remainder of this review is organized as
follows: Section 2 presents the basic structure of the radar system and the mathematical
model of human cardiopulmonary activity monitoring. Section 3 explains the extraction of
the cardiopulmonary signals and the evaluation standards for the algorithms, as well as
the data used for processing. The results of each algorithm applied for the estimation of the
HR and the RR are presented in Section 4.

2. The Monitoring Model Using IR-UWB Radar

This section includes the introduction to the structure of the UWB radar system and
the monitoring of the target. The mathematical model of the human cardiopulmonary
activity for the further processing of the received signals is introduced.

2.1. The Simplified Structure of the UWB Radar System

The simplified structure of the system, shown in Figure 1, mainly consists of two parts:
the human–computer interaction terminal and the radar host. The human–computer
interaction terminal works as a bridge between the user and the radar host, providing the
commands and performing the transmission of the data. Moreover, the radar host consists
of four main components: the receive antenna (RX), the transmit antenna (TX), the radio
frequency (RF) transceiver front-end, and the control and processing system.

Figure 1. The simplified structure of the IR-UWB radar system.

The RX and TX were designed for radar signal reception and transmission, respec-
tively. The RF transceiver front-end is mainly used to transmit electromagnetic pulses
and to sample the radar echoes, and it includes the transmitter and receiver antennas. The
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controlling and processing system performs the data collection and processing and hosts
the main control system, which executes the commands input by the user.

The UWB radar system was developed by the School of Automation of Central South
University. The trigger pulse from the pulse transmitter module is emitted by the TX
antenna with a repetition frequency of 400 KHz. After being reflected, the signals are
obtained by the RX antenna and sampled by the sampling unit module; then, they are
converted into a digital signal by the analog-to-digital converter (ADC) and stored by the
field-programmable gate array (FPGA) in the data collecting module. The parameters of
the radar system are listed in Table 1.

Table 1. UWB radar system parameters.

Parameter Value

Center frequency 500 MHz
Total bandwidth 1 GHz
Sampling Points 768

Effective Range for vital signs monitoring 8 m max
Effective Pulse width 2 ns

Pulse repetition frequency by equivalent sampling 8 Hz

2.2. The Monitoring of the Human Body

The human cardiopulmonary activities generate a series of chest wall movements,
which change the distance between the radar antenna and the chest. This alteration could
be detected based on the time-of-flight (ToF) of the radar signal. Typical human respiration
ranges from 12 to 30 breaths per minute (bpm1) with a frequency band between 0.2 and
0.5 Hz and a chest movement amplitude of 0.5 to 1.5 cm. In addition, a typical heart rate
ranges from 48 to 150 beats per minute (bpm2), corresponding to a higher frequency band
between 0.8 and 2.5 Hz, arousing a chest motion amplitude of 2 to 3 mm. The human chest
displacements could be extracted, considering the ToF of received radar echoes to estimate
human vital signs. A mathematical model is introduced to reveal the exact procedures.
Figure 2 shows that monitoring human cardiopulmonary activities could be presented as
observing the ToF through d(t). Two important parameters are the displacement amplitude
of respiration dr and heartbeat dh. In addition, d0 is the chest-to-radar (CTR) distance.

Figure 2. The monitoring of the human body.

Considering the chest wall as an infinite plane, the path the mth reflected wave trav-
elled from the body could be presented as:

d = d0 + dr sin(2π frt) + dh sin(2π fht)
t = mTs

(1)
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where Ts is the pulse repetition interval, fr and fh are the frequencies of respiration
and heartbeat.

Since there are three factors, the CTR distance and associated displacements of car-
diopulmonary activities, responsible for the time delay, the ToF of the signal received could
be expressed as:

τd(t) = τ0 + τr sin(2π frt) + τh sin(2π fht) (2)

where τ0 = 2d0
c is the sum of the ToF between target and radar, τr =

2dr
c and τh = 2dh

c are
delays caused by respiration and heartbeat displacements, and c is the velocity of light.

In this situation, the received signal in fast time could be expressed as:

r(t, τ) = ∑
j=1

Aj p(t, τ − τj) + A0 p(t, τ − τd(t)) (3)

where p(t, τ) is the normalized pulse signal received, Aj represents the amplitude of the
received signal from the jst static objects and τj as its delay, A0 is the amplitude of the
received signal reflected from the target.

Then, the data matrix of radar echoes sampled could be expressed as:

R[m, n] = r(t, τ = nTf ) (4)

where Tf is the sampling period in fast-time, and n represents the sampling points of the
signal in fast time.

3. The Materials and Evaluation Standards

This section introduces the vital sign signal extraction from the obtained data matrix
and the evaluation standards for algorithm performances. In addition, some essential
details of the measured and simulated data are explained.

3.1. The Extraction of the Required Signal

With the data matrix, obtaining the human vital signs signal then becomes a problem.
One simple extraction approach is locating the maximum energy of each reflected echo.
The calculation of energy using the data matrix could be expressed as:

E[n] =
M

∑
m=1
|R[m, n]|2 (5)

where M represents the total number of slow-time sampling points.
Then, the demanding section with maximum energy could be expressed as:

Emax[k] = max(E[i]), i = 1, 2, . . . , N (6)

where k is the signal section required and N represents the total samples in fast time.
The data selected Dk for further processing could be expressed as:

Dk = R[m, k], m = 1, 2, . . . , M (7)

In addition, a schematic of the data matrix and selected Dk is shown in Figure 3.
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Figure 3. Data selected with maximum energy.

3.2. The Evaluation Standard

Different applications of vital signs extraction make requests for various algorithm
performances. The accuracy of HRs and RRs is emphasized for assessments such as sleep
quality and physical functional assessment of the elderly. Another factor, the real-time
capability, which could be concluded as the monitoring interval for an algorithm to reach an
acceptable accuracy, is demanded in scenarios such as emergency treatment and real-time
vital signs monitoring during serious surgery. Under such conditions, this ability could be
life-saving, with accurate vital signs being provided in time. Thus, the evaluation standards
are organized as follows:

3.2.1. Result Accuracy

To evaluate the performance of each algorithm, the accuracy of the RR and the HR
becomes important. The resulting accuracy of each algorithm processing the same data
section could be measured as follows:

Er =
|Dextract − Dreal |

Dreal
× 100% (8)

where Dreal is the actual HR or RR of the target and Dextract is the results obtained by the
particular algorithm after processing.

3.2.2. Real-Time Estimation Capability

HRs and RRs estimation usually include two major steps: obtaining a data matrix
for a limited time and processing the data using an applied algorithm. Thus, the pre-
response time before further body assessments separates into the monitoring interval and
the processing time of one algorithm. Evaluations of the two parameters become essential
since they challenge the real-time performance of each algorithm.

The typical human respiration frequency ranges from 0.2 to 0.5 Hz, corresponding to
one cycle Tr from 5 s to 2 s. Fortunately, all the algorithms have a processing time of fewer
than 0.2 s, which is unavailable for a persuasive conclusion. In addition, it is negligible
compared to the respiration cycle. Therefore, we consider the monitoring interval the
primary factor in estimating the real-time capability. In addition, the acceptable estimation
error of 10% is selected to verify it.

3.3. The Measured and Simulated Data

The four data are separated into three levels: 3T, 2T, and T. Furthermore, the standard
interval T is set to be 5 s to include at least one complete cycle of respiration and heartbeat.
In addition, four groups of data, including measured and simulated ones, are chosen to
make it comprehensive.
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3.3.1. The Measured Data

Using the developed UWB radar mentioned in Section 2.1, the integrated system is 1.2 m
above the ground. The experimental setups with a human subject are shown in Figure 4.

Figure 4. Experimental setup with human subject.

The HR and the RR of participants are obtained 6 m in front of the radar, sitting while
monitoring, which is listed in Table 2. The monitoring of subjects is sustained for 30 s.
These data are separated to suit the expected time levels, 5, 10, and 15 s.

Table 2. The Measured data.

Items Sections RR (bpm1) HR (bpm2) Time Length (s)

Data 1
Data 1 Section 1

19.8 76
5

Data 1 Section 2 10
Data 1 Section 3 15

Data 2
Data 2 Section 1

13.5 72
5

Data 2 Section 2 10
Data 2 Section 3 15

3.3.2. The Simulated Data

HRs and RRs are different between people groups, and they also vary under different
situations. To make it comprehensive, the dataset must include extreme conditions for
performance assessments. However, some HRs and RRs combinations require too much
time and money for them to be acquired in the actual monitoring. Thus, the simulation
compensates for such a situation.

The characteristics of the simulated data are listed in Table 3. The two simulated data
are produced under the exact physical settings as measured ones.

Table 3. The simulated data.

Items Sections RR (bpm1) HR (bpm2) Time Length (s)

Data 3
Data 3 Section 1

30 48
5

Data 3 Section 2 10
Data 3 Section 3 15

Data 4
Data 4 Section 1

12 150
5

Data 4 Section 2 10
Data 4 Section 3 15

The uncommon combinations of HRs and RRs simulate the pathological characteristics
caused by some severe diseases. One group includes acute respiratory distress syndrome
(ARDS) [38], acute exacerbation of chronic obstructive pulmonary disease (AECOPD) [39],
and acute heart failure (AHF) [40], with symptoms involving high respiration activity and
a decline in the HR comparing to an ordinary situation. Others, including viral myocarditis
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or chronic cor pulmonale, might lead to respiratory failure, arrhythmia, or overt heart
failure [41,42]. Thus, the extreme values of the HR and the RR are in order to examine the
performance of algorithms under such emergencies.

4. Algorithms and Results Discussion

This section introduces and compares various algorithms proposed by researchers
for different vital signs extraction circumstances using IR-UWB radar. Some algorithms
are improvements or modifications of other developed approaches applied early in other
fields. Thus, comparing these algorithms with specialized ones for future research and
application is necessary. A classification of introduced algorithms is managed to make it
easier. To begin with, the brief structures of all algorithms are presented in Figure 5.

Figure 5. Brief introduction of vital signs extraction algorithms.

4.1. The Frequency Method (FM)

There are algorithms using frequency domain parameters to identify the HR and
the RR components of targets using approaches such as fast Fourier transform (FFT)
and chirp Z-Ttansform (CZT) [43] which can convert a signal from the time domain to
frequency domain. The amplitude of the spectrum, even the linear relationship between
the fundamental frequency and harmonics of heartbeat and respiration, is used to estimate
HRs and RRs. Some typical algorithms are introduced and evaluated in this section.
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4.1.1. Introduction of The FM Algorithms

The global peak selection (GPS) algorithm: Using the maximum magnitude of the
spectrum after FFT, it asserts the HR and the RR in their corresponding frequency band.
However, such an estimation might be strongly distorted by the harmonics and intermodu-
lation products within the spectrum, leading to inaccurate values. This is demonstrated
below, in Section 4.1.2.

The moving target indicator (MTI)—CZT algorithm: To reduce the interference of
such an effect after direct FFT of the Dk, the MTI technique is introduced to attenuate the
respiration harmonics in the spectrum as the finite impulse response filter. In addition,
to increase the accuracy of the operation, the CZT is applied to provide better resolution
than the FFT in the selected frequency band without increasing sampling points [34]. The
exact sequence of the algorithm uses the CZT to obtain a high-resolution spectrum and the
maximum peak as RR. Then, the MTI operates and helps us to obtain a clear HR peak in
the spectrum. Since there are no more relative RR components in the HR frequency band,
there is no doubt that the performance is a promotion compared to the GPS.

The harmonic path (HAPA) algorithm: Another improvement is made in the HAPA
algorithm, which realizes the HR and the RR estimation using the linear relation between
fundamental and harmonic frequency of respiration and heartbeat [44]. The possible peaks
of RRs and HRs with values above the preset threshold could generally form a path after
FFT of Dk. In addition, the frequency estimation is based on the average inter-peak distance
of the path. To make it available, we organize the principle of the preselected threshold of
HAPA to be the same as in [44], which is 75% percentile of the obtained spectrum. However,
it is also an issue in this principle, which might lead to no-path failure when forming a path
using signals with interference. Unfortunately, the distortions happen in actual processing,
with possible peaks ignored because of the threshold.

The harmonic multiple loop detection (HMLD) algorithm: Unlike the HAPA algo-
rithm, the HMLD offers threshold-free processing and considers only two components,
the fundamental and the second harmonics of HRs and RRs [45]. The HMLD algorithm
initially selects the pending fundamental values of the RR and the HR after the FFT of
Dk. Then, a reselection is issued if no pending second harmonics are corresponding. The
benefits are obvious since the worries of suitable preset threshold disappear, and all ghost
peaks are considered. Moreover, no problem exists with no-path concerns because of less
distortion in the fundamental and second harmonic frequencies.

The wavelet transform (WT) algorithm: some researchers seek another time-frequency
analysis approach, the WT, to realize vital sign estimation. Compared to Fourier transforms,
the WT offers various wavelets for signal analysis, which allows researchers to find the
most suitable mother wavelet to analyze the signal. However, the performance of all
wavelets needs to be tested before application. The Meyer and Morlet wavelet is examined
for the HR and the RR estimation [46,47]. Some relevant parameters of WT, the discretized
wavelet scale, which is usually an estimated empirical value, the sampling frequency of
fs = 23, and the selected center frequency f0 = 28 are settled. Considering the complex
expression of the Meyer wavelet and its high similarity to the heartbeat in the waveform,
the accuracy of using the Meyer wavelet might be superior to that of the Morlet wavelet at
the HR estimation.

4.1.2. Processing Results Analysis

Figure 6 shows the spectrum of two vital sign signals extracted with a duration of
30 s with the same RR and HR as an example to verify harmonics interference. Figure 6a
shows a distinct boundary between the RR and HR components due to a weak respiration
activity. However, the situation is changed once vigorous respiration is involved. The HR
estimation becomes complicated with relatively strong respiration, as shown in Figure 6b.
The RR harmonic peak appears near the fundamental HR frequency, which might lead to
false HR estimation. In addition, such a phenomenon is familiar and severe, considering
various human body statuses and monitoring circumstances.
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Figure 6. Spectrum comparison between different respiration situations. (a) Respiration with 1 cm
amplitude; (b) Respiration with 1.5 cm amplitude.

Thus, we first compare the processing results of each algorithm under extreme con-
ditions to verify the performance using the simulated data. The HAPA algorithm faces
no-path failures in both HRs and RRs estimation, as listed in Table 4. It has to be excluded
from further FM algorithms comparison.

Table 4. The processing results of HAPA algorithm.

Section RR Error HR Error

Data 3 Section 1 Failure Failure
Data 3 Section 2 6.6% 6.3%
Data 3 Section 3 6.6% 8.3%

Data 4 Section 1 1.0% Failure
Data 4 Section 2 16.7% 0.0%
Data 4 Section 3 11.1% 1.3%

As shown in Figure 7, all FM algorithms have problems with data 3-processing, which
reveals a challenge in close frequency analysis. Although many perform poorly except the
MTI–CZT, the RR estimation seems acceptable with an error lower than 10% once with an
extended data length: 2T and 3T.

Figure 7. The simulated data processing error of different FM algorithms (RR).

However, the situation is altered when it comes to HR. None of them could separate
the actual HR from the interference of RR harmonics in data 3 at an error under 10%
according to Figure 8. Sadly, all FM algorithms are challenged by data 3-processing in HR
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estimation. Apart from data 3-processing, the HR results of data 4-processed by the GPS
and the HMLD is also unsatisfactory, with errors of section 1 and 2 above 20%. However,
the GPS is excluded from further estimation for its even worse performance in processing
section 3. On the other hand, the performance of some algorithms is acceptable in limited
situations, such as the MTI–CZT and the WT–Meyer in data 4-processing.

Figure 8. The simulated data processing error of different FM algorithms (HR).

The average error of these two algorithms in processing data 4 is listed in Table 5.
Except for the two, the HMLD, with an average error of near zero in RR estimation, and
the WT–Morlet, with an average error of 3.03% in HR estimation, stand out.

Table 5. The average error of data 4-processing.

Algorithm RR Error HR Error

MTI–CZT 1.20% 4.93%
WT–Meyer 0.83% 1.00%

Moreover, the algorithm performance also requires verification in actual monitoring
situations. With the results of the extreme test, we selected four FM algorithms for assess-
ment: the MTI–CZT, HMLD, and WT algorithms with two wavelets. The processing results
are shown in Figure 9, with numbers marked on those below 10% for clarity.

Figure 9. The measured data processing error of selected FM algorithms (RR).

The MTI–CZT has the best capability of obtaining high-accuracy RR results with
limited time in section 2- and 3-processing. However, the FM algorithms struggle with
accurate RR estimation using section 1 data with only one respiration cycle. Moreover,
the RR estimation with the time length of 2T must be better to meet the required average
error below 5%. In the HR estimation, the situation is slightly better. Despite a still
unacceptable error in section 1 processing, the continuous observation of 10 s is adequate
for HR estimation with tolerable error except for the HMLD algorithm when processing
the signal 2 section 2, as shown in Figure 10.
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Figure 10. The measured data processing error of selected FM algorithms (HR).

The average error of these four algorithms processing 3T signal is listed in Table 6.
The MTI–CZT algorithm has the best RR estimation accuracy as in other signal processing
situations. In addition, the WT–Meyer algorithm has the best HR estimation accuracy once
the samples are adequate.

Table 6. The average error of 15 s monitoring using FM algorithms.

Algorithm RR Error HR Error

MTI–CZT 2.65% 5.90%
HMLD 6.25% 1.45%

WT–Meyer 7.70% 0.45%
WT–Morlet 5.75% 3.70%

4.2. The Decomposition Method (DM)

Unlike the FM, the DM manages to separate the demanded HRs and RRs from obtained
signals based on the characteristics of a signal itself. The DM algorithms decompose human
vital sign signals into components containing respiration and heartbeat information, called
intrinsic mode functions (IMFs) in some algorithms. The HR and the RR could then be
reconstructed by analyzing the energy of obtained IMFs in the corresponding frequency
band. Then, the HR and the RR frequency are available by applying the FFT to the
reconstructed signal. This section introduces and evaluates some typical RRs and HRs
extraction algorithms using IR-UWB radar.

4.2.1. Introduction of the DM Algorithms

The empirical mode decomposition (EMD) algorithm: The EMD algorithm, proposed
by Dr Huang in [48], is introduced for vital sign signal extraction in [49]. This paper applies
the EMD algorithm for HRs and RRs estimation after determining the distance gate using
Permutation Entropy. A critical advantage of the EMD is its adaptiveness. Calculating
the average value of the upper and lower envelopes of a signal by its extreme points is an
essential step of the EMD to obtain IMFs, depending only on the input signal. With Dk as
the input, the IMFs are obtained within seconds, just like other DM algorithms.

The ensemble empirical mode decomposition (EEMD) algorithm: The EEMD algo-
rithm, an enhanced version of the EMD, solves the multi-mode problems of the EMD
algorithm [50]. It was introduced in vital sign signal processing in [51]. Proper IMFs could
be obtained with the added noise during the process. However, the introduced noise
becomes another problem threatening the result accuracy. Thus, two different parameters
play an essential role in the performance of the EEMD algorithm: the ensemble number
of the EEMD and the ratio of the standard deviation of the added noise. The results face
strong distortion once the ensemble number is not significant enough to eliminate the side
effect of noise. A compromise must be made to balance the processing accuracy and the
processing time in practice. In this paper, the particular ensemble number is set to 50, and
the standard deviation of the added noise is set to 0.2, just as the exact parameters in [51].
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The variational mode decomposition (VMD) algorithm: Another DM algorithm, the
VMD [52] is also introduced into vital sign signal processing [26,53]. It has a parameter
needed value pre-assignment, the number of intrinsic modes. This paper sets the exact
value to 4, a practical value, as found in [26]. It combines the Wiener filtering, the Hilbert
transform, and heterodyne demodulation to realize the decomposition. In addition, the
VMD introduces a strict constraint upon the IMFs in [52], which differs from the EMD and
the EEMD.

The empirical wavelet transform (EWT) algorithm: Unlike traditional wavelet trans-
form requiring a mother wavelet, the EWT algorithm provides an adaptive wavelet trans-
form approach [54]. It obtains the advantages of both adaptive decomposition algorithms
such as EMD and the merits of the wavelet transform. The algorithm is introduced in vital
sign signal processing in [30]. With Dk as the input, the HR and the RR could be obtained
by analyzing their sub-signals. A straightforward approach is to locate the corresponding
peak in the spectrum.

4.2.2. Processing Results Analysis

The simulated data is introduced to examine the DM algorithms in extreme situations.
In addition, the comparison of data 3-processing is emphasized, considering the less
optimistic performance of the FM algorithms in all three sections. The processing accuracy
of all four DM algorithms is shown in Figure 11. The estimation of RRs with long data
length, 2T and 3T, is acceptable with error under 10% except for the VMD. In addition,
the VMD and the EWT manage the RR estimation of section 1 with errors of less than
1%. As for data 4-processing, the preset modes number appears inappropriate, leading
to poor performance of the VMD. As discussed, the same inadequacy happens in the
EEMD processing, leading to an apparent accuracy decrease with the diminishing of
samples. The processing error of the EEMD increases from 3% of section 3 to nearly 30% of
section 1. However, the EWT performs steady RR estimation despite the conditions, with
an estimation error of less than 5% in all data sections.

Figure 11. The simulated data processing error of different DM algorithms (RR).

Because of the strong distortion of closed RR frequency, the DM algorithms fail to
realize accurate HR estimation of data 3, as the FM algorithms. The processing error of HRs
is shown in Figure 12. However, the HRs estimation of data 4 reveals delightful accuracy.
The EEMD, VMD, and EWT with average errors of 0.07%, 0.43%, and 0.3%, respectively,
are all less than one bpm2.

Moreover, the algorithm performance also requires verification in actual monitoring
situations. The results of RRs estimation are shown in Figure 13.

The accuracy of the EEMD seems unpleasant when processing 5 seconds of data with
nearly 40% error in section 1 and almost 20% error in data 2. However, the performance of
the EEMD improved since the monitoring time increased to 2T, which becomes better than
the accuracy of the EMD in RRs estimation. As for the VMD and the EWT, the estimation
accuracy also reveals a pattern of increasing accuracy with augments of samples. This is
also revealed in HRs estimation as shown in Figure 14.
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Figure 12. The simulated data processing error of different DM algorithms (HR).

Figure 13. The measured data processing error of different DM algorithms (RR).

Figure 14. The Measured data processing error of different DM algorithms (HR).

All four algorithms have proved capable of HRs estimation in a normal cardiopulmonary
condition with enough samples. None of them reaches a 10% estimation error. However,
that situation altered once the samples decreased. The EMD, the EEMD and the VMD suffer
inaccuracy in varying degrees. To further verify the performance of these algorithms, the
average error of these four algorithms processing 3T signal is listed in Table 7.

Table 7. The average error of 15 s monitoring using DM algorithms.

Algorithm RR Error HR Error

EMD 8.45% 0.60%
EEMD 3.60% 1.60%
VMD 0.60% 2.50%
EWT 2.25% 1.05%

The EEMD, VMD, and EWT algorithms could extract vital signs with errors below 5%
if the time length of 15 s is acceptable. However, 15 s is hardly a real-time approximation.
Thus, the real-time capability still needs to be examined.
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4.3. The Overall Analysis of Real-Time Capability

Considering the previous failures in estimating close RR and HR situations, as in
data 3, we select the appropriate one from the rest to assess the real-time capability of
these algorithms. We choose measured data for analysis to gain conclusions close to typical
circumstances. The outcomes of these algorithms with the average time spent to reach an
estimation error of 10% are shown in Figure 15.

Figure 15. The average time spent on algorithms reach a 10% estimation error.

The values present the most capable algorithm, the EWT, with the time required for
RR and HR estimation less than 5 s. Moreover, the VMD and the MTI–CZT show real-time
ability on the RRs estimation. The WT–Morlet also performs well in the HRs extraction
though the WT algorithm has a problem with RRs.

5. Conclusions

This paper comprehensively reviews the research and application of different non-
contact human vital signal extraction methods. In addition, it presents the examination of
algorithms using both measured and simulated data for simulating different monitoring
situations. The processing accuracy and the time robustness are verified based on the
results of each algorithm. Some reveal accredited performance in HR and RR estimation in
given conditions. Unfortunately, many algorithms are unavailable for vital signs extraction
under certain extreme conditions. Thus, further developments are required to manage
these challenges and have accurate human vital signs extraction ability.

Moreover, the processing performance of particular algorithms in different vital sign
extraction varies. Therefore, assembling multiple algorithms for better detection accuracy
and system performance is a possible solution for promoting estimation performance.
Furthermore, applying neural networks and feature detection for the pre-treatment or
co-processing of the received data would also have the potential for accurate HR and RR
estimation, which is also helpful for human vital sign extraction.
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