
Citation: Qian, F.; Su, K.; Liang, X.;

Zhang, K. Task Assignment for UAV

Swarm Saturation Attack: A Deep

Reinforcement Learning Approach.

Electronics 2023, 12, 1292. https://

doi.org/10.3390/electronics12061292

Academic Editor: Shiho Kim

Received: 13 February 2023

Revised: 26 February 2023

Accepted: 1 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Task Assignment for UAV Swarm Saturation Attack: A Deep
Reinforcement Learning Approach
Feng Qian, Kai Su * , Xin Liang and Kan Zhang

Department of Management Engineering and Equipment Economics, Naval University of Engineering,
Wuhan 430033, China
* Correspondence: keppelsue@163.com

Abstract: Task assignment is a challenging problem in multiple unmanned aerial vehicle (UAV)
missions. In this paper, we focus on the task assignment problem for a UAV swarm saturation attack,
in which a deep reinforcement learning (DRL) framework is developed. Specifically, we first construct
a mathematical model to formulate the task assignment problem for a UAV swarm saturation attack
and consider it as a Markov Decision Process (MDP). We then design a policy neural network using
the attention mechanism. We also propose a training algorithm based on the policy gradient method
so that our agent can learn an effective task assignment policy. The experimental results have shown
that our DRL method can generate high-quality solutions for different problem scales, which meets
the requirements of real-time and flexibility in the actual situation.

Keywords: task assignment; deep reinforcement learning (DRL); unmanned aerial vehicles (UAVs);
saturation attack

1. Introduction

In recent years, the technology and applications of unmanned aerial vehicles (UAVs)
have developed rapidly. Compared with manned aerial vehicles, UAVs have higher ma-
neuverability and better operational sustainability. The use of UAVs for mission execution
can effectively reduce personnel risk and maintenance costs, and can therefore replace
manned vehicles to perform some harsh, dangerous, and tedious missions. A typical
application of UAVs in the military could be UAV Swarm Saturation attack [1]. Specifically,
it refers to how the attacking side adopts a high density, continuous attack strategy to cause
the enemy’s defense system to collapse. Then, the UAV Swarm will have a much higher
probability of breaking through defenses and achieve the goal of destroying the enemy’s
high-value targets. In order to achieve cooperation and control of multiple UAVs, the task
assignment for UAV swarm saturation attack is of great significance.

Task assignment for a UAV swarm is to allocate multiple UAVs to specific tasks
according to the number and types of the vehicles, the tasks to be performed, and the
conditions of the environment, which is essentially an optimization problem under multiple
constraints [2]. Besides, the task assignment problem is also NP-hard [3], which means
that the optimal solution comes from searching the whole solution space. In practical
scenarios, the task assignment problem for a UAV swarm is challenging, especially in
the complex dynamic environment. The traditional method is to use the deterministic
algorithms. Darrah et al. considered the multiple UAV dynamic task allocation problem in a
Suppression of Enemy Air Defense (SEAD) mission in [4]. They used Mixed Integer Linear
Programming (MILP) to assign vehicles to specific tasks. Schumacher et al. also proposed
a method based on MILP to solve the constrained optimization problem for UAV task
assignment in [5]. In [6], Nygard et al. proposed the dynamic network flow optimization
models and used the centralized optimization algorithm to solve the air vehicle resource
allocation problem. Ye et al. developed an extended consensus-based bundle algorithm

Electronics 2023, 12, 1292. https://doi.org/10.3390/electronics12061292 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061292
https://doi.org/10.3390/electronics12061292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4062-9570
https://doi.org/10.3390/electronics12061292
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061292?type=check_update&version=1

Electronics 2023, 12, 1292 2 of 17

with task coupling constraints (CBBA-TCC) in [7] to solve the multi-task assignment
problem with task coupling constraints in the heterogeneous multi-UAV system.

However, the computational complexity of the task assignment problem increases
exponentially with the growth of the number of targets and UAVs. It is hard for the
exact algorithms that pursue the optimal solution to complete the searching process in
an acceptable time. In order to speed up the solving process, another commonly used
method is applying heuristic algorithms. Shima et al. proposed genetic algorithms to solve
the multiple task assignment problem for cooperating UAVs in [3,8]. Jia et al. considered
the cooperative multiple task assignment problem with stochastic velocities and time
windows for heterogeneous UAVs in [9] and proposed a modified genetic algorithm to
solve it. In [10], Zhu et al. focused on the multirobot task allocation problem (MRTAP) and
proposed the self adaptive evolutionary game particle swarm optimization algorithm to
solve it. Zhao et al. considered the search and rescue scenario in [11] and they proposed a
heuristic distributed task allocation method to solve the problem. Zhen et al. proposed an
intelligent self-organized algorithm to solve a cooperative search–attack mission planning
problem for multiple unmanned aerial vehicles in [12]. Fan et al. proposed a modified
nature-inspired meta-heuristic methodology for heterogeneous unmanned aerial vehicle
system task assignment problem in [13]. Xia et al. proposed a system framework for solving
the problem of multi-UAV cooperative task assignment and track planning for ground
moving targets in [14]. The heuristic algorithms can obtain a solution for large-scale task
assignment problems in an acceptable time, but usually fall into a local optimum and stop
searching process early. Besides, the solutions need to be encoded into a vector in these
algorithms. Once the problem scale or characteristics changes, the old encoding strategy is
hard to apply to the new problem.

With the development of artificial intelligence technology in recent years, deep rein-
forcement learning (DRL) has achieved remarkable breakthroughs in many fields. Deep
reinforcement learning is mainly used to make sequential decisions, i.e., to make action
choices based on the current environmental conditions and continuously adjust their strate-
gies based on the feedback from the actions to achieve the goals. The performance of
deep reinforcement learning on problems such as AlphaGo Zero [15] and Atari [16] in
recent years has demonstrated its powerful learning and optimization decision-making
capabilities. Additionally, deep reinforcement learning techniques have shown a significant
advantage for combinatorial optimization problems. Combinatorial optimization, which
is the optimal selection of decision variables in a discrete decision space, naturally has
similar characteristics to “action selection” in reinforcement learning. Therefore, it is a good
choice to solve the traditional combinatorial optimization problem using deep reinforce-
ment learning methods. Compared with traditional optimization algorithms, DRL-based
combinatorial optimization algorithms have a series of advantages such as fast solving
speeds and high generalization ability, which is a hot research topic in recent years. In 2015,
Vinyals et al. [17] proposed a pointer network (Ptr-Net) model for solving combinatorial
optimization problems by analogizing it to a machine translation process. The network
was trained using supervised learning and achieved good optimization results on the
TSP problem. Bello et al. [18] used reinforcement learning to train the pointer network
model. They considered each problem instance as a training sample, used the REINFORCE
reinforcement learning algorithm for training, and introduced the critic network as a base-
line to reduce the training variance. Kool et al. [19] proposed a new method for solving
multiple combinatorial optimization problems using the attention mechanism, based on
the Transformer model [20]. Furthermore, the algorithm outperforms previous pointer
network models on multiple optimization problems.

Furthermore, deep reinforcement learning techniques have also been applied to many
practical optimization problems. Zhao et al. [21] considered a task allocation problem for
UAVs in the presence of environment uncertainty and proposed a Q-learning based fast
task allocation (FTA) algorithm. Tian et al. [22] presented the multi-robot task allocation
algorithm for fire disaster response based on reinforcement learning. Yang et al. [23]

Electronics 2023, 12, 1292 3 of 17

focused on a resource management problem for the ultra-reliable and low-latency internet of
vehicle communication networks and presented a decentralized actor–critic reinforcement
learning model with a new reward function to learn the optimal policy. Luo et al. [24]
focused on the missile target assignment (MTA) problem and proposed a data-driven
policy optimization with deep reinforcement learning (PODRL) for the adversarial MTA.
Liang et al. [25] proposed a deep reinforcement learning model to control the traffic light.
Huang et al. [26] focused on online computation offloading in wireless powered mobile–
edge computing networks and proposed a deep reinforcement learning-based online
offloading (DROO) framework.

In practice, task assignment for UAV swarm saturation attacks usually occur in the
hostile environment, which is complex and stochastic. In our paper, we propose a deep
reinforcement learning method to solve the task assignment problem, which meets the
requirements of real-time and flexibility in the actual situation. The simulation and experi-
ments have shown that our reinforcement learning agent based on deep neural network
converges rapidly and stably using the policy gradient method. Additionally, the solutions
obtained from our policy network are effective for both large- and small-scale problems.
The contributions of our work are listed as follows.

1. We construct a mathematical model to formulate the task assignment problem for
UAV swarm saturation. Furthermore, we consider the task assignment model as a
Markov Decision Process from the reinforcement learning perspective;

2. We build a task assignment framework based on the deep neural network to generate
solutions for adversarial scenarios. The policy network uses the attention mechanism
to pass information and guarantees the effectiveness and flexibility of our algorithm
under different problem scales;

3. We propose a training algorithm based on the policy gradient method so that our
agent can learn an effective task assignment policy from the simulation data. We
also design a critic baseline to reduce the variance of the gradients and increase the
learning speed.

The rest of our article is organized as follows. The problem formulation of task
assignment for UAV swarm saturation attack is provided in Section 2. In Section 3, a task
assignment framework based on deep reinforcement learning is constructed to provide
solutions for the problem. Then, the simulation and analysis of the proposed method is
conducted in Section 4. Finally, the conclusions and future works are presented in Section 5.

2. Problem Formulation

In this section, a formulation of the task assignment problem for a UAV swarm
saturation attack is presented. Our research focuses on the combat scenario against hostile
surface ships involving a group of heterogeneous UAVs. A mathematical programming
model of the task assignment problem is established and we formulate it as a combinatorial
optimization problem. Furthermore, we consider the task assignment model as a Markov
Decision Process from the reinforcement learning perspective.

2.1. Scenario Description and Assumptions

In this paper, we focus on the combat scenario of a UAV swarm saturation attack
against hostile surface ships and aim to research the issue of a multi-UAV task assignment.
In order to obtain the optimal combat effectiveness, we allocate tasks to heterogeneous
UAVs according to the battlefield situation. When multiple UAVs perform a saturation
attack mission, there are many factors that may affect combat effectiveness. However, it is
not necessary to consider all the realistic factors as this can cause the model construction to
be extremely complex. To allow us to concentrate on the main problem, several assumptions
are proposed by simplifying the engagement model as follows:

1. In general, mission planning for UAV swarm operation can be broken down into two
phases: arrive at the mission area from the base and then begin executing specific tasks.

Electronics 2023, 12, 1292 4 of 17

In this paper, UAVs are assumed to have completed infiltration and have reached the
perimeter of the target area. The next step is to carry out the attack task, which is the
focus of this paper;

2. We assume that the flight of the UAVs can be restricted to a plane at a given altitude
and that the UAVs avoid collisions by the stratification of the altitude. Furthermore,
in this paper, the flight paths of the UAVs are simplified to straight lines, and each
UAV flies at a constant velocity;

3. In the UAV swarm saturation attack model proposed in this paper, the vessels are
treated as stationary targets. We present this assumption for two main reasons: firstly,
the flight speeds of the fixed-wing UAVs are much greater than the vessel’s speed,
and the saturation attack is carried out in a very short period of time, so that the
vessels’ movement is insignificant; secondly, the UAVs attack the target vessels via
anti-ship missiles, and the strike can be executed only if the target is within the
missile’s effective range. Thus, the slight movement of the vessels does not affect the
effectiveness of the attack.

2.2. UAV Swarm Saturation Attack Model
2.2.1. Vehicles

For the combat scenario presented in this paper, heterogeneous fixed-wing UAVs are
used. UAVs with different characteristics are assigned to different tasks in order to achieve
optimal combat effectiveness.

Let

U = {U1, U2, U3 . . . , UNU} (1)

Be the set of NU heterogeneous fixed-wing UAVs. We assume that the UAV position
information can be defined by

[
xUi , yUi

]
, which are the i-th UAV’s horizontal coordinates

in a Cartesian inertial reference frame. Besides, the UAV is flying at a constant velocity as
mentioned above and we use veli to denote the constant speed of vehicle Ui. The attack
capability of the UAV is another important feature in this combat scenario. The onboard
weapons used to attack are limited resources and the UAVs with different load capacities
can be mounted with different numbers of weapons. Thus, we use ai to indicate the
maximum number of attacks that the vehicle Ui can conduct. Furthermore, ri is denoted as
the effective range of the i-th UAV in this paper. A UAV cannot launch an attack on a target
unless the target is in its effective range.

2.2.2. Targets and Tasks

Our paper focuses on the combat scenario of UAV swarm saturation attack against
hostile surface ships. The enemy vessels are the targets of saturation attack. Let

V = {V1, V2, V3 . . . , VNV} (2)

be the set of NV target vessels.
[

xVj , yVj

]
is denoted as the horizontal position of the j-th

target and we indicate vj as the j-th target’s value. Different targets may have different
values according to the defensive and combat capability, strategic significance, and so on.
Our research mainly focuses on the target assignment problem and we do not discuss
how to measure the values of targets in our paper. We use pij to represent the damage
probability that the i-th UAV attacks the j-th target.

The task is another important concept in our paper. We regard one UAV attack on a
target vessel as a single task implementation. Multiple attack tasks can be performed by a
single drone and it is possible for a target to be attacked multiple times.

Electronics 2023, 12, 1292 5 of 17

2.2.3. Combinatorial Optimization Problem

To solve the task assignment for a UAV swarm saturation attack, we formulate it
as a combinatorial optimization problem. A solution S to the task assignment problem
proposed in this paper adopts the form of a collection of ordered lists:

S = {s1, s2, s3 . . . , sNU}, (3)

si = {Ti
1, Ti

2, Ti
3, . . . , Ti

Ki
}, i = 1, 2, 3, . . . NU (4)

where si is the ordered list of tasks allocated to the vehicle Ui, Ti
k is the k-th task that the

vehicle Ui needs to perform, and Ki is the number of tasks allocated to the vehicle Ui.
We choose the sum of the expected damage value E(S) for a valid solution S as the

objective function to be maximized and use it to measure the combat effectiveness,

E(S) =
NV

∑
j=1

vj

[
1−

NU

∏
i=1

(
1− pij

)mij

]
(5)

where pij is the damage probability that the i-th UAV attacks the j-th target and mij is the
number of tasks that are allocated to the vehicle Ui to attack the j-th target.

There are two constraints that must be satisfied in solving the problem. The first constraint

Ki ≤ ai i = 1, 2, 3 . . . NU (6)

refers to the number of tasks allocated to the vehicle Ui and cannot be more than its number
of attacks ai. The second constraint

Di ≤ velitime i = 1, 2, 3 . . . NU , (7)

Di =
Ki

∑
k=1

dik i = 1, 2, 3 . . . NU , (8)

dik = max

√(xUi − xV
Ti

k

)2
+

(
yUi − yV

Ti
k

)2
− ri, 0

 i = 1, 2, 3 . . . NU , k = 1, 2, 3 . . . Ki (9)

is posed to ensure that the time consumed to perform all the tasks is within the prede-
termined time limit. Note that time is only consumed for movement in our model, not
performing an attack task. In Equation (7), time is the predetermined time limit and Di is
the total flight distance of the vehicle Ui during the operation. As shown in Equation (8),
we calculate Di as the sum of the flight distance for each task performed by the vehicle Ui
and dik is the flight distance of the i-th UAV during the implementation of the k-th task. As
mentioned above, the flight paths of the UAVs are simplified into straight lines and each
UAV flies at a constant velocity. Besides, the UAV can attack the target only if it is within
its effective range. We use Equation (9) to calculate the flight distance of the UAVs.

Figure 1 presents an example of the task assignment for a UAV swarm saturation
attack. The first row of the figure shows the combat situation and the corresponding
task scheduling is in the following row. In the first stage, the drones have reached their
predetermined positions and are ready to attack. Then, UAV1 is assigned to attack Target2
and UAV2 is assigned to attack Target3 in the second stage. In the third stage, UAV1 is
assigned to attack Target1 and UAV2 is assigned to attack Target3 again. Note that the
targets are within the effective range of the UAVs, so the UAVs do not need to move.

Electronics 2023, 12, 1292 6 of 17

UAV1

UAV2

Target1

Target2

Target3

UAV

Target

Movement

Attack attempt

Effective range

No assignments made

Target1

Target2

Target3

UAV2

UAV1

UAV1 is assigned to attack Target2 and

UAV2 is assigned to attack Target3

Target1

Target2

Target3

UAV2

UAV1

UAV1 is assigned to attack Target1 and

UAV2 is assigned to attack Target3

Combat

situation

diagram

UAV1

UAV2

Time Time

Target2
Target3

UAV1

UAV2

Time

Target1

Target3

UAV1

UAV2

Target1 ,no time consumed

Target3 ,no time consumed

Task

scheduling

diagram

Stage 1 Stage 2 Stage 3

Figure 1. Example task assignment for UAV swarm saturation attack.

2.3. Markov Decision Process for Task Assignment

We consider the task assignment process from the reinforcement learning perspective
and formulate this combinatorial optimization problem as a Markov Decision Process
(MDP) [27]. Generally, a complete MDP can be represented by a tuple 〈S ,A,P ,R〉. In the
tuple, S represents the set of possible states,A is the set of available actions, P indicates the
probability of state transition, andR is the reward function. In our optimization problem,
we do not need to use the transition probability, so we formulate this task assignment
problem into an MDP using a triple 〈S ,A,R〉 as follows.

State Space S : The variables we use to represent state information are divided into
three categories: UAV, Target, and UAV–Target pair. The current position, velocity, number
of available attacks, effective range, and available time are used to indicate the states of
UAVs. The current position

[
xt

Ui
, yt

Ui

]
are the current x and y coordinates of the i-th UAV at

stage t and will be changed during the decision process. The number of available attacks
at

i of the i-th UAV at stage t will be reduced by one after each execution of the task. The
available time timet

i represents the current time left to the time limit of the i-th UAV at stage
t. Besides, the velocity veli and effective range ri are two constant variables. We use the
position and expected remaining value to indicate the state of the target. As assumed above,
the position

[
xVj , yVj

]
of the j-th target is considered constant. The expected remaining

value valt
j of the j-th target at stage t will be reduced as the process of decision making

moves forward and we use the value of the j-th target vj as the initial expected remaining
value val0

j . The expected remaining value can be calculated as follows:

valt
j = valt−1

j
(
1− pij

)
. (10)

The variables we use to represent the state of the UAV–Target pair are damage proba-
bility, time cost, and infeasibility flag. We use pij to indicate the damage probability of the
i-th UAV attack on the j-th target. The time cost tct

ij is the time required by the i-th UAV to
complete the attack task against the j-th target at stage t and can be formulated as follows:

tct
ij = max

(√(
xt

Ui
− xVj

)2
+
(

yt
Vi
− yVj

)2
− ri, 0

)/
veli. (11)

The state representation also includes the infeasibility flag in f t
ij, which represents

whether the action of UAVi-Vesselj pair would violate the constraints. in f t
ij is equal to 0

if it would not violate any constraints, and is 1 otherwise. Our decision process will not
stop until the infeasibility flag for all the UAV–Target pairs are assigned the value 1. All
the variables we use to represent the state information are listed in Table 1. The variables
marked with an * are dynamic and may change in the decision proces.

Electronics 2023, 12, 1292 7 of 17

Table 1. Variables used to represent the state information.

UAVi Targetj UAVi− Targetj

Current position*
[

xt
Ui

, yt
Ui

]
Position

[
xVj , yVj

]
Damage probability pij

Velocity veli
Expected remaining value*
valt

j
Time cost* tct

ij

Number of available attacks*
at

i
Infeasibility flag* in f t

ij

Effective range ri
Available time* timet

i

Action SpaceA: We use the UAVi-Vesselj pair to denote the action for each step in
the decision process. The UAVi-Vesselj pair means to ask the i-th UAV to perform an attack
task against the j-th target. Only the feasible UAVi-Vesselj pair can be used as the action
and the UAVi-Vesselj pair with an infeasibility flag will not be in the action space.

RewardR: In the UAV swarm saturation attack model proposed in this paper, we use
the sum of the expected damage value in Equation (5) to measure the combat effectiveness.
However, it is not appropriate to assign part of the combat effectiveness to each action,
because we cannot obtain the final combat effectiveness until the decision process is over.
Inspired by the concept of “marginal return” proposed in [28], we construct a marginal-
return-based reward function and denote the additional combat effectiveness caused by
the action as the reward:

rt = E(St)− E(St−1). (12)

3. Proposed Method

In this section, a reinforcement learning agent is proposed for the task assignment
problem. We construct the decision agent using a deep neural network. The deep neural
network we proposed is a stack-based architecture that uses attention layers to pass infor-
mation. Then, in order to obtain a well-trained neural network, we resort to policy gradient
methods to train the policy neural network.

3.1. Network Architecture for Task Assignment

We parameterize our reinforcement learning agent using a deep neural network
architecture. Based on the MDP model we have constructed above, the input to the deep
neural network is the state of each process and the output is the action. Inspired by the
Transformer architecture [20,29], the deep neural network we proposed in this paper is a
stack-based architecture that uses attention layers to pass information between different
potential assignments. In our network architecture, there is an initial embedding layer
that we use to encode the state matrix. Following this, a set of “stacks” with the same
structure but different parameters implement similar operations. Each stack consists of two
communication layers: Agent-wise Communication Layer and Task-wise Communication
Layer. In order to gain a more holistic understanding of the current situation, we use
these stacks to pass information between different agents and tasks. Then, we use a linear
feed-forward layer to transform the hidden representations of each UAV–Target pair into a
scalar. Finally, a Softmax layer is used to process the final results and we obtain the output.
The full network architecture for the task assignment is shown in Figure 2.

Electronics 2023, 12, 1292 8 of 17

Embedding

Agent-Wise
Communication

Task-Wise
Communication

Linear

Mask & Softmax

Outputs

Inputs

N×

Multi-Head
Attention

Feed Forward

Add & Norm

Add & Norm

Inputs

Outputs

Embedding

Task-Wise
Communication

Agent-Wise
Communication

Linear

Softmax

Inputs

Outputs

N×

V K Q

Softmax

Scale

×

×

Multi-head
Attention

×h

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Inputs

Outputs

Communication
Layer

Inputs

Outputs

Figure 2. Network architecture for task assignment.

Input: As in the MDP model we constructed above, we use the state of each process
as the input to the deep neural network. A three-dimensional array X ∈ RNU×NV×|X| is
used in our paper to represent the state information, where |X| is the total number of the
variables we use to indicate the state information. In the three-dimensional array, we can
index X through i and j to view information about the specific UAV–Target pairs:

Xi,j =
[

UAVi Targetj UAVi − Targetj

]>
. (13)

UAVi represents the i-th UAV’s properties, Targetj indicates the state information of the
j-th target, and UAVi − Targetj corresponds to the UAV–Target pairwise state information.

Embedding Layer: The input X is first processed by the embedding layer E , which is
a feed-forward neural network. We use the embedding layer to project the last dimension
of the input X into the dimension R|E |. In other words, every Xij is processed through a a
feed-forward layer element-wise with parameter θE as follows:

E(X) =

 F(X1,1; θE) . . . F
(
X1,NV ; θE

)
...

. . .
...

F
(
XNU ,1; θE

)
. . . F

(
XNU ,NV ; θE

)
 (14)

Communication Layer: Inspired by the Transformer architecture [20], we construct the
communication layer in our paper. Each communication layer is composed of two sublayers:
a multi-head attention layer and a feed-forward layer. We also add skip–connection [30]
and batch normalization [31] for each sublayer.

We utilize the attention mechanism [20] as a message passing method between differ-
ent UAVs or targets in our task assignment problem. There are two kinds of communication
layers: Agent-wise communication and Task-wise communication. The two kinds of com-
munication layers perform the same operations, only the dimensions they operate on are
different. Here, we will illustrate the Task-wise communication as an example; the other
one is the same. For the embedded input E(X) ∈ RNU×NV×|E|, which is a three-dimensional
array, we can divide it into M groups according to different UAVs. Each group can be
represented as a two dimensional vector Y ∈ RNV×|E|. Our network architecture will
apply a self-attention operation on each group separately using the same parameters. Self-
attention performs three feed-forward layers separately to generate queries q ∈ RNV×dk ,

Electronics 2023, 12, 1292 9 of 17

keys k ∈ RNV×dk , and values v ∈ RNV×dv first. Then, we operate the attention mechanism
as follows:

attention(q, k, v) = softmax

(
qk>√

dk

)
v. (15)

We utilize multi-head attention to operate the multiple attention mechanism in
parallel. In our paper, we use h heads: q = (q1, q2, . . . , qh), k = (k1, k2, . . . , kh), and
v = (v1, v2, . . . , vh). Then, the whole self-attention heads will be concatenated together:

MHA(Y) = [H1H2 . . . Hh] (16)

where

Hl = attention(ql , kl , vl) (17)

Thus, Hl ∈ RNV×dv and MHA(Y) ∈ RNV×hdv .
After the multi-head attention sublayer, we then use a fully connected feed-forward

(FF) layer to process the data. Furthermore, we also add a skip-connection and batch
normalization (BN) for each sublayer:

Z = BN(E + MHA(E)), (18)

C(Z) = BN(Z + FF(Z)) (19)

where E is the result of the embedding layer and C is the result of the communication layer.
Linear and Softmax Layer: After the operation of N stacks, where each stack performs

the self-attention operation, we construct a Linear layer. The Linear layer we use is simply
a fully connected feed-forward layer. We use the Linear layer to further process the state
information. In the end, we use the Softmax layer to process the final result. However,
before the Softmax operation, the infeasible “UAV–Task” pairs need to be masked out. We
perform the mask out operation on the temporary output M ∈ RNU×NV :

Mi,j = Mi,j − βin fi,j (20)

where β is a very large positive constant. After the mask operation, we use Softmax layer
to obtain the final result.

3.2. Optimization with Policy Gradients

In our paper, we resort to policy gradient methods to train the policy neural network.
Our goal is to find an optimal policy and maximize the expected return of this policy in the
environment. We define the objective function of policy learning as follows:

J(θ) = Es0 [V
πθ (s0)]. (21)

Here, s0 denotes the initial state and Vπθ indicates the state–value function that
represents the expected return starting from the state following the policy πθ . We derive
the objective function with respect to θ. The gradient ascent method can then be used to
maximize this objective function to obtain the optimal policy. The gradient of the objective
function is formulated as follows:

∇θ J(θ) = Eπθ
[Qπθ (s, a)∇θ log πθ(a | s)] (22)

where Qπθ represents the action–value function, which indicates the expected return from
performing the action on the current state when the MDP follows the policy πθ .

We use the REINFORCE algorithm [32] to formulate the gradient of the objective
function. The REINFORCE algorithm utilizes the Monte Carlo method to sample trajec-

Electronics 2023, 12, 1292 10 of 17

tories and estimate Qπθ (s, a). Considering the large variance of the gradient estimates of
the original REINFORCE algorithm, we introduce the baseline function in the training
algorithm to reduce the variance of the gradients and therefore increase the learning speed:

∇θ J(θ) = Eπθ

[
T−1

∑
t=0

(
T

∑
k=t+1

γk−t−1rk − b(st)

)
∇θ log πθ(at | st)

]
(23)

where b(st) indicates the baseline function that does not depend on the action. In our paper,
we utilize a parametric baseline function to estimate the expected return. An auxiliary
network, called a critic, is introduced in the training period to accelerate the learning. The
critic network v(st, w) parameterized by w has the similar architecture with the policy
network but the end of the network is a little different, which the output of the critic
network is a scalar estimating the expected return. We train the critic baseline function
with a stochastic gradient descent method on a mean squared error objective between
the expected return sampled by the most recent policy and its predictions v(st, w). The
pseudocode of the training algorithm is provided in Algorithm 1.

Algorithm 1: REINFORCE with critic baseline

1 Initialize: the max number of episodes E, policy network with random
parameters π(a|s, θ), critic network with random parameters v(s, w), learning
rate lrθ, lrw;

2 for e = 1 to E do
3 Reset the training environment;
4 Generate an episode s0, a0, r1, . . . , sT−1, aT−1, rT ,following π(a|s, θ);
5 for t = 0 to T − 1 do
6 G ← ∑T

k=t+1 γk−t−1rk;
7 δ← G− v(st, w);
8 w← w + lrwδ∇v(st, w);
9 θ ← θ + lrθγtδ∇ ln π(at|st, θ);

10 end
11 end

3.3. Searching Strategy

After the training process, the well-trained policy network can be used to infer the
optimal task assignment scheme. In the inference period, we consider two searching
strategies to construct the final assignment scheme: greedy search and sampling.

Greedy Search: Our first approach is simply select the UAV–Target pair with the
largest probability in each process. Given the initial state representing a task assignment
problem, the well-trained policy network adopts the state as the input and outputs the
probability distribution over different UAV–agent pairs. The greedy search strategy select
the index with the largest probability greedily. Then, the next state information is fed into
the decision agent and the above process is repeated until the end of the allocation.

Sampling: Considering constructing a task assignment scheme using our reinforce-
ment learning agent is inexpensive, so we utilize the sampling approach to sample multiple
candidate solutions from the policy network and select the best one. Our sampling strategy
obtains each solution based on the action probability distribution from the output of the
policy neural network. More candidate solutions may produce a better result, but it will
also consume more time. We can choose a proper scale of the candidates to achieve a
balance between performance and efficiency.

4. Simulation and Analysis

In this section, we validate the performance of our proposed method for a task assign-
ment problem. First, we introduce the detailed settings about the generation of the problem

Electronics 2023, 12, 1292 11 of 17

instances. Then, we show the training process of the policy network and in different
scenarios, and the hyperparameters of the algorithm are also introduced. After that, we
compare our deep reinforcement learning algorithm with other algorithms in terms of the
solution quality. Finally, we perform a cost-effectiveness analysis on different number of
UAVs using our algorithm.

4.1. Setting Up

Before conducting simulation and analysis, the detailed settings of our experiments
will be first introduced. In our simulated experiment environment, each problem instance
will construct multiple drones and hostile targets. The UAVs will be assigned different
attack tasks to destroy the enemy targets according to a certain task assignment policy.
Furthermore, multiple problem instances of different scales will be tested to analyze the
performance of the task assignment policy based on different algorithms. All the simulation
experiments are carried out on a PC with an AMD 3.8 GHz CPU, 16 GB internal memory,
GeForce RTX 3070 GPU, and Windows 10 operating system. Furthermore, the simulation
computer programs that we use in our experiments are developed based on Python 3.10.

Our paper focuses on the UAV swarm saturation attack operation against enemy ships
and we construct three different scales of vessel formations in our experiments. There are
3, 6, and 10 targets in these three formations, respectively. These targets are distributed
in an area of 30 × 30 km and different targets may have different values. We list all the
positions and value information of the targets in Table 2. Here, we construct the three target
formations to conduct the experiments, but our model is certainly applicable to other target
distributions as well.

Table 2. Position and value information of the target formations.

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8 Target 9 Target
10

Formation Position/km (10, 15) (20, 20) (20, 10)
I Value 50 50 50

Formation Position/km (0, 15) (10, 25) (10, 5) (20, 15) (30, 25) (30, 5)
I Value 50 50 50 100 50 50

Formation Position/km (0, 20) (0, 10) (10, 30) (10, 0) (15, 20) (15, 10) (20, 30) (20, 0) (30, 20) (30, 10)
I Value 50 50 50 50 100 100 50 50 50 50

According to the capabilities, the fixed-wing UAVs used in our experiments can be
divided into three types, which are denoted by Type I, Type II, and Type III. Different types
of UAVs vary in terms of velocity, number of attacks, and effective range. The performance
information of the drones is listed in Table 3. We will apply different scales of drones in
the task assignment problem. The amount of Type I and Type II are both set as 2 M/5 and
the amount of Type III is set as M/5 given the M UAVs. In our experiment, we sample the
damage probability for any UAV–Target pair uniformly from [0.1, 0.3]. Meanwhile, we also
assume that the UAVs are randomly distributed in the area of 30 × 30 km next to the target
area before the execution of tasks. In order to obtain better saturation attack effectiveness,
we limit all attack tasks to be completed in a relatively short period of time and set the
predetermined time limit to be 0.1 h.

Table 3. Capabilities of the three types of UAVs.

Velocity(km/h) Number of Attacks Effective Range (km)

Type I 400 1 15
Type II 500 2 20
Type III 600 3 25

Electronics 2023, 12, 1292 12 of 17

4.2. Convergence of Deep Reinforcement Learning

In this section, we will show the training process of the policy network and the con-
vergency of the deep reinforcement learning in different scenarios. In order to illustrate
the details of our algorithm, all the hyperparameters used in our experiments are listed
in Table 4.

Table 4. Hyperparameters used in the experiments.

Hyperparameters of Network Architecture Hyperparameters of Training

Hidden size 128 Training episodes 1000
Number of stacks 2 Learning rate 1 × 10−5

Attention heads 4 Discount rate 0.98
Initializer Random normal Optimizer Adam
Activation ReLU

In order to clearly demonstrate the convergence performance of our deep reinforce-
ment learning algorithm, we train the policy network with the settings in Table 4. Here,
the algorithm is, respectively, trained in two problem scales: 10 UAVs–10 targets and
50 UAVs–10 targets. Furthermore, we train the neural network in both two methods:
REINFORCE and REINFORCE with a critic baseline. Each method is trained five times
with 1000 episodes in each problem scale. To visualize how the algorithm performs, we
plot the learning curves that represent the training process, respectively, in Figure 3. We use
dark lines to represent the mean combat effectiveness and the light area to represent the
95% confidence interval. As shown in Figure 3, it is clearly illustrated that the REINFORCE
with the critic method performs better and improves the convergence speed and quality
in both problem scales. In Figure 3a, the learning curve of REINFORCE with the critic
baseline converges faster and arrives at the highest level (nearly 210) in approximately
300 episodes. In comparison, the REINFORCE method does not converge to the highest
level until 400 episodes. In a larger problem scale, the advantage of REINFORCE with a
critic baseline method will be more obvious. In Figure 3b, the curve of REINFORCE with
the critic baseline reaches the highest level (nearly 515) in about 150 episodes. Furthermore,
we can see that the confidence interval is more narrow, which indicates that the policy
network trained has more stable performance. By contrast, the curve of REINFORCE
method does not converge until 500 episodes.

(a) 10UAVs-10Targets (b) 50UAVs-10Targets

Figure 3. Curves of combat effectiveness with respect to training episodes.

4.3. Performance Comparison on Solution Quality

We compare the solutions produced using our deep reinforcement learning framework
with those found using the Genetic Algorithm (GA) and the Random Selection Algorithm
(RSA). In the comparison experiment, the algorithms based on our deep reinforcement
learning framework utilize two types of searching strategies: greedy search and sampling.
We have already introduced the two searching strategies above and present no further

Electronics 2023, 12, 1292 13 of 17

description here. Considering the balance between the performance and efficiency, there
are two sampling agents used in our experiment: sampling 5 candidates and sampling
10 candidates. The genetic algorithm is an adaptive heuristic search algorithm based on
the ideas of natural selection and genetics. It is commonly used to generate high-quality
solutions for optimization problems and search problems. Shima et al. proposed genetic
algorithms to solve the multiple task assignment problem for cooperating UAVs in [3].
Jia et al. proposed a modified genetic algorithm to solve the cooperative multiple task
assignment problem with stochastic velocities and time windows in [9]. For the task
assignment problem, we utilize the GA to generate solutions as individuals and improve
the solution by simulating the evolution of population. We also utilize the random selection
algorithm for comparison. The RSA used in our experiment employs the same decision
framework with our deep reinforcement learning method. The difference is that the task
assignment decision is not performed by the policy network but a random selector.

Table 5. Performance and running time of the algorithms.

RL_Greedy RL_Sampling (5) RL_Sampling
(10) GA RSA

50 UAVs-10Targets Performance 520.86 ± 4.26 526.85 ± 4.72 528.16±3.97 514.92 ± 9.06 502.76 ± 10.20
Time 1.09 s 5.37 s 10.75 s 5.47 s 4.60 ms

20 UAVs–10Targets Performance 338.80 ± 10.47 345.22 ± 6.86 352.08± 5.80 332.87 ± 11.61 304.90 ± 22.17
Time 0.25 s 1.22 s 2.42 s 2.24 s 2.00 ms

10 UAVs–10Targets Performance 208.15 ± 11.74 222.23 ± 6.95 226.61± 7.79 206.88 ± 10.84 184.98 ± 23.61
Time 0.11 s 0.44 s 0.88 s 1.15 s 1.00 ms

50 UAVs–6Targets Performance 334.42 ± 1.64 337.81 ± 1.21 338.12± 1.34 336.25 ± 2.16 332.84 ± 5.03
Time 0.76 s 3.76 s 7.50 s 4.31 s 3.50 ms

20 UAVs–6Targets Performance 257.77 ± 5.58 264.86 ± 4.97 267.68± 4.43 260.52 ± 4.53 245.58 ± 9.91
Time 0.18 s 0.92 s 1.86 s 1.73 s 1.40 ms

10 UAVs–6Targets Performance 177.31 ± 10.84 182.58 ± 7.23 184.48± 6.74 183.37 ± 8.92 164.26 ± 14.00
Time 0.08 s 0.37 s 0.74 s 0.89 s 1.00 ms

30 UAVs–3Targets Performance 146.27 ± 0.73 147.75 ± 0.30 147.77± 0.33 147.62 ± 0.48 146.55 ± 1.21
Time 0.27 s 1.32 s 2.63 s 2.15 s 1.55 ms

20 UAVs–3Targets Performance 139.15 ± 1.89 139.82 ± 1.33 140.54 ± 1.38 140.71± 1.02 136.66 ± 2.72
Time 0.17 s 0.76 s 1.55 s 1.45 s 1.10 ms

10 UAVs–3Targets Performance 110.72 ± 3.68 112.17 ± 3.21 112.61 ± 3.03 113.54± 4.34 106.91 ± 7.93
Time 0.08 s 0.31 s 0.64 s 0.73 s 1.00 ms

In the comparative experiment, we use the combat effectiveness E(S) in Equation (5)
as the metric to measure the performance of the algorithms. In order to ensure the reliability
of the experiment results, we conduct the experiment on multiple problem instances with
different problem scales. Here, we introduce nine problem scales: 50 UAVs–10 Targets,
20 UAVs–10 Targets, 10 UAVs–10 Targets, 50 UAVs–6 Targets, 20 UAVs–6 Targets, 10 UAVs–
6 Targets, 30 UAVs–3 Targets, 20 UAVs–3 Targets, and 10 UAVs–3 Targets. Furthermore, we
run 20 instances of different problem scales for each algorithm. The average performance
and running time of the algorithms are listed in Table 5 and the optimal result of each
problem scale is marked in bold for significance. We also present the experimental results
in Figure 4.

As shown in the experimental results, GA achieves relatively good performance in the
instances of small problem scales and obtains the optimal results in two scales: 10 UAVs–
3 Targets and 20 UAVS–3 Targets. GA is the intelligent exploitation of a random search
provided with historical data to direct the search into the region of better performance in
solution space. When facing small-scale problems, GA only needs to search a relative small
dimension of solution space and it is easier to search a high-quality solution. However, as
the problem becomes more complex, the dimension of the solution space increases rapidly
and the GA can hardly search a good solution. In our experiment, we set the maximum
of generation as 200 to ensure that a satisfactory solution can be obtained. As shown in
Table 5, we can see that it costs much time for the GA to search the solution space, thus
resulting in low time efficiency.

Electronics 2023, 12, 1292 14 of 17

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

480

490

500

510

520

530

540

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(a)50UAVs-10Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

260

280

300

320

340

360

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(b)20UAVs-10Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

140

160

180

200

220

240

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(c)10UAVs-10Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

320

322

324

326

328

330

332

334

336

338

340

342

344

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(d)50UAVs-6Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

220

230

240

250

260

270

280
C

o
m

b
a

t
E

ff
e

ct
iv

e
n

e
ss

(e)20UAVS-6Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

140

150

160

170

180

190

200

210

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(f)10UAVs-6Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

143

144

145

146

147

148

149

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(g)30UAVs-3Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

128

130

132

134

136

138

140

142

144

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(h)20UAVs-3Targets

RL_Greedy

RL_Sampling(5)

RL_Sampling(10)

GA RSA

80

85

90

95

100

105

110

115

120

125

C
o

m
b

a
t

E
ff

e
ct

iv
e

n
e

ss

(i)10UAVs-3Targets

Figure 4. Performance comparison on solution quality.

By comparison, the algorithms based on our deep reinforcement learning framework
show superiority in most problem instances, especially in those relatively large problem
scales. For example, the average combat effectiveness obtained by the reinforcement
learning with sampling strategy outperforms that of other algorithms by 2.6% in a 50 UAVs–
10 Targets problem scale and 5.8% in a 20 UAVs–10 Targets problem scale. Besides, we
can see that the standard deviation of the combat effectiveness obtained by the RL based
algorithms are much smaller, which means that the performance is more stable. Moreover,
the performance of our RL algorithm is also pretty close to other comparative algorithms in
small problem scales. Our policy neural network uses attention layers to pass information
between different potential assignments and has a more comprehensive understanding of
the task assignment problem. Thus, our reinforcement learning agent is able to make better
task assignment decisions. On the other hand, our RL algorithm has a clear advantage in
time efficiency. Reinforcement learning with a greedy search algorithm obtains satisfactory
solutions with the shortest time in all the problem scales. As shown in Table 5, we can see
that the reinforcement learning with a greedy search strategy is around 80% faster than the
genetic algorithm in the 50 UAVs–10 Targets problem scale and around 90% faster in the
10 UAVs–3 Targets problem scale. This characteristic ensures that our algorithm can satisfy
the real-time requirement of the task assignment problem. When facing specific problems,
we can also use the sampling strategy and choose a proper scale of the candidates to achieve
a balance between the performance and efficiency. Besides, the policy neural network used
in our experiments is only trained with the 10 UAVs–3 Targets problem instances to reduce
the training time. However, it can also perform well in other problem scales. It means

Electronics 2023, 12, 1292 15 of 17

that the well-trained policy network can generalize well to different problem scales, which
represents better applicability and flexibility in practical scenarios.

4.4. Cost-Effectiveness Analysis on Different Number of UAVs

In real combat scenarios, various weapon resources are often limited and expensive.
Besides the pursuit of greater combat effectiveness, we should also pay attention to the cost
of weapon resources. We should choose the appropriate amount of UAVs to perform the
task and achieve maximum combat effectiveness under limited cost. In this section, our
model and algorithm are applied to the analysis of the number of UAVs for a saturation
attack. We introduce the cost of the vehicles and extend the model to solve the multi-
objective task assignment problem. In addition to the combat effectiveness, we also include
the cost in the objective function:

B(S, U) = E(S|U)− C(U) (24)

where U is the set of UAVs used in the task, C(U) is the total cost of the UAVs and B(S, U),
here, is named as the combat benefit. In our experiment, we set the cost of a Type I UAV as
1, the cost of a Type II as 2, and the cost of a Type III as 3. The cost-effectiveness analysis on
different numbers of UAVs for the three vessel formations are performed here; we run our
deep reinforcement learning algorithm 20 times in each instance.

Figure 5 shows the combat benefit with respect to the number of UAVs for different
vessel formations. As shown in Figure 5, all curves rise and then fall for the three formations.
The combat benefit reaches its highest point when the number of UAVs is about 20 for the
3 targets formation, 40 UAVs for the 6 targets formation, and 60 UAVs for the 10 targets
formation. The combat benefit gradually increases when the number of UAVs is small.
Furthermore, after the number of UAVs exceeds the maximum point, the combat benefit
starts to decline, which means that the number of drones is redundant and the benefits of
adding vehicles do not cover the costs.

0 10 20 30

60

80

100

0 10 20 30 40 50 60 70 80

100

150

200

250

0 20 40 60 80 100

100

200

300

400

C
o

m
b

a
t

b
e

n
e

fi
t

Number of UAVs

C
o

m
b

a
t

b
e

n
e

fi
t

Number of UAVs

C
o

m
b

a
t

B
e

n
e

fi
t

Number of UAVs

(a) 3 Targets (b) 6 Targets (c) 10 Targets

Figure 5. Cost-effectiveness analysis on different number of UAVs.

5. Conclusions

This paper studies the task assignment problem for a UAV swarm saturation attack.
First, we construct the mathematical programming model of the task assignment problem
and formulate it as a combinatorial optimization problem. Additionally, we develop the
task assignment model as a Markov Decision Process from the sequential decision-making
perspective. Then, we propose a deep reinforcement learning framework to solve the task
assignment problem. A decision agent based on the attention mechanism is developed and
we resort to the policy gradient methods to train the policy neural network. The simulation
and experimental results have shown that our deep reinforcement learning method can
generate high-quality solutions for different problem scales, which meets the requirements
of real-time and flexibility in the actual situation. In the future, we will construct a more
detailed mathematical model to better reflect the real combat environment. Furthermore,
we will extend our algorithm to decentralized decision scenarios in order to adapt to the
situation of limited communication.

Electronics 2023, 12, 1292 16 of 17

Author Contributions: Conceptualization, K.S.; methodology, F.Q.; writing—original draft prepara-
tion, F.Q.; writing—review and editing, K.S., X.L. and K.Z.; supervision, X.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
under Grant No. 61802425 and National Social Science Foundation of China under 18BGL285,
19CGL073 and 2021-SKJJ-C-017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Otto, R.P. Small Unmanned Aircraft Systems (SUAS) Flight Plan: 2016–2036. Bridging the Gap between Tactical and Strategic; Technical

report; Air Force Deputy Chief of Staff: Washington, DC, USA, 2016.
2. Deng, Q.; Yu, J.; Wang, N. Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified

genetic algorithm with multi-type genes. Chin. J. Aeronaut. 2013, 26, 1238–1250. [CrossRef]
3. Shima, T.; Rasmussen, S.J.; Sparks, A.G.; Passino, K.M. Multiple task assignments for cooperating uninhabited aerial vehicles

using genetic algorithms. Comput. Oper. Res. 2006, 33, 3252–3269. [CrossRef]
4. Darrah, M.; Niland, W.; Stolarik, B. Multiple UAV Dynamic Task Allocation Using Mixed Integer Linear Programming in a SEAD

Mission; Infotech@ Aerospace: Arlington, VA, USA, 2005; p. 7164.
5. Schumacher, C.; Chandler, P.; Pachter, M.; Pachter, L. Constrained optimization for UAV task assignment. In Proceedings of the

AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA, 5–8 August 2004; p. 5352.
6. Nygard, K.E.; Chandler, P.R.; Pachter, M. Dynamic network flow optimization models for air vehicle resource allocation. In

Proceedings of the IEEE 2001 American Control Conference.(Cat. No. 01CH37148), Arlington, VA, USA, 25–27 June 2001;
Volume 3, pp. 1853–1858.

7. Ye, F.; Chen, J.; Sun, Q.; Tian, Y.; Jiang, T. Decentralized task allocation for heterogeneous multi-UAV system with task coupling
constraints. J. Supercomput. 2021, 77, 111–132. [CrossRef]

8. Shima, T.; Rasmussen, S.J.; Sparks, A.G. UAV cooperative multiple task assignments using genetic algorithms. In Proceedings of
the IEEE 2005, American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 2989–2994.

9. Jia, Z.; Yu, J.; Ai, X.; Xu, X.; Yang, D. Cooperative multiple task assignment problem with stochastic velocities and time windows
for heterogeneous unmanned aerial vehicles using a genetic algorithm. Aerosp. Sci. Technol. 2018, 76, 112–125. [CrossRef]

10. Zhu, Z.; Tang, B.; Yuan, J. Multirobot task allocation based on an improved particle swarm optimization approach. Int. J. Adv.
Robot. Syst. 2017, 14, 1729881417710312. [CrossRef]

11. Zhao, W.; Meng, Q.; Chung, P.W. A heuristic distributed task allocation method for multivehicle multitask problems and its
application to search and rescue scenario. IEEE Trans. Cybern. 2015, 46, 902–915. [CrossRef] [PubMed]

12. Zhen, Z.; Xing, D.; Gao, C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized
algorithm. Aerosp. Sci. Technol. 2018, 76, 402–411. [CrossRef]

13. Fan, C.; Han, S.; Li, X.; Zhang, T.; Yuan, Y. A modified nature-inspired meta-heuristic methodology for heterogeneous unmanned
aerial vehicle system task assignment problem. Soft Comput. 2021, 25, 14227–14243. [CrossRef]

14. Xia, C.; Yongtai, L.; Liyuan, Y.; Lijie, Q. Cooperative task assignment and track planning for multi-UAV attack mobile targets. J.
Intell. Robot. Syst. 2020, 100, 1383–1400. [CrossRef]

15. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

16. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

17. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. Adv. Neural Inf. Process. Syst. 2015, 28, 3134.
18. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
19. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.
20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
21. Zhao, X.; Zong, Q.; Tian, B.; Zhang, B.; You, M. Fast task allocation for heterogeneous unmanned aerial vehicles through

reinforcement learning. Aerosp. Sci. Technol. 2019, 92, 588–594. [CrossRef]
22. Tian, Y.T.; Yang, M.; Qi, X.Y.; Yang, Y.M. Multi-robot task allocation for fire-disaster response based on reinforcement learning. In

Proceedings of the IEEE 2009 International Conference on Machine Learning and Cybernetics, Hebei, China, 12–15 July 2009;
Volume 4, pp. 2312–2317.

http://doi.org/10.1016/j.cja.2013.07.009
http://dx.doi.org/10.1016/j.cor.2005.02.039
http://dx.doi.org/10.1007/s11227-020-03264-4
http://dx.doi.org/10.1016/j.ast.2018.01.025
http://dx.doi.org/10.1177/1729881417710312
http://dx.doi.org/10.1109/TCYB.2015.2418052
http://www.ncbi.nlm.nih.gov/pubmed/25879980
http://dx.doi.org/10.1016/j.ast.2018.01.035
http://dx.doi.org/10.1007/s00500-021-06104-6
http://dx.doi.org/10.1007/s10846-020-01241-w
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.ast.2019.06.024

Electronics 2023, 12, 1292 17 of 17

23. Yang, H.; Xie, X.; Kadoch, M. Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency
IoV communication networks. IEEE Trans. Veh. Technol. 2019, 68, 4157–4169. [CrossRef]

24. Luo, W.; Lü, J.; Liu, K.; Chen, L. Learning-based policy optimization for adversarial missile-target assignment. IEEE Trans. Syst.
Man, Cybern. Syst. 2021, 52, 4426–4437. [CrossRef]

25. Liang, X.; Du, X.; Wang, G.; Han, Z. A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol.
2019, 68, 1243–1253. [CrossRef]

26. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge
computing networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [CrossRef]

27. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 135.
28. Xin, B.; Wang, Y.; Chen, J. An efficient marginal-return-based constructive heuristic to solve the sensor–Weapon–Target assignment

problem. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 49, 2536–2547. [CrossRef]
29. Gibbons, D.; Lim, C.C.; Shi, P. Deep learning for bipartite assignment problems. In Proceedings of the 2019 IEEE International

Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2318–2325.
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
31. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning (PMLR), Lille, France, 6–11 July 2015; pp. 448–456.
32. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Reinf. Learn. 1992, 8,

5–32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2018.2890686
http://dx.doi.org/10.1109/TSMC.2021.3096997
http://dx.doi.org/10.1109/TVT.2018.2890726
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TSMC.2017.2784187

	Introduction
	Problem Formulation
	Scenario Description and Assumptions
	UAV Swarm Saturation Attack Model
	Vehicles
	Targets and Tasks
	Combinatorial Optimization Problem

	Markov Decision Process for Task Assignment

	Proposed Method
	Network Architecture for Task Assignment
	Optimization with Policy Gradients
	Searching Strategy

	Simulation and Analysis
	Setting Up
	Convergence of Deep Reinforcement Learning
	Performance Comparison on Solution Quality
	Cost-Effectiveness Analysis on Different Number of UAVs

	Conclusions
	References

