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Abstract: Knowledge acquisition and reasoning are essential in intelligent welding decisions. How-
ever, the challenges of unstructured knowledge acquisition and weak knowledge linkage across
phases limit the development of welding intelligence, especially in the integration of domain infor-
mation engineering. This paper proposes a cognitive model combining image recognition and a
knowledge graph. A CNN is used as the perception layer to obtain direct information. Automated
logic rules based on a knowledge graph are described to enable information integration in the knowl-
edge reasoning domain. In addition, a welding knowledge graph of the bogie frame was constructed
based on entity and relationship recognition. CNN models with different network structures were
compared and trained under supervised conditions. In the results, the InceptionV1 network obtained
a high score (0.758 for the thickness relation, 0.642 for the groove form, 0.704 for the joint type, and
0.835 for the base material form). The proposed model showed positive performance in terms of
accuracy, interpretation, knowledge coverage, scalability, and portability compared with several
other methods. The model can effectively address the abovementioned limitations and is important
for welding manufacturing with engineering information integration.

Keywords: knowledge acquisition; knowledge reasoning; welding manufacturing; CNN; knowl-
edge graph

1. Introduction

Welding plays an important role in metal fabrication and is widely used in the manu-
facturing and construction industries. Ensuring welding quality and improving welding
efficiency is crucial to enhancing welding production. With the development of information
and intelligent technology in recent decades, intelligent manufacturing processes have
attracted much attention [1-4]. The innovation of a welding production model based
on digital information technology has significant economic and social implications. For
example, the intelligent reasoning of welding processes [5,6] and the rapid detection of
welding defects [7] have become essential tools supporting industrial manufacturing. At
the same time, the requirement of manufacturing information and engineering integration
(collaboration of resources and information at each production stage) presents new chal-
lenges for cooperation at all production stages, real-time and efficient information feedback,
and applying knowledge for intelligent welding production.

Knowledge acquisition [8,9] and reasoning [10,11] are critical factors in intelligent
welding. According to the type of knowledge, data can be classified as structured (tradi-
tional database structure data, e.g., welding base materials database), semi-structured (text
data with a certain structure, e.g., welding process specifications), or unstructured (natural
language description and multimedia data, e.g., welding joints should be designed based on
stress level and safety level). Knowledge reasoning involves acquiring hitherto unknown
knowledge from conditional knowledge based on inference mechanisms. The most com-
monly used inference mechanisms are case-based reasoning (CBR, search result case based
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on similarity calculation between case base and new case) [12,13], rule-based reasoning
(RBR, reasoning decision results based on logical rules) [14], and model-based reasoning.
CBR uses a standard case database as primary data and achieves the inference application
of knowledge by matching similarity metrics. RBR is often employed as knowledge-based
reasoning and decision making based on mathematical logic, with high interpretability. To
solve the problem of complicated rulemaking, replacing rules with models is gradually
being applied as knowledge reasoning. For example, Filipi et al. [15] used machine learning
models for dielectric classification and tool selection in the industrial grinding process,
with good results. Some researchers have also focused on multistrategy reasoning [16]
and hybrid reasoning approaches [17,18] that synergize multiple reasoning mechanisms.
However, most of these inference methods are based on structured data knowledge, and
some complex and interconnected unstructured data are not easy to characterize with
relational databases [19].

For unstructured knowledge, knowledge graph-based inference methods are con-
sidered due to their effective performance in the storage of interconnected and variable
data. An increasing number of technologies and studies are concerned with knowledge
graphs (semantic network of knowledge in the form of entities and relationships), covering
biomedicine [20,21], geographical science [22], and information science [23]. However,
only text knowledge weakens the ability of machines to describe the physical world [24].
Understanding knowledge and strengthening the connection between knowledge and
the physical world is necessary for knowledge representation and reasoning. Leonardo
et al. [25] discuss the understanding of knowledge from the perspective of knowledge
origin and artificial intelligence. Sun et al. [26] propose a multimodal graph attention
technique based on multimodal knowledge graph inferences to recommend certain in-
formation. Research on unstructured text and modal knowledge embedding [27,28] is
gradually gaining ground, but research on welding manufacturing is still lacking.

Hence, we proposed a knowledge acquisition and reasoning model considering var-
ious knowledge forms and application scenarios. This model focuses on the integrated
production requirements of welding manufacturing to realize its industrial application. We
predict that the model has favorable generality, and is compatible with the multimodal
knowledge of speech, light waves, currents, etc. In addition, the model can provide a refer-
ence for integrated production in manufacturing areas such as casting and punching. Our
model has the following features compared with most other methods: (i) interconnected
knowledge structure—the acquisition and reasoning of unstructured knowledge increase
to achieve structured knowledge application; (ii) less limitations in terms of knowledge
patterns—the acquisition and reasoning of unstructured knowledge increase to achieve
structured knowledge application; and (iii) strong applicability—engineering information,
integration-oriented design model that enables data interaction and knowledge linkage at
all stages of welding and manufacturing. The model has strong engineering applicability.

The model contains perception, data, and reasoning layers, as shown in Figure 1. A
convolutional neural network (CNN) is an essential model in the perception layer for pic-
ture information acquisition. We used the knowledge graph of the welding manufacturing
domain as the data layer and set the automatic rule inference mechanism based on the
knowledge graph in the inference layer. The essential data related to welding manufac-
turing, such as design, process, production, and inspection, were collected to establish a
domain knowledge graph. We annotated a large number of specialized vocabularies with
the begin—inside—outside (BIO) method and completed the named entity identification
(NER) task using the conditional random field (CRF) model. The relationship construction
of the knowledge graph was achieved by combining bidirectional long short-term memory
(Bi-LSTM) and manual calibration. In addition, we introduced the modal recognition model
in the basic knowledge graph to support the acquisition of deep modal knowledge. The
welded joint sketch was chosen as the data sample for unstructured knowledge acquisition
because it contains crucial design information. The edge detection method is employed as a
pre-processing method to obtain distinct gradient features, and thus, accurate information.
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Moreover, we analyzed CNN models in different structural states, such as InceptionV1 [29],
MobileNet [30], and ResNet [31], VGG16 [32]. The optimal model for InceptionV1 was
obtained, with a training accuracy of 0.814 and a validation accuracy of 0.735. Furthermore,
we compared and analyzed CBR, RBR, and model-based CNNSs, as well as our method, in
terms of accuracy, interpretation, knowledge coverage, scalability, and portability with low,
normal, and high indicators. We obtained results on unstructured knowledge acquisition
and inference. These results show that the proposed model has excellent overall perfor-
mance. The application for the integration of engineering information is also described in
this paper. The main contributions of this paper are as follows:

e  The model with a CNN as the information-aware layer and a domain knowledge graph
as the data center can produce deeply implicit knowledge acquisition (knowledge
obtained from intuitive information through domain reasoning) and reasoning with
certain cognitive abilities.

e  The proposed model accomplishes the acquisition and reasoning of unstructured
knowledge and provides a feasible solution for the integrated manufacturing of weld-
ing information.

e  The design concept, which is based on a networked data structure considering a wide
range of knowledge forms, enriches the driving model of intelligent systems.

Percention Welded Domain Industry
erceptio Models joint standard requirem | [ ...
layer .
images text ents
Knowledge W_el.dlng i Manufact Quality
Data Layer joint process p p A (PO
graph A i uring inspection

Reasoning Rule Rule. Rule Rules.

2 collectio . determin | | ...
Layer reasoning filtering .
n ation

Figure 1. The model is divided into three layers: perception, data, and inference. The perceptual
layer is based on intelligent perception models (CNN is employed as the perception layer model
in this study). The data layer is based on knowledge graphs, while the inference layer is based on
rule-based reasoning.

The rest of this paper is organized as follows. Section 2 describes the construction
of the information acquisition and reasoning model based on CNN and the knowledge
graph. Section 3 implements the processing of the joint welding diagram and constructs
the knowledge graph based on the welding manufacturing process. On this basis, the
comparative training of information acquisition models is carried out. Section 4 presents
the results of the comparison model, and analyzes the knowledge acquisition process
of the welded joint sketch. In addition, engineering data acquisition and the reasoning
model are verified, and engineering applications are described. In Section 5, corresponding
conclusions are provided.

2. Methods and Models
2.1. Information Acquisition
In welding manufacturing, considerable knowledge is hidden in geometric and image

information. This information usually needs to be addressed due to acquisition difficulties.
In order to enrich knowledge acquisition, the feature extraction method is considered.
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CNN is one of the standard methods for feature extraction. It contains the input layer,
convolutional layer, activation layer, pooling layer, and fully connected layer. Convolu-
tional computation, a key element of CNN, extracts features from the input data using
convolutional kernels. This method can effectively obtain the grid-like topology feature
while reducing the amount of arithmetic data. The calculation formula is as follows:

nin

s(i,j) = (Xx W)(i,j) + b=} (X x Wi)(i, ) + b, 1)
k=1

where n_in is the number of input matrices, Xj represents the kth input matrix, Wy repre-
sents the kth sub-convolution kernel, s(j, j) is the value of the corresponding element of the
input matrix, and b is the bias.

Feature transfer from the input to the output layer relies on a forward propagation
algorithm, defining the current layer as I and the previous layer’s output as x'~ 1. The
output layer data can be calculated using the current weight, bias, and activation function.
The inter-layer calculation approach enables the calculation and training of the model via
the continuous transfer of feature data from the original layer to the resulting output layer.
The calculation formula is as follows:

= ), ul = W 4, @)

Model training is a continuous iterative optimization process. In CNN computing,
the smaller the difference, the greater the robustness of the model. The cost function, also
known as the loss function, is used to evaluate the difference between the predicted and
the actual values of the model. Thus, the squared cost function makes the model training
efficient and directional. The training error for sample n can be expressed as Equation (3):

M
L=—) yclog(pe), ®)

c=1

where M is the number of categories, y. is the variable (1 for correct; 0 for incorrect), and p,
is the probability of a correct prediction.

2.2. Knowledge Graph Reasoning

Rule-based logic methods are often used for the reasoning of knowledge graphs,
which have high accuracy and interpretability. With the addition of domain knowledge
and increased data volume, the automatic acquisition of rules with high confidence from
the knowledge graph becomes an essential concern for knowledge inference. Rule head
and body are essential elements of rule inference, and the inference process is represented
as Equation (4). If only atoms of the affirmative form exist in a rule, the rule is called Horn’s
rule, as expressed in Equation (5) (each a represents an atom). Furthermore, we can express
the relationship with the path rule, as shown in Equation (6).

rule : head < body™ Abody~, 4)

where body* denotes the set of atomic logical sums of the affirmative form and body~
denotes the set of atomic logical sums of the negative form.

ag < a1 A A ... Aay, (5)

ro(er, ens1) < ri(e1, e2)Ara(en, e3) A ... Ary(en, en11), (6)

Each atom contains two variables, ¢, and all binary atoms form a path between entities.
To automatically acquire rules for achieving knowledge inference, support, confidence,
and head coverage (HC) are employed to evaluate the rules. The support is the number of
instances that meet the ruling body. The rule header and confidence generally represent
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the support ratio to the number of instances that meet the ruling body (Equation (7)). Most
knowledge graphs are characterized by incompleteness. The ry(x, ¥’) is introduced as a
confidence calculation condition to avoid judging the missing triples as incorrect. They count
instances of entities satisfying the rule when the head entity connects entities other than y
via the relation rg. The incompleteness of the knowledge graph is considered in the partial
completeness assumption (PCA) confidence, which is also an important metric for evaluating
the reasonableness of the rules. The mathematical expression is shown in Equation (8).

. _support(rule)
con fidence(rule) = “Fhody(rule) ’ 7)
, support(rule)
PCA confidence(rule) = 8)

~ #body(rule) Arg(x,y')’

where support(rule) is the rule support, #body(rule) indicates the number of instances that
meet the body of the rule, x is the head entity, y is the entity to which x is connected through
the relation ry, and i’ represents entities other than y.

HC is the support and the number of instances that satisfy the rule head. The math-
ematical expression is shown in Equation (9), where #head(rule) denotes the number of
instances that meet the rule head. In general, the higher the rule head coverage, the better
the rules will be acquired.
support(rule)

#head(rule) ’

The AMIE (association rule mining under incomplete evidence) [33] method is often
used to discover rules based on knowledge graphs. Rule extraction was achieved by
continuously adding dangling, instantiated, or closing atoms. To achieve cross-stage
knowledge acquisition and inference, we integrated CNN, AMIE, and a knowledge graph
to build the driving model, which directly acquires hidden domain knowledge from the
joint sketch. After defining the input image data i, j, the corresponding output s(i, j) is
obtained according to Equation (1). The output-label correspondence mapping function is
defined as F. The inference process and the example are shown in Figure 2.

HC(rule) = )

| For example:
| requirement(Images, PA) « F(Images, butt-joint) A requirement(butt-joint,PA)

chain. <
+ Add closed atoms to form a relational loop to obtain the relationship between the
joint image and the weld position PA.

« Image mapping relations greater than the HC threshold are selected.
«  Continuously add atoms and keep the extended rules if PCA increases, else prune
them out.
If the rule chain is closed, the relationship information in the rule header is
obtained and the rule with the highest PCA is selected as the optimal solution.

_______ I i}

| |
| | |
| | |
| [ |
I Lo F |
| [ Images »  butt-joint |
| [ |
| [ |
I | I requirement |
| F |
| : : Images | butt-joint » PA |
| Calculate PCA | | |
| [ |
: l : : F requirement |

Images > buttjoint >  PA |

| Adding atoms | | e g |
| A
| : : S——_ ___ requirement —— :
| | b — 4
| I
| |« There is a mapping relationship F between the joint image and the butt joint.
| |+ Increase the effective atom requirement(butt-joint, PA) to form a relationship
| I
| I
| I
| I
| I
| I
| I
| I
I I

Figure 2. Inference process and example. The left side shows the depth inference process of image
knowledge, while the right side shows the inference example.
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2.3. Model Design

The model can also be summarized as “a data center with perception” or a data
center in a knowledge graph based on actual welding production data. Unstructured data
information is extracted via NER and relationship extraction models. This information is
stored in a graph database through a triplet form. Image and geometric information can
be collected using CNN models and mapped to entities in the knowledge graph as labels.
For an engineering issue, unstructured problem information is reorganized into structured
triads via semantic and image models. Expected results are inferred and obtained via
the triad and knowledge graph. Regarding image inference, the approach of fusing CNN
and AMIE is used for image knowledge acquisition. The overall process is illustrated in
Figure 3.

|
i ( | |
| Start Question Quesugn ] » R i :[ Answer End |
| processing | L |
e ;
Output Kriowledge Knowledge Output Optimal
Model Graph inference results Rule

[ Input layer ] -P[ AAAAAA ] -P[ Input layer ]
. ‘ * Iﬁ E -
Convolution Convolution ﬁ no
g & ) | D T e e
* * ‘ Dat BIO Model I
Activation Activation ata labeling Training |
layer | | | 77 layer l T |
v v v '
Tt Pooling Sentence Won‘:l NER model |
b JEAN layer level separation 4
Relationshi Model Relationshi Input
[ QunipriileyEe ]_ [ """ ]_ O i ] [ p labeling H Training H p model ] R
Joint information extraction Knowledge extraction from unstructured text Reasoning mechanism

Unstructured
Data

Figure 3. Overall process. The knowledge graph was built based on CNN, NER, and relationship
extraction models. The fusing of AMIE and CNN is used to acquire knowledge related to engineering
problems.

3. Experimental Section
3.1. Data Processing

The welded joint is an important information carrier for welding production. There is
a large amount of design information, such as welding position, bevel form, weld type, base
material type, plate thickness relationship, etc. The joint images are a standard welding
instruction document in actual production. To further improve computational efficiency
and retain the feature gradient information, we changed the joint images to grayscale,
so that they were not strongly dependent on color. In addition, the weighted average
method was employed for grayscale calculations. The mathematical expression is shown
in Equation (10), where i and j represent the pixel point positions, R, G, and B represent
three colors, and wy, wy, and w3 represent the corresponding weights.

Gray(i,j) = w1 x R(i,j) +wy x G(i,]) + w3 x B(i,}), (10)

Feature extraction is an effective means of acquiring image information. For joint
images, geometric data, such as angle, length, width, and height, are clear feature points.
Therefore, the Sobel operator is employed as an edge detection method for extracting image
features and improving the information gradient. For a pixel, the horizontal and vertical
grayscale can be calculated via its neighboring grayscale values, and we can obtain the pixel
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grayscale value using Equation (11). According to Equation (12), the gradient direction
determines the boundary position when the gray value exceeds the threshold value.

G =4/G2+ G2, (11)

0 = arctun(ﬂ), (12)
Gy

The processing results for a butt joint and a T-joint are shown in Figure 4. Possible
feature areas are marked based on expert experience. Thickness relationships and parent
material forms depend on the overall characteristics of the joint being marked in the
original images. Features of the joint type are marked on the material joint in the grayscale
images, including the groove and part of the base material shape. The edge-processed
images indicate groove information, focusing on the base material connection, especially
the groove geometry. Detailed information is provided in Figure 4.

Original images Grayscale images Edge-processed images

_____________________

The thickness relation: material 1 = material 2. The joint type: butt-joint. |
The base material form: P+P (plate and panel). ~ The groove form: V. «-|

L

| .. -
The thickness relation: material 1 > material 2. —> The joint type: T-joint.

The base material form: P+P (plate and panel). The groove form: HV. €4——

v T

Figure 4. Pre-processing results and characterization. The original images are shown on the left, the
middle images show the grayed-out images, and the right images show the edge detection results
based on the Sobel operator.

3.2. Knowledge Graph Construction

Data form the basis for intelligent system reasoning and decision making. They can
be divided into structured, semi-structured, and unstructured data. Structured and semi-
structured data can be directly or indirectly used to construct knowledge graphs, but
using unstructured data is challenging. Therefore, achieving knowledge extraction from
unstructured documents is an essential concern of our study.

We collected numerous engineering documents that mainly focus on joint design,
process design, and welding production to build an integrated engineering data system. In
addition, entities involved in welding manufacturing were calibrated using the BIO method,
and the engineering documents were organized into sentence-level data. Considering the
large amount of data, we divided the data preparation task into two subtasks: NER and
relationship extraction. The CRF model was employed to complete the NER subtask.
Small batches of relations were manually labeled and trained using the Bi-LSTM model.
Then, the trained model automatically transformed the unstructured data into a triad
format. These data were then stored in the Neo4j graph database. Entities were divided
into seven categories (Standard, Technology, Design, Department, Manufacture, Quality,
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and Experiment). Relationships were divided into five categories (belong_to, reference,
requirement, based_on, applicable_to). The data are shown in Table 1.

Table 1. Information about entities and relationships.

Objects Data Category  Example
Standard Number and name of the standard, name of production requirements, etc.
Technology Welding methods, auxiliary welding materials, related technologies, etc.
Design Welding joint size, bevel form, welding position, weld performance design, etc.
Entities Department Manufacturing department, manufacturer, user, testing department, personnel, etc.
Manufacture Products, equipment, tooling, welding machines, clamping, etc.
Quality Product quality, defect detection, checking means, etc.
Experiment Magnetic particle inspection, flaw detection test, fatigue test, etc.
belong_to PA belongs to the welding position (PA, belong_to, welding position).
reference Bogie welding reference EN 15085 (Bogie welding, reference, EN 15085).
Relations requirement Welding-grade CP CA requires defect grade B (CPCA, requirement, B).
based_on WPS was developed based on WPQR (WPS, based_on, WPQR).

applicable_to

ISO 17638:2016 applies to the magnetic particle inspection in the non-destructive testing of
welds (ISO 17638:2016, applicable_to, magnetic particle inspection).

3.3. Model Training and Evaluation

The information acquisition of welded joint images requires multiple classification
models because the images contain multiple classes of information, and each class contains
multiple subclasses. We chose several vital pieces of information (thickness relation, groove
form, joint type, base material form) in the joint image as research objects to train the
corresponding model. Actual data on bogie welding fabrication for high-speed trains
were collected to support the model training. In contrast to generic welding data, we only
selected category objects in our experimental data to complete the classification training.
For example, common groove forms include a, V, U, z, and ], but we only classified a, V, and
HY in our study based on the data under specific conditions. Furthermore, if we suppose
that two base materials are joined, the base material with the bevel is defined as base
material 2, while the vertical base material is defined as base material 2 for non-beveled
welds. A detailed description of the dataset is shown in Table 2.

Table 2. Detailed data description.

Classified tasks Category Describe
material 1 > material 2 Thickness of base material 1 is greater than base material 2
thickness relation material 1 < material 2 Thickness of base material 1 is less than base material 2
material 1 = material 2 Equal thickness of base material 1 and base material 2
a Fillet welds without groove
groove form \% Weld seam with Y-shaped bevel
HY Weld seam with a one-sided “Y” bevel
T+joint Base material forms a right-angle or near-right-angle joint shape
joint type butt joint Relatively parallel joint shape of the base material
lap joint Joint shape with base material partially overlapping
. P+P Both base materials are assembled in plates
base material form P+T Base material consists of plate and tube

The model training process included the following phases. (1) Data collection: the
welding procedure specification documents, including the welding joint diagram and ap-
proval by the project, were collected. Then, the image in the file was automatically extracted
as the initial data through the computer program. (2) Task division: we divided the infor-
mation acquisition process into four classification tasks and trained the models separately
for each task. (3) Data annotations: we selected the annotation team, which consisted of two
annotators and a decision-maker. The annotators and the decision-maker had at least three
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to four years of welding learning experience. When there was disagreement in labeling,
the disagreement was resolved by the decision-maker. (4) Dataset partitioning: due to the
small amount of data, the dataset was divided into a training set and a test set, details of
which are given in Table 3. (5) Model comparison training: CNN models under different
networks, such as InceptionV1, MobileNet, ResNet, and VGG16, were employed to perform
comparison tests in unsupervised conditions. In addition, we ran the program by using
Python programming language (version 3.7) in the TensorFlow framework (version: 1.14.0)
and the grid search method for parameter optimization.

Table 3. Data allocation information.

ID Categories Train Test Total
1 thickness relation 1931 483 2414
2 groove form 1968 492 2460
3 joint type 1779 445 2224
4 base material form 2070 517 2587
- Total 7748 1937 9685

In order to obtain depth knowledge of image information, we defined mapping
templates as follows: “The A is B.” The categorical task and the corresponding category
labels were static template constants (A) and dynamic variables (B). The label information
obtained by the CNN was embedded into the semantic slot to form the complete template.
Then, the link to the knowledge graph entities was achieved using Cypher query language
transformation.

Accuracy is a commonly used evaluation metric which, in most cases, is a valid
characterization of the quality of the model. We calculated the metric according to true
positive (both true category and predicted category are positive examples, TP), false positive
(true category is negative and predicted category is positive, FP), true negative (both true
category and predicted category are negative, TN), false negative (true category is positive
and predicted category is negative, FN). The calculation is shown in Equation (13).

TP+ TN

A =
CUrY = TP TN+ FP+ FN

(13)

4. Results Analysis

An appropriate joint information acquisition model is essential for knowledge acquisi-
tion and cross-stage reasoning. Four CNN network structures (InceptionV1, MobileNet,
ResNet, and VGG16) were employed to train four classification tasks of welded joints
(thickness relation, groove form joint type, and base material form) evaluated via test
accuracy metrics. Details are provided in Table 4.

Table 4. Comparison results of different CNN networks.

Categories
Network

Structure Thickness . Base Material

Relation Groove Form Joint Type Form

InceptionV1 0.758 0.642 0.704 0.835

MobileNet 0.759 0.636 0.696 0.821

ResNet 0.755 0.640 0.696 0.790

VGG16 0.753 0.633 0.700 0.788

The results show that InceptionV1 positively impacts our data, with an accuracy of
0.758 for the thickness relation, 0.642 for the groove form, 0.704 for the joint type, and 0.835
for the base material form. The lower scores appear in the groove form category compared
with the other categories. The geometric characteristics of the groove form are only in small
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areas and are not prominent enough concerning the overall characteristics of the welded
joint. Enlarging local features, such as image cropping and labeling the region of interest
(ROI), may improve model quality.

As shown in Figure 5, the prediction results are similar to the expert experience. The
categories of thickness relation and base material form rely on overall features, while the
categories of groove form and joint type focus on partial features, especially on the position
of the linked base material. In addition, the gradient of the characteristics of the butt joint
sample is not accurate enough, especially for predicting the groove form. This may be the
reason for the relatively low accuracy of the groove form classification. Optimizing data
samples, such as image cropping and labeling the region of interest (ROI), may improve
model quality.

10 10 10 10

HY T-joint v butt-joint

- ; \ . \/ .

TI>T2 P+P T1=T2 P+P

06 06 06 06
04 04 04 04

(a) T-joint sample (b) Butt-joint sample

Figure 5. Predicted heat map of welded joint sketch category: (a) is the sample result of the T-joint,
and (b) is the sample result of the butt joint.

Actual production joint sketches were collected to confirm the feasibility of the model
in cross-stage knowledge acquisition and reasoning. Intuitive joint information was auto-
matically obtained based on the trained CNN model, while deep domain knowledge was
discovered based on the inference of the knowledge graph. As an essential information
carrier for welding design, the welded joint sketch strongly correlates with the welding
process selection. Welding knowledge, such as preheat temperature, weld position, or
assembly gap, are deeply hidden in the welded joint. We found this information using the
proposed model. Detailed results are presented in Table 5.

In rail vehicle bogie welding, the welded joint’s preheating temperature is mainly
developed based on the thickness and type of base material. Moreover, the preheating
treatment is determined according to the thicker base material preheating temperature. In
addition, the welding position selection requires consideration of both joint structure and
welding difficulty. The assembly gap’s determination mainly considers the groove form,
joint type, and other factors. As shown in Table 5, not only can we obtain visual design
information from the joint design images, but knowledge of the welding process associated
with the design is also found via our model. Then model exhibits high consistency with
practical welding manufacturing knowledge.
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Table 5. Results for joint image knowledge acquisition.

Joint Images

Acquired Knowledge

Reasoned Knowledge

D

Thickness relation is base material 1 > material 2.

Groove form is a.
Joint type is T-joint.
Base material form is P + P (plate and panel).

Preheating temperature can be determined based
on base material 1 preheating temperature.
Welding position is PB.

Assembly gap is 0-1.

Thickness relation is base material 1 = material 2.

Groove form is V.
Joint type is butt joint.
Base material form is P + P (plate and panel).

Preheating temperature can be determined based
on base material 1 preheating temperature.
Welding position is PA.

Assembly gap is 24.

Thickness relation is base material 1 < material 2.

Groove form is HY.
Joint type is lap joint.
Base material form is P + P (plate and panel).

Preheating temperature can be determined based
on base material 2 preheating temperature.
Welding position is PB.

Assembly gap is 2—4.

Thickness relation is base material 1 < material 2.

Groove form is HY.
Joint type is T-joint.
Base material form is P + T (plate and tube).

Preheating temperature can be determined based
on base material 2 preheating temperature.
Welding position is PA.

Assembly gap is 2—4.

5. Discussion

5.1. Qualitative Comparison with Other Methods

CBR, RBB, and model-based methods are widely applied for reasoning and decision
making in the welding manufacturing process. However, a quantitative comparative
analysis cannot be carried out due to uncertainty in terms of weights, thresholds, incomplete
rules, and model quality. Hence, we used low, normal, and high fuzzy metrics to assess
each method’s accuracy, interpretability, knowledge coverage, scalability, and portability.
The detailed analysis is as follows, and the results are shown in Table 6.

Table 6. Results of methods comparison.

Methods Accuracy Interpretive Knowledge Scalability Portability
Coverage
CBR normal normal normal high normal
RBR high high normal low low
Model-based
normal low normal normal normal
method
Our method high high high high high

For the CBR method, setting thresholds or weights based on case matching could only
partially guarantee decision-making accuracy due to the inadequate references. To derive
new cases, this method may not obtain satisfactory results due to the imperfection of the
case base. In addition, although most of these methods only apply to structured knowledge
acquisition and reasoning, they have good scalability and portability.

RBR methods are centered on mathematical logic with excellent interpretation and
accuracy. However, the difficulty of knowledge representation and rule formulation leads to
incomplete reasoning and expensive system construction. Furthermore, rule amendments
or additions become challenging as knowledge grows and improves, resulting in weak
scalability and portability.

The model-based inference approach relies on a high-quality model with reasonable
accuracy, scalability, and portability. However, the model needs to be better interpreted
because of its black-box nature.
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Our approach integrates multiple factors that limit knowledge acquisition and reason-
ing, proposing a method structure centered on knowledge graphs with modal processing
as a means of information acquisition. The dynamic logic inference method, based on a
knowledge graph, can guarantee accuracy, and the expression process in terms of relational
paths has strong interpretation. In addition, the method has superior performance in terms
of knowledge coverage, scalability, and portability.

5.2. Engineering Applications

With the development of welding manufacturing information technology and automa-
tion, the knowledge of each production stage interacts more closely. Integrating knowledge
feedback into the production cycle to improve production quality and efficiency is of
significant concern. The process of bogie welding manufacturing includes joint design,
process selection, welding production, and quality inspection. The joint design should
consider the structure, weldability, relevant standards, etc., as well as the actual process
and production conditions. Design conditions and actual production content are also
necessary for selecting welding processes, except for domain knowledge. In addition, the
welding and joining production process considers design and process information on the
one hand, and production conditions and quality requirements on the other. Moreover,
quality inspection is related to the other phases of the welding cycle. Therefore, bogie
welding manufacturing is a complex, multistage information interaction process.

In welding manufacturing, complex information networks and extensive domain
knowledge mean that information-integrated production requires a professional and inter-
connected data structure as well as extensive knowledge acquisition ability. Considering
these characteristics, we designed an information engineering integration model for bogie
welding manufacturing based on our model. The main stages and elements in manufac-
turing are enumerated, and they exist to transfer information to each other. Our model
supports knowledge acquisition and reasoning for each stage and achieves information
interaction and feedback between the stages. In addition, the model has applicability in
manufacturing process support scenarios, such as knowledge retrieval, result attribution,
and intelligent questions/answers. The design information is presented in Figure 6.

Main Manufacturing Stages Our Model Application Cases
T
Design Quality Information Manufacturin
acquisition g decision
. . \ )
Joint design Defects
Weld design <:> Detection —
Bevel design Experiments @ The result of
attribution
T
S
Process Production Knowledge
search
. ) ) \ )
Welding methods Welding equipment
Welding paths <:> Clamps —_—
Welding parameters Welding machines Knowledge
Knowlgdge questions and
reasoning answers
-

Figure 6. Integrated welding design. The main manufacturing stages and contents are represented
on the left side of the image. Our model includes information acquisition, knowledge graph, and
knowledge inference in the middle. On the right side are several practical engineering application
scenarios.
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A process for bogie side beam welding is depicted in Figure 7 based on the proposed
practical application model. The bottom and lower cover plate welding process involves the
primary production stages (design, process, quality, and production). As shown in Figure 7,
the knowledge graph is constructed using relationships that link entities. Joint sketch
information is obtained and linked to the described knowledge graph. Several cross-stage,
real-production questions are asked for intelligent question-and-answer applications, and
the corresponding answers are obtained based on the constructed model. This detailed
model and the information results are shown in Figure 7.

JuswaIbax

belong, J"‘O %

ID: 0001

\ \/

" cover
requirement

Bogie \belong_to
welding >
g | % ,

Question: What welding position is selected for the joint sketch 0001? Answer: The welding position is PA.
Question: What is the quality level of the side beam of the bogie? Answer: The quality level is CP B.
Question: What tools do I need for welding process JP_24? Answer: Magnetic particle detector and grinding inspection.

Figure 7. Welding process of the bottom cover plate and lower cover plate. The knowledge graph of
the two components, which contains information about the design, process, quality, and production
stages, is described. The figure lists intelligent question-and-answer data based on the process graph.

The case design is based on the actual manufacturing process and is model-driven
to achieve production information integration. Comprehensive knowledge coverage,
low structural complexity, high portability, and extensive engineering applications are
important features of the method. In addition, we conducted the experimental analysis
with images only. We predict that the knowledge acquisition module can extract feature
information, such as sound, current, and voltage, considering the structural characteristics.
Therefore, the method is also highly scalable.

6. Conclusions

To address the challenges of limited access to welding depth knowledge and weak
reasoning across production cycles, we designed a model driven by a knowledge graph as
the data center, and a CNN as the perceptual layer. The aim of the model was to achieve
cross-stage inference from modal information to depth knowledge. The domain knowledge
graph about welded bogies was based on NER and relationship recognition subtasks.
Additionally, the optimal perceptual model (InceptionV1: 0.758 for the thickness relation,
0.642 for the groove form, 0.704 for the joint type, and 0.835 for the base material form)
was obtained with the welded joint images as data. Compared with traditional inference
methods, our model shows comprehensive performance and can support the intelligent
production of integrated welding and manufacturing.

The proposed model has comprehensive knowledge coverage, highly interconnected
knowledge, and an extremely scalable structure. It effectively complements theoretical
knowledge acquisition and reasoning systems. It is therefore significant for realizing
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engineering manufacturing in integrated welding information. Our research may inspire
the development of cognitive intelligence in manufacturing.

Follow-up studies related to our method might be of interest. For example, (i) research
patterns and content can be added to expand knowledge acquisition, and sound, light
waves, and fabrication defects may be worth considering; (ii) intelligent systems based on
the proposed method should be examined; and (iii) our model also applies to a cognitive
intelligence system combined with physical sensors.
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