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Abstract: Fault diagnostic techniques can reduce the requirements for the experience of mainte-
nance crews, accelerate maintenance speed, reduce maintenance cost, and increase electric energy
production profitability. In this paper, a new hybrid fault diagnosis method based on multivariate
empirical mode decomposition (MEMD), fuzzy entropy (FE), and an artificial fish swarm algorithm
(AFSA)-support vector machine (SVM) is proposed to identify the faults of a wind energy converter.
Firstly, the measured three-phase output voltage signals are processed by MEMD to obtain three sets
of intrinsic mode functions (IMFs). The multi-scale analysis tool MEMD is used to extract the common
modes matching the timescale. It studies the multi-scale relationship between three-phase voltages,
realizes their synchronous analysis, and ensures that the number and frequency of the modes match
and align. Then, FE is calculated to describe the IMFs’ complexity, and the IMFs-FE information
is taken as fault feature to increase the robustness to working conditions and noise. Finally, the
AFSA algorithm is used to optimize SVM parameters, solving the difficulty in selecting the penalty
factor and radial basis function kernel. The effectiveness of the proposed method is verified in a
simulated wind energy system, and the results show that the diagnostic accuracy for 22 fault modes
is 98.7% under different wind speeds, and the average accuracy of 30 running can be maintained
above 84% for different noise levels. The maximum, minimum, average, and standard deviation
are provided to prove the robust and stable performance. Compared with the other methods, the
proposed hybrid method shows excellent performance in terms of high accuracy, strong robustness,
and computational efficiency.

Keywords: wind energy; converter fault diagnosis; multi-channel signal analysis; swarm intelligence
optimization; maintenance efficiency

1. Introduction
1.1. Background

Wind power systems are supposed to be a sustainable solution to satisfy the increasing
energy demand and alleviate the impact of greenhouse gas emissions [1]. High reliability
and low maintenance cost are the key to the large-scale development of wind power
systems [2,3]. Fault diagnosis is considered as a powerful tool to ensure good operation of
the systems, reduce downtime, and improve maintenance efficiency [4,5].

The converter is an indispensable component in a wind power system. The high
annual failure rate of 17.5% and downtime percentage of 14.3% indicate that the wind
energy converter is vulnerable [6]. Its failure will lead to the increase in harmonics, which
can reduce power quality. Its failure will also damage other important components in the
system, thus increasing production costs, and even endangering the security of the power
grid [7]. Therefore, it is necessary to diagnose the faults of wind energy converters.

1.2. A Survey of Previous Related Work

The model-based method uses the physical knowledge of system structure and dy-
namics to establish an accurate analysis model for the converter system, and then obtains
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the fault results by analyzing the residual between the estimation and the actual measure-
ment. A sliding mode observer-based robust fault diagnosis method was proposed for a
closed-loop grid-connected inverter [8]. A Kalman filter estimation method was used to
directly and quickly detect the fault submodule of modular multilevel converter [9]. These
methods can observe the essential fault characteristics of the system and make full use of
system information; they are conducive to finding early-stage weak faults. However, the
diagnostic accuracy of these methods deeply depends on the accuracy of system parameters
and models.

The signal-based method detects and locates converter faults by comparing diagnostic
variables and thresholds. The absolute normalized current was calculated to diagnose the
open-circuit faults of the converter in a wind turbine [10]. A fault diagnosis strategy based
on current trajectory was used for a wind power converter [11]. These methods are simple
and straightforward because they do not need a precise converter system model, and they
have significant real-time performance. However, they require prior knowledge of the
system and are susceptible to threshold. Moreover, the diagnostic accuracy is sensitive to
noise and operating conditions.

The data-driven method overcomes the defects of the above methods; it does not need
an accurate converter model or prior system knowledge. This method uses mathematical
technology to diagnose converter faults, and only requires a large amount of data. Wang
extracted the fast Fourier transform (FFT)-principal component analysis (PCA) features
of a converter signal to construct the fault feature vector, and identified faults through
a multiclass relevance vector machine (mRVM) [12]. FFT-relative principal component
analysis (RPCA) was proposed to extract generator-side converter fault features, and a
support vector machine (SVM) was used for fault type recognition [13]. The FFT-PCA-Bayes
networks (BNs) integration method was presented for inverter fault diagnosis to solve the
uncertainty caused by bias and noise of sensors [14]. The discrete wavelet transform (DWT)
was used to preprocess inverter current to obtain approximate coefficients, and then their
energy vectors were calculated as fault features [15]. DWT was utilized to extract detail
coefficients as fault features, and an artificial neural network (ANN) was used to recognize
inverter switch faults [16]. The energy of each layer wavelet transform (WT) coefficient was
extracted as fault features, and then input into the deep belief networks (DBN) model for
fault classification [17]. However, for non-stationary and nonlinear wind energy converter
signals, FFT and DWT are unable to guarantee the accuracy of fault diagnosis. This is
because FFT generates error information for nonlinear signals and has no time resolution,
and DWT is easily affected by wavelet bases and lacks adaptability.

According to the characteristics of the signal itself, empirical mode decomposition
(EMD) adaptively decomposes a non-stationary and nonlinear signal into a set of intrinsic
mode functions (IMFs) reflecting signal frequency, which overcomes the defects of FFT
and DWT [18]. EMD was combined with PCA to extract fault features for converter fault
diagnosis, and SVM was used as classification model [19]. In order to improve noise
robustness, a fault diagnosis method based on ensemble EMD (EEMD), norm entropy (NE),
and SVM was proposed, and the fault features were described by IMF-NE [20]. Complete
EEMD (CEEMD) was used to detect the harmonic characteristics of the three-stator currents
and the feature was input ANN for converter fault diagnosis [21]. However, these methods
have limitations in processing multi-channel signals; each channel signal needs to be
decomposed separately, which may lead to different IMF quantities finally obtained, or
inconsistency in the corresponding frequency of IMF of the same order [22].

In addition, although SVM has good processing ability for small samples and nonlinear
data, its parameters penalty coefficient and kernel function can affect the accuracy of
fault diagnosis [23]. They cannot be selected adaptively according to actual samples,
leading to low accuracy of classification and slow convergence [24]. Grid search and cross-
validation (CV) were used to determine the optimal values of penalty coefficient and kernel
function [20]. The average value of three-phase current was taken as the fault feature and
input into the SVM classifier optimized by a genetic algorithm (GA), then the power switch
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faults of the converter were effectively detected and located [25]. An intelligent detection
algorithm combining variational mode decomposition and particle swarm optimization
(PSO) SVM was proposed, which can not only accurately identify the series arc fault in a
solar photovoltaic power generation system, but can also identify the parallel arc fault [26].
A fault identification method based on cuckoo search (CS)-SVM was proposed to monitor
the status of wind turbines, and the CS algorithm was used to select the optimal SVM
parameters [27]. These methods improve the accuracy of fault diagnosis, but increase the
calculation cost.

In order to clarify the advantages of the presented hybrid fault diagnosis method for
wind energy converters with other algorithms previously published, a comparison is made,
as shown in Table 1.

Table 1. Comparison of converter fault diagnosis methods.

Ref. Approach Method Advantage Drawback

[8,9]

Sliding mode
observer [8]; Kalman
filter estimation
method [9]

Model-based

1. Observe the essential
fault characteristics of the
system;
2. Make full use of system
information;
3. Conducive to finding
early-stage weak faults.

Heavily depends on the accuracy
of system parameters and
models

[10,11]
Absolute normalized
current [10]; Current
trajectory [11]

Signal-based

1. Simple and
straightforward;
2. Significant real-time
performance

1. Requires prior-knowledge of
the system;
2. Susceptible to threshold;
3. Sensitive to noise and
operating conditions.

[12–17]

FFT-PCA-RVM [12];
FFT-RPCA-SVM [13];
FFT-PCA- BNs [14];
WT-energy vectors [15];
DWT-detail
coefficients-ANN [16];
WT-energy
vectors-DBN [17]

Data-driven

1. Does not need accurate
model;
2. Does not need system
prior knowledge.

1. FFT generates error
information for nonlinear
signals;
2. FFT has no time resolution;
3. DWT is easily affected by
wavelet bases and lacks
adaptability;
4. Detail coefficients, energy
vectors, and principal
component energy are sensitive
to load, the changing operating
conditions, and noise;
5. ANN: needs a large number of
samples, heavily relies on
learning samples, easy to fall
into local optimum;
6. DBN: Heavy complexity and
calculation.

[19–21]
EMD-PCA-SVM [19];
EEMD-NE-SVM [20];
CEEMD-ANN [21]

Data-driven

1. Nonlinear signal
processing;
2. Adaptive signal
processing;
3. SVM: suitable for a small
number of samples,
simple/straightforward,
high generalization ability,
with global optimality.

1. Have limitations in processing
multi-channel signals;
2. ANN: needs a large number of
samples, heavily relies on
learning samples, easy to fall
into local optimum;
3. SVM: difficulty in selecting the
penalty factor and radial basis
kernel parameter in SVM model.

[20,25–27]

CV-SVM [20];
GA-SVM [25];
PSO-SVM [26];
CS-SVM [27]

Data-driven Improve the diagnostic
accuracy Increase the calculation cost
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1.3. Motivation

Since the power of the wind energy converter is continuously increasing, and the
actual working conditions are very complex and harsh, it is necessary to develop a fault
diagnosis method that is easy to transplant, does not need an accurate converter model, and
does not need prior knowledge of the signal pattern; moreover, an adaptive fault diagnosis
method that is robust enough to withstand noise and changes in operating conditions is
also necessary.

As summarized in Table 1, the model dependence of the model-based method and the
environmental sensitivity of the signal-based method hinder their application in increas-
ingly complex wind power systems. On the other hand, EMD stands out in signal analysis
due to its nonlinear signal processing ability and adaptability. Multi-scale signal analysis
is a promising method to improve the accuracy and robustness of diagnosis. It should
be noted that feature descriptions such as detail coefficients [16], root mean square [28],
energy vector [15], mean [29], standard deviation [30], kurtosis [31], and skewness [32] are
sensitive to different working conditions, load disturbance, and noise. Entropy represents
the statistical complexity of signals, and can describe the system internal information. Thus,
entropy can be used as quantitative description of information contained in signals and
quantitative evaluation of system complexity.

This paper presents a multi-scale signal analysis-based hybrid fault diagnosis method
for wind energy converters. It combines multivariate empirical mode decomposition
(MEMD) and fuzzy entropy (FE) to extract converter fault features, and uses a support
vector machine (SVM) optimized by the artificial fish swarm algorithm (AFSA) to identify
fault types. Three-phase voltage signals are selected for converter fault diagnosis. Firstly,
they are processed using MEMD to obtain three sets of intrinsic mode functions (IMFs),
and the same characteristic frequency appears in the same order in different IMF sets. Next,
the FE is used to characterize the IMFs’ complexity, and the IMFs-FE value is taken as the
fault feature vector. Finally, AFSA is used to optimize the penalty factor and radial basis
kernel parameter in the SVM model, and the optimized classifier is used for converter fault
identification. The effectiveness of the presented method is verified in a simulated wind
energy system, and its robustness is tested. The main contributions are as follows:

• The multi-scale analysis tool MEMD is used to extract the common modes matching
the timescale. It studies the multi-scale relationship between three-phase voltages,
realizes the synchronous analysis of three-phase voltages, and ensures that the number
and frequency of the extract modes match and align;

• IMFs-FE reflects the complexity of intrinsic oscillations, increasing the robustness to
operating conditions and noise;

• The best, average, and worst results, and the standard deviations are reported to prove
the robust and stable performance;

• The hybrid method shows outstanding performance in terms of high diagnosis accu-
racy, strong robustness, and high computational efficiency.

The rest of this paper is organized as follows. Section 2 describes a wind energy con-
verter system and analyzes the fault modes. Section 3 presents an intelligent fault diagnosis
method, MEMD-FE-AFSA-SVM. Section 4 verifies the effectiveness and robustness of the
method in a simulated model. Section 5 provides conclusions.

2. Fault Diagnosis System
2.1. System Description

A doubly fed induction generator (DFIG) wind power generation system is shown
in Figure 1. It is mainly composed of a converter, control system, generator, blades, and
gearbox. The converter converts the alternating current (variable frequency and amplitude)
from the generator into constant-frequency alternating current, and it adopts a back-to-back
structure. The converter near the grid is called the grid-side converter. It suppresses the
current harmonics and stabilizes the DC-link voltage. The converter near the generator
is called the rotor-side converter. It tracks the maximum wind energy and improves the



Electronics 2023, 12, 1263 5 of 19

system operation efficiency. The grid-side converter and the rotor-side converter have the
same structure. The grid-side converter has three bridge arms, and each arm is composed
of two insulated gate bipolar transistors (IGBTs). Each IGBT (i.e., Ti) is driven by a gate
signal; it is turned off when the signal is 0, and it is turned on when the signal is 1.
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Figure 1. The topology of a wind turbine system.

Converter faults mainly include open-circuit (OC) faults and short-circuit (SC) faults.
The SC fault can generate abnormal overcurrent, which will trigger system protection and
cause immediate shutdown, so it is easy to detect. The OC fault will cause current offset in
healthy phase and fault phase, leading to generator torque oscillation, and it will also cause
high current harmonics, which will reduce the power factor of the grid. Furthermore, it
may damage the capacitor and generator. However, OC faults are usually slow to respond
and do not result in an immediate shutdown of the system. Therefore, OC fault diagnosis
is necessary to reduce operational risk and improve power production.

Selecting the fit signal is the first task of intelligent fault diagnosis. Due to the charac-
teristic that the output voltage of the converter is not affected by the change in load, while
the current varies, the three-phase line-to-line voltage Uabcg (Uab, Ubc, Uca) is adopted as
the input signal of the fault diagnosis model. The simulated voltages Uabcg (Uab, Ubc, Uca)
under different faults are shown in Figure 2.

From Figure 2, OC faults cause signal distortion in Uab, Ubc, and Uca, and the degree
of distortion varies with different faults. Therefore, the variation in Uab, Ubc, and Uca can
reflect the fault state of the converter, and it is reasonable to use them as diagnostic signals
to identify the fault type of the converter.

The complex and changeable operating conditions of wind power systems make the
output signals of the converter nonlinear and non-stationary, thus, the fault diagnosis
method for the converter should have superior processing capability for nonlinear and
non-stationary signals. The high dynamics of wind power systems cause abrupt changes in
torque, so the converter fault diagnosis should be robust enough to withstand wind speed.
Since the signals measured by sensors contain noise, the fault diagnosis method should
have robustness to withstand noise.
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2.2. Fault Types

Different combinations of IGBT open circuits form different fault types. For the grid-
side converter, when all IGBTs are working healthily, the converter is in normal state. When
only one IGBT fails, six fault modes are formed: T1, T2, T3, T4, T5, and T6. When two
IGBTs in the same half-bridge fail at the same time, six fault modes are formed: T1 and
T5, T1 and T3, T3 and T5, T2 and T6, T2 and T4, T4 and T6. When two IGBTs in the same
bridge arm are faulty simultaneously, three fault modes are formed: T1 and T2, T3 and T4,
T5 and T6. When two IGBTs in different half-bridges fail at the same time, six fault modes
are formed: T1 and T6, T1 and T4, T3 and T6, T3 and T2, T5 and T4, T5 and T2. It is rare
that OC faults occur in three or more IGBTs simultaneously, so the OC fault diagnosis of
single IGBT faults and double IGBTs faults is studied in this work. Thus, there are a total of
22 fault modes in both the faulty and healthy state.

3. Fault Diagnosis Method
3.1. The Proposed Fault Diagnosis Method

The fault diagnosis steps of wind energy converters proposed in this paper include
fault feature extraction, classification diagnosis model, and diagnostic results output. The
detailed fault diagnosis process is as follows.

Step 1. Acquire the three-phase voltage signal Uabcg (Uab, Ubc, Uca) of the converter
under different working conditions and take them as input to train and test the fault
diagnosis model.

Step 2. Process three fault signals Uab, Ubc, and Uca synchronously using MEMD, and
three sets of IMFs with matching and aligned number and frequency are obtained.
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Step 3. Calculate the FE features of IMFs, and take them as fault features. Then, the
fault feature of a sample is obtained as follows.

HFE = [HFE(IMFs/Uab), HFE(IMFs/Ubc), HFE(IMFs/Uca)]

where

HFE(IMFs/Uab) = [HFE(IMF1/Uab), HFE(IMF2/Uab), . . . , HFE(IMFl/Uab)]
HFE(IMFs/Ubc) = [HFE(IMF1/Ubc), HFE(IMF2/Ubc), . . . , HFE(IMFl/Ubc)]
HFE(IMFs/Uca) = [HFE(IMF1/Uca), HFE(IMF2/Uca), . . . , HFE(IMFl/Uca)]

l is the number of IMF in each set.
Step 4. The fault features are divided into training samples and test samples. The

training samples are used to train the SVM classification model, and the test samples are
used to validate the diagnostic performance.

Step 5. Train SVM classification model and output diagnostic results. The SVM model
is optimized by a swarm intelligence algorithm AFSA to obtain the best model parameters.

3.2. Signal Decomposition Using MEMD

Multivariate empirical mode decomposition (MEMD) extends EMD to multivariate
signal processing [33]. MEMD projects multi-dimensional signals to the direction vector of
the hypersphere in the multi-dimensional space. By calculating the envelopes and local
means of the projections along different directions, it realizes the same mode decomposition
of the multi-dimensional signal in different frequency bands. Thus, MEMD achieves simul-
taneous joint analysis of multiple signals, overcomes the uncertainty of scale arrangement
of EMD multiple signal decomposition, ensures the matching and alignment of different
IMF sets in terms of number and frequency, and solves the mode calibration problem of
multiple signals. The specific steps of MEMD are described below.

Step 1. Let n-channel signals be an n-dimensional vector {s(t)}T
t=1 = {s1(t), s2(t), . . . ,

sn(t)}, where T is the length of the signal.
Step 2. Generate a V-point Hammersley sequence for uniform sampling on the n− 1

dimensional sphere, and then obtain the direction vectors of n-dimensional space.
Step 3. Calculate the projection qθυ(t) of the input signal {s(t)}T

t=1 along each direction
vector xθυ, then obtain a set of projections {qθυ(t)}V

υ=1.

Step 4. Obtain the instantaneous time
{

ti
θυ

}V
υ=1 corresponding to the extremum of the

projected signal set {qθυ(t)}V
υ=1.

Step 5. Interpolate [ti
θυ, s(ti

θυ)] via spline function to yield V multivariate envelopes
{eθυ(t)}V

υ=1.
Step 6. For the V direction vectors, calculate the mean of the multi-dimensional

envelopes: β(t) = 1
V

V
∑

υ=1
eθυ(t).

Step 7. Calculate the detail: d(t) = s(t)− β(t). If d(t) satisfies the IMF conditions, d(t)
is an IMF component, and set h(t) = s(t)− d(t). Then, go to step 3 and apply the following
steps to h(t); else, repeat step 3~step 7 for d(t).

When all projections satisfy the EMD stop criteria [34], the multi-dimensional IMF
sifting process stops. After the decomposition is completed, the original signal {s(t)}T

t=1

is decomposed as s(t) =
I

∑
i=1

di(t) + ∂(t), where I is the number of layers of the mul-

tivariable IMFs. Thus, MEMD can decompose n-variable signals into n sets of IMFs{
d1

i (t), d2
i (t), . . . , dn

i (t)
}T

t=1 and residue
{

∂1(t), ∂2(t), . . . , ∂n(t)
}T

t=1.

3.3. Feature Extraction Using FE

In order to visually represent the difference between different faults of the converter,
it is necessary to extract distinctive fault feature information. Fuzzy entropy (FE) is a
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nonlinear dynamic index to measure the complexity of the system [35]; it can measure the
irregularity of the system. Therefore, the FE of the system signal changes with the fault
state of the system. Thus, the FE of IMF is calculated to form the fault feature vector. For a
given signal u(n) = {u(1), u(2), . . . , u(N)}, the FE is calculated as follows.

Step 1. Define embedding dimension m(m ≤ N − 2) and similarity tolerance r, then
reconstruct the phase space:

X(i) = {u(i), u(i + 1), . . . , u(i + m− 1)} − u0(i)

i= 1, 2 , . . . , N −m + 1

u0(i) = 1
m

m−1
∑

j=0
u(i + j)

(1)

Step 2. Introduce fuzzy membership function A(x) to define the similarity of the
vector space:

A(x) =
{

1 x = 0
exp[− ln 2(x/r)α] x > 0

(2)

where α is weight, which determines the gradient of the similar tolerance boundary.
Calculate the similarity between X(i) and X(j) :

Am
ij = exp[− ln 2(`m

ij /r)α]

j= 1, 2 , . . . , N −m, and j 6= i
(3)

where `m
ij is the maximum absolute difference between X(i) and X(j) :

`m
ij = `[X(i), X(j) ]

= max
p=1,2,...,m

(|u(i + p− 1)− u0(i)| − |u(j + p− 1)− u0(j)|)
(4)

Step 3. Calculate the average value of Am
ij :

Ψm
i (α, r) =

1
N −m− 1

N−m

∑
j=1,j 6=i

Am
ij (5)

Step 4. Define:

Φm(α, r) =
1

N −m

N−m

∑
i=1

Ψm
i (r) (6)

Step 5. The fuzzy entropy of the signal is defined as:

FuzzyEn(m, α, r) = ln Φm(α, r)− ln Φm+1(α, r) (7)

3.4. Fault Classification Diagnosis Using AFSA-SVM

SVM isolates different categories by establishing an optimal hyperplane [36]. For a
dataset G = {(xi, yi), i = 1, 2, . . . , I}, the classification decision function is defined as:

yi = wTφ(xi) + η (8)

where xi and yi are the input sample and the corresponding category label, respectively. η
is offset, and w is the weight vector orthogonal to the classification hyperplane.

Calculate the optimal hyperplane.

min
w,η,ξ

1
2

wTw + C
I

∑
i=1

ξi (9)
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subject to
yi(wTφ(xi) + η) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , I
(10)

where C is the penalty coefficient and ξi is the slack variable.
k(xi, xj) = φ(xi)

Tφ(xj) is a kernel function. It is used to map linearly indivisible
low-dimensional data to high-dimensional areas. The radial basis function is used in
this paper:

k(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0 (11)

where γ is the bandwidth of kernel function.
Penalty coefficient C is used to adjust the ratio of confidence interval and empirical

risk in the determined subspace to optimize the classification ability of the classifier. Kernel
function parameter γ reflects the distribution of data after mapping to feature space, and the
suitable γ can map the data to the proper feature space. γ = 1

2σ2 , σ is standard deviation.
The artificial fish swarm algorithm (AFSA) is a swarm intelligence optimization

algorithm based on animal behavior [37]. The parameter optimization process of AFSA is
realized by simulating the behavior of fish looking for food. AFSA has a simple structure,
good global convergence, strong robustness, and fast speed. The penalty coefficient and
kernel function parameter of SVM are optimized by AFSA, which avoids the problem of
traditional methods falling into local optimization, improves the prediction accuracy of
the model, and overcomes the problem of slow convergence of traditional methods. AFSA
optimization steps are as follows:

Step 1. Initialization. Set population size N, individual state of artificial fish Xi ={
x1, x2, . . . , xρ

}
, food concentration Yi = f (Xi), distance between artificial fish εij =∣∣Xi − Xj

∣∣, visual field of artificial fish visual, step length step, crowding factor ζ, and
number of foraging trials κ.

Step 2. The individuals in the fish school represent the parameters (C, σ) in the SVM
model. Choose to use more cross-validation methods to seek the optimal parameters as the
fitness function.

Step 3. Evaluate each individual and perform artificial fish behavior, including forag-
ing, clustering, and rear-end.

Foraging behavior: Comparing the food concentration function Υ of the two times, the
movement direction of the artificial fish is determined by the food concentration function
Υ. If Υi > Υj, move one step; otherwise, a state Xj is selected at random for comparison. If
the artificial fish cannot decide which way to move after several attempts, it moves one
step at random. Suppose rand(·) represents any random number between 0 and 1, then a
random state Xj is represented as Xj = Xi + rand(·)× visual. The state of the artificial fish
after moving one step is Xinext:

Xinext =

{
Xi + rand(·) · step · Xj − Xi

|Xj − Xi| Υi < Υj

Xi + rand(·) · step Υi > Υj

(12)

Clustering behavior: Suppose the number of artificial fish in the current field of view
is λ, the state of artificial fish in the cluster center is Xµ. In the cluster center, the food

concentration is Υµ. When Υµ

λ > δΥi indicates that the center is not crowded, the artificial
fish moves toward the center; otherwise, foraging behavior is performed. The formula is as
follows:

Xinext =

Xi + rand(·) · step · Xµ − Xj

|Xµ − Xj|
Υµ

λ > δΥi

Foraging behavior Υµ

λ < δΥi

(13)

Rear-end behavior: Suppose the position of artificial fish with high food concentration

is denoted as Xj, corresponding to food concentration Υj. If
Υj
λ > δΥi indicates that the food

at state Xj is more than the food at the current position and this position is not crowded,
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then the artificial fish moves one step to position Xj; otherwise, foraging behavior will be
carried out, as follows:

Xinext =

Xi + rand(·) · step · Xj − Xi

|Xj − Xi|
Υj
λ > δΥi

Foraging behavior
Υj
λ < δΥi

(14)

Step 4. After foraging, clustering and rear-end behavior, each individual replaces the
better value by comparing the current state with the optimal value. Each individual reaches
the optimal state after many iterations.

4. Simulation Results and Discussion
4.1. Simulation Platform

The DFIG wind power system simulation model is established to assess the perfor-
mance of the proposed intelligent fault diagnosis method MEMD-FE-AFSA-SVM. The
wind energy converter model is shown in Figure 3, and the main parameters are shown in
Table 2.
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Figure 3. Simulation model of the converter.

Table 2. Main parameters of the wind power system.

Quantity Value Quantity Value

Nominal power 1.5 MW Resistance of rotor 0.016 pu
Nominal voltage 575 V Leak inductance of rotor 0.16 pu
Resistance of stator 0.023 pu Pole pairs number 3
Leak inductance of stator 0.18 pu Magnetizing inductance 2.9 pu

We set the sampling frequency of the simulation to 10 kHz and the sampling time to
1 s, and obtained the sample with the size of 10,000. The OC fault of IGBT is simulated
by removing the corresponding gate signal; for instance, an OC fault is inserted in T1 by
setting gg1 to 0.

For assessing the robustness of the proposed fault diagnosis method to wind speed,
the three-phase voltages Uab, Ubc, and Uca are measured when the wind speed varies from
10 m/s to 15 m/s, and the interval is 0.0625 m/s. Thus, there are 81 sets of three-channel
signals as the original samples. For 22 fault modes, there are 1782 sets of original samples
in total. In order to verify the robustness of the proposed fault diagnosis method to noise,
white noise with different signal-to-noise ratios (30 dB, 20 dB, and 10 dB) is, respectively,
added to the original voltage signals.
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We perform MEMD decomposition on each set of three-channel samples, and
the matching and aligned IMFs of each set of samples were obtained. Then, we cal-
culated the fuzzy entropy of the IMFs as fault features of the converter, denoted as
[HFE(IMFs/Uab), HFE(IMFs/Ubc), HFE(IMFs/Uca)]. Finally, we input the fault feature sam-
ples into the AFSA-SVM model to identify the fault modes. Randomly select the training
samples and test samples under each fault state, and the number of training samples is
larger than that of test samples.

4.2. Results of Decomposition

MEMD is used to extract the common mode of the three-phase voltages Uab, Ubc, and
Uca matching with the aligned timescale. Figure 4a shows these scale-aligned modes in the
order of timescales from small to large. In order to highlight the advantages of MEMD, the
EMD decomposition results are shown in Figure 4b.

From Figure 4a, there are the same number of IMF components in each group of IMFs
by MEMD, and Uab, Ubc, and Uca are all decomposed into 14 IMFs. Furthermore, the
IMF in different voltages has the same frequency on the same timescale, such as the IMF8
(marked in red box), and the frequencies of Uab, Ubc, and Uca are essentially equal. Thus,
MEMD solves the difficulty of matching and aligning the number and frequency of IMFs
in Uab, Ubc, and Uca.

As shown in Figure 4b, the number of IMFs obtained from each signal decomposition
is different; Uab is decomposed into 15 IMF components by EMD, while Ubc and Uca
are decomposed into 14 IMFs and 13 IMFs, respectively. In addition, IMF frequencies of
different signals in the same order are different; for example, for IMF10 (marked in the
green box), the frequency of Uab is the largest, followed by the frequency of Ubc, and the
frequency of Uca is the smallest. As a result, the IMF sets of the three-phase voltage signals
Uab, Ubc, and Uca by EMD decomposition do not match in quantity and frequency. This
is because the EMD decomposition process of Uab, Ubc, and Uca is independent for each
signal without considering the internal correlation.

In order to more accurately verify the superiority of the results, the corresponding
timescales measured by FFT are shown in Tables 3 and 4.

As shown in Table 3, MEMD effectively captures the common characteristics of three-
phase voltage signals, and its timescale is basically the same within the same group, but
different between groups. In particular, the timescales of IMFs 7–8 and IMFs 10–13 have
no difference within the group and no overlap between groups. Although there is intra-
group difference in IMFs 9, it is very small, which is far less than the difference between
groups with IMFs 8 and IMFs 10. Therefore, such a satisfactory analysis is helpful for the
subsequent feature extraction, thus improving the accuracy of converter fault diagnosis.

The results in Table 4 show that although the intra-group differences in IMFs 1–4 are
relatively small, there is inter-group overlap of Uab between IMF 5 and IMF 6. In addition,
the timescale misalignment occurs from IMFs 6. For example, the timescales of IMF 10
are 500.05, 833.41, and 1666.83, and the intra-group difference completely exceeds the
inter-group difference. Therefore, compared with MEMD, the analysis results of EMD are
very unsatisfactory, and serious mode mixing occurs.

Because MEMD directly acts on three-phase voltage signals Uab, Ubc, and Uca at the
same time, it provides internal information about the interaction of the three voltages,
providing physical insight into the operation status of the converter system. Therefore, the
signal processing of MEMD reduces the difficulty of subsequent fault diagnosis.

The adaptive decomposition characteristic of MEMD results in the outcome that the
number of IMFs obtained after the decomposition of 1782 sets of data samples in 22 fault
modes may not be equal. After decomposition, the minimum number of IMFs of all samples
is calculated to be eight.
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Table 3. The timescales of the common modes extracted by MEMD.

Mode Uab Ubc Uca

IMFs 1 2.14 2.14 2.14

IMFs 2 3.87 3.87 3.87

IMFs 3 9.08 6.02 9.08

IMFs 4 11.61 13.49 11.61

IMFs 5 19.96 19.96 19.96

IMFs 6 54.95 38.31 38.31

IMFs 7 82.65 82.65 82.65

IMFs 8 277.80 277.80 277.80

IMFs 9 526.36 588.29 588.29

IMFs 10 909.18 909.18 909.18

IMFs 11 2000.20 2000.20 2000.20

IMFs 12 3333.66 3333.66 3333.66

IMFs 13 5000.50 5000.50 5000.50

res 5000.50 >T 5000.50
Note: T = 10,000 is the length of the sample.

Table 4. The timescales of the common modes extracted by EMD.

Mode Uab Ubc Uca

IMFs 1 2.14 2.14 2.14

IMFs 2 5.61 4.67 6.02

IMFs 3 9.08 6.02 9.08

IMFs 4 13.49 13.49 13.49

IMFs 5 19.96 19.96 19.96

IMFs 6 19.96 49.75 41.49

IMFs 7 82.65 82.65 163.95

IMFs 8 163.95 322.61 344.86

IMFs 9 312.53 500.05 625.06

IMFs 10 500.05 833.41 1666.83

IMFs 11 1111.22 2000.20 2500.25

IMFs 12 2000.20 2500.25 3333.66

IMFs 13 3333.66 3333.66 >T

IMFs 14 3333.66 >T -

res >T - -
Note: T = 10,000 is the length of the sample.

4.3. Results of Feature Extraction

The calculation of fuzzy entropy mainly involves three parameters: m, r, and α. A
larger m can reconstruct the dynamic process of the system in more detail. However, the
larger the m, the longer data length required. Generally, the data length is 10m ∼ 30m.
According to the length of converter simulation data 10,000, m is chosen as 3. r determines
the width of the boundary of the fuzzy function. Too large an r causes information loss,
while too small an r will increase the sensitivity of the result to noise. When r = 0.2std,
where std is the signal standard deviation, not only is the complete feature information
retained, but also the robustness is guaranteed. α represents the boundary gradient, and too
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large an α will cause information loss; the value of 2 can increase the probability of similarity
between the nearest vectors’ weights. The fuzzy entropy results of the MEMD-IMFs of
three-phase voltages in different fault modes are shown in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 5. The fuzzy entropy of the MEMD-IMFs of three-phase voltages in different fault modes. 

Figure 5 shows that there are significant differences between fuzzy entropy values 
under different converter fault states, especially IMF1 and IMF2 for Uab, IMF10 for Ubc, 
and IMF17 for Uca. Thus, fuzzy entropy can measure the complexity of the three-phase 
voltages. Therefore, it is reasonable to use fuzzy entropy as a feature vector to characterize 
and observe different fault modes of the converter. 

4.4. Results of Classification 
We added 30 dB white noise to the original voltage signals, and input the extracted 

IMF-FE fault features into the AFSA-SVM classifier for training and testing to realize in-
telligent fault diagnosis. We set the relevant parameters of the AFSA algorithm as follows: 
population size is 20, number of iterations is 50, congestion factor is 0.3, visual is 10, step 
length is 1.25, and number of foraging trials is 5. The diagnostic results of the AFSA-SVM 
classification model are shown in Figure 6. 

Figure 5. The fuzzy entropy of the MEMD-IMFs of three-phase voltages in different fault modes.

Figure 5 shows that there are significant differences between fuzzy entropy values
under different converter fault states, especially IMF1 and IMF2 for Uab, IMF10 for Ubc,
and IMF17 for Uca. Thus, fuzzy entropy can measure the complexity of the three-phase
voltages. Therefore, it is reasonable to use fuzzy entropy as a feature vector to characterize
and observe different fault modes of the converter.

4.4. Results of Classification

We added 30 dB white noise to the original voltage signals, and input the extracted
IMF-FE fault features into the AFSA-SVM classifier for training and testing to realize
intelligent fault diagnosis. We set the relevant parameters of the AFSA algorithm as follows:
population size is 20, number of iterations is 50, congestion factor is 0.3, visual is 10, step
length is 1.25, and number of foraging trials is 5. The diagnostic results of the AFSA-SVM
classification model are shown in Figure 6.

As shown in Figure 6, among 154 testing samples with 22 fault modes, only 2 samples
are identified incorrectly, and the rest are all correctly output; thus, the diagnostic accuracy
of the AFSA-SVM model is 98.7%. The results show that the proposed fault diagnosis
method can diagnose the converter fault accurately and effectively. Therefore, this method
has strong robustness to wind speed and noise in a wind power generation system.
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4.5. Comparison of Different Methods

In order to evaluate the reliability and robustness of the proposed fault diagnosis
method MEMD-FE-AFSA-SVM for converters, different feature extraction methods com-
bined with the AFSA-SVM classification model for all the noise conditions (30 dB, 20 dB,
and 10 dB) are compared, including MEMD-FE, EMD-FE, and MEMD-sample entropy (SE).
The simulations were run 30 times and we recorded the maximum, minimum, and average
value of accuracy, as well as standard deviations. The results are shown in Table 5.

Table 5. Comparison of diagnosis results with different feature extraction methods.

Noise Level Different
Methods

Accuracy (%)

Maximum Minimum Average Standard
Deviation

30 dB

MEMD-FE 99.7532 91.3117 95.5758 1.9344

EMD-FE 84.1688 79.6234 82.0260 3.4044

MEMD-SE 99.1039 91.9610 95.2727 2.3996

20 dB

MEMD-FE 93.6250 89.6477 92.1477 1.3312

EMD-FE 76.3766 60.1429 69.8182 4.6368

MEMD-SE 92.5065 86.7662 90.4286 2.8846

10 dB

MEMD-FE 86.1169 82.2727 84.2338 1.7167

EMD-FE 65.9870 58.1948 63.0000 3.1679

MEMD-SE 80.4148 73.3125 76.3807 2.5971

As shown in Table 5, the average diagnostic accuracies of the MEMD-FE method at all
noise levels are higher than 84%, and the standard deviations are lower than 2%, indicating
that this method has good noise robustness and stability. Although the average accuracy of
the MEMD-SE method is close to that of the MEMD-FE method at 30 dB and 20 dB, the
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standard deviation of the MEMD-SE method is very large, about 2.4% at 30 dB and 2.9%
at 20 dB, so the stability of the MEMD-SE method is not as good as that of the MEMD-FE
method. Moreover, the average diagnostic accuracy of the MEMD-FE method at 10 dB
(84.2338%) is significantly higher than that of the MEMD-SE method at 10 dB (76.3807%),
thus, the noise robustness of the MEMD-FE method is better than that of the MEMD-SE
method. It can be seen from Table 5 that the average accuracy of the EMD-FE method is
significantly lower than that of the MEMD-FE method at all noise levels, and its standard
deviation is greater than 3% at all noise levels. As a result, the MEMD-FE method has
stronger noise robustness and higher stability than the EMD-FE method.

To sum up, the MEMD-FE method is optimal; it is strong and robust enough to
withstand noise, and it is very stable and reliable.

In order to verify the advantages of AFSA, different methods based on MEMD-FE
features combined with different optimized SVM algorithms are compared, including
AFSA-SVM, CS-SVM, PSO-SVM, GA-SVM, and CV-SVM. Running 30 times, the accuracy
and computing time of different optimization SVM classification models for all the noise
conditions (30 dB, 20 dB, and 10 dB) were recorded as shown in Table 6, including the
maximum, minimum, average, and standard deviation.

Table 6. Comparison of diagnosis results with different classification models.

Noise
Level

Different
Methods

Accuracy (%) Time (s)

Maximum Minimum Average Standard
Deviation Maximum Minimum Average Standard

Deviation

30 dB

AFSA-SVM 99.7532 91.3117 95.5758 1.9344 515.9140 437.5331 484.7235 19.5119

CS-SVM 93.2597 77.6753 85.4675 7.3005 1.2609 × 103 439.8244 811.4330 337.8004

GA-SVM 95.1875 86.5227 91.9631 2.4902 1.2842 × 103 1.0122 × 103 1.1841 × 103 91.7936

PSO-SVM 94.1558 81.1688 90.3896 5.2833 2.1020 × 103 1.9771 × 103 2.0466 × 103 44.6337

CV-SVM 95.0519 88.9610 92.0130 2.8886 224.5880 214.4492 223.4154 3.1523

20 dB

AFSA-SVM 93.6250 89.6477 92.1477 1.3312 573.9010 496.1134 536.6309 25.9141

CS-SVM 88.6104 69.4805 82.3896 7.9602 924.5070 597.9579 736.4997 168.8008

GA-SVM 90.8571 83.0130 87.0433 2.9281 1.1761 × 103 1.1144 × 103 1.1422 × 103 31.2674

PSO-SVM 89.4545 79.0649 86.9091 5.3152 2.7518 × 103 2.6897 × 103 2.7298 × 103 34.8368

CV-SVM 90.5864 82.4156 88.8571 3.0546 420.1174 410.2499 416.5160 2.8462

10 dB

AFSA-SVM 86.1169 82.2727 84.2338 1.7167 821.9604 727.2384 771.6015 29.3344

CS-SVM 82.7143 65.3247 76.7370 7.2453 2.0202 × 103 1.1984 × 103 1.5256 × 103 299.4243

GA-SVM 82.7662 76.2208 80.3853 2.5804 1.8279 × 103 1.6829 × 103 1.7595 × 103 72.8349

PSO-SVM 83.4156 72.0779 79.7078 5.7196 3.7101 × 103 3.6438 × 103 3.6783 × 103 30.0669

CV-SVM 83.1169 72.0779 78.0519 3.5672 313.5173 311.3903 311.8531 0.6606

Table 6 shows that the average accuracy of the AFSA-SVM classification model is
significantly higher than other classification models in all noise levels, and its standard
deviation is the smallest. Although the average accuracy of the GA-SVM method, PSO-SVM
method, and CV-SVM method is higher than 90% at 30 dB, their standard deviation is large,
exceeding 2.4%, and the standard deviation of the PSO-SVM method even exceeds 5.2%.
Therefore, compared with other optimized classification models, the AFSA-SVM method
not only has good noise robustness, but also has stable diagnostic performance. In addition,
the average computing time of the AFSA-SVM method (484.7235 s) is significantly lower
than that of CS-SVM (811.4330 s), GA-SVM (1.1841 × 103 s) and PSO-SVM (2.0466 × 103 s)
at 30 dB, thus, the AFSA optimization algorithm has the advantage of high computing
efficiency compared with other methods. Furthermore, the standard deviation of calculation
time of AFSA-SVM is the smallest (19.5119 s), and that of CS-SVM is very large, over 337 s,
so the optimization calculation of the AFSA method is more stable. Although the average
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value and standard deviation of the calculation time of the CV-SVM method surpass that of
the AFSA-SVM method, its diagnostic accuracy is significantly lower than that of the AFSA-
SVM method. Therefore, the AFSA-SVM classification model has outstanding advantages
in accuracy and computational efficiency.

To sum up, the fault diagnosis method MEMD-FE-AFSA-SVM proposed in this paper
not only has high diagnosis accuracy and strong robustness, but also high computational
efficiency. Therefore, it has practical application value.

5. Conclusions

In order to increase the durability of wind energy converters, this paper presents a new
hybrid fault diagnosis method for wind energy converters based on multivariate empirical
mode decomposition (MEMD), fuzzy entropy (FE), and an artificial fish swarm algorithm
(AFSA)-support vector machine (SVM). Three-phase voltage signals of the converter are
directly and simultaneously decomposed by MEMD, realizing the matching and alignment
of the number and frequency of IMFs in the multi-channel signals. MEMD provides internal
information about the interaction of the three-phase voltage signals, achieving physical
insight into the converter operating states. The results show that the method has strong
robustness to wind speed variation, and the final diagnostic accuracy of 22 fault modes is
98.7% for different wind speeds. The FE reflecting the complexity of intrinsic oscillations is
used to construct fault feature vectors and input into AFSA-optimized SVM; this increases
the robustness to noise, and the average accuracy can reach 95.5758% at 30 dB noise. The
superiority of this method is verified by strict comparison of different methods.

As an effective fault diagnosis tool, the method proposed in this paper can be extended
to fault diagnosis based on multi-source signals. This method can also be applied to other
converter systems. This study only considers the impact of wind speed and noise in the
wind power system, and it will be fascinating to study the applicability of more variable
operating conditions. In future work, it also will be interesting to explore new robust
feature extraction methods and more time-efficient model optimization algorithms for
actual engineering applications.
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