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Abstract: The social Internet of Medical Things (S-IoMT) highly demands dependable and non-
invasive device identification and authentication and makes data services more prevalent in a reliable
learning system. In real time, healthcare systems consistently acquire, analyze, and transform
a few operational intelligence into actionable forms through digitization to capture the sensitive
information of the patient. Since the S-IoMT tries to distribute health-related services using IoT
devices and wireless technologies, protecting the privacy of data and security of the device is so
crucial in any eHealth system. To fulfill the design objectives of eHealth, smart sensing technologies
use built-in features of social networking services. Despite being more convenient in its potential
use, a significant concern is a security preventing potential threats and infringement. Thus, this
paper presents a lightweight two-factor authentication framework (L2FAK) with privacy-preserving
functionality, which uses a mobile sink for smart eHealth. Formal and informal analyses prove that
the proposed L2FAK can resist cyberattacks such as session stealing, message modification, and
denial of service, guaranteeing device protection and data integrity. The learning analysis verifies
the features of the physical layer using federated learning layered authentication (FLLA) to learn the
data characteristics by exploring the learning framework of neural networks. In the evaluation, the
core scenario is implemented on the TensorFlow Federated framework to examine FLLA and other
relevant mechanisms on two correlated datasets, namely, MNIST and FashionMNIST. The analytical
results show that the proposed FLLA can analyze the protection of privacy features effectively in
order to guarantee an accuracy ≈89.83% to 93.41% better than other mechanisms. Lastly, a real-time
testbed demonstrates the significance of the proposed L2FAK in achieving better quality metrics,
such as transmission efficiency and overhead ratio than other state-of-the-art approaches.

Keywords: Internet of Medical Things; eHealth; two-factor authentication; federated learning;
learning analysis; device protection; transmission efficiency

1. Introduction

The recent advances in algorithms and hardware have led to massive computation and
memory costs for the development of user authentication models using various multimodal
AI. Commercial devices including infotainment systems adopt machine learning-based
authentication features to unlatch the system process or to provide a few user-specific
services, namely, recommendation, notification, and configuration adjustment. The features
of the authentication protocol rely on a decision-making problem that uses a set of testing
inputs to accept or reject based on its similarity measurement to train the user inputs [1].
The similarity measurement is often assessed using an embedded spacing to predict the
testing input referring to learning models with the local computing data. The authentication
models utilize a variety of computing data to learn the security characteristics of the physical
layer [2]. The raw inputs and embedded spacing address the issues of privacy sensitivity to
analyze the modeling characteristics of application systems and test the adversarial settings
to protect data privacy over the inference-time attack [3].
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Most distributed services use telecommunication technologies and IoT devices to
store and analyze the physiological or behavioral characteristics of digital applications.
The behavioral characteristics including irises, palm prints, and fingerprints extract the
layered features of the computing devices using spatial correlation (i.e., channel impulse
response and state information) to authenticate users and computing devices. The health
insurance portability and accountability act (HIPAA) was developed by the United States to
protect the sensitive information of the patient and provide the accessing rules to authorize
system information [4]. The computing system demands service authentication and access
control to authorize user credentials aligned with the records available on the server. The
loss of data protection allows intruders to acquire sensitive information via unauthorized
access to arise cybersecurity risks and gain access to confidential data via malicious IoT
applications [5]. Moreover, inappropriate security practices cannot endorse a network
policy without adequate controls to evaluate the shared security model across the physical
and virtualized infrastructure.

As a result, security infrastructure integrates cloud computing, mobile communication,
and artificial intelligence to create an innovative IoT application that successfully transfers
different kinds of real-time data between the computing devices to operate the industrial
process to a larger extent [6]. The massive amount of computing data generated by IoT
devices necessitates more efficient data collection and processing to conduct proper devel-
opment processes and adopt technological paradigms such as transfer learning and mobile
computing to manage edge intelligence controlled by industrial applications. Industrial
applications converge with edge networks to meet a basic constraint of strong computation
in order to evaluate a large set of real-time data. In other words, the modeling process uses
an edge cache to boost the performance of IoT-based networks which develop a trustworthy
platform based on physical-layer data extracted from user behavior to design a secure
authentication [7]. The context-aware authentication leverages biometric or physical-layer
features to protect massive private data and leverage the use of machine learning to achieve
reliable communication in a smart environment.

In the smart environment, a new computing paradigm, the so-called massive IoT,
has evolved as a leveraging technology for the growth of digital transformation such as
smart cities, automation, grids, and eHealth. The leveraging technologies revolutionize the
significance of smart computing to offer a real-time awareness of the application systems.
Connected edge devices can be tightly coupled with unconnected smart objects to offer
data sharing, device coordination, and resource utilization [8]. An IoT environment consists
of distributed sensors and actuators to gather environmental information via dedicated
wireless channels. It may even route sensitive information via trusted gateways to im-
prove the performance of computing resources. According to a report by International
Data Corporation, the IoT is expected to connect 41 billion devices by 2025 [9]. It can
generate massive amounts of sensitive data totaling approximately 79.4 zettabytes to utilize
resources effectively. As a result, a two-fold development strategy is applied to achieve
device integrity and security efficiency. Since each IoT device has limited computational
capabilities, securing user credentials is still a challenging task in protecting transmit-
ted data against threats such as unlawful eavesdropping, unauthorized access, and data
tampering [10].

In real time, malicious attackers attempt to insert, delete, and modify the sensitive
data of legitimate users. Therefore, a proper authentication technique is preferred to im-
prove the security efficiency of IoT frameworks. Moon et al. [11] outlined the essential
factors of an authentication mechanism to claim device integrity and application security.
Saqib et al. [12] devised a secure mutual authentication framework to improve the security
features of IoT environments. In addition, security features such as availability, integrity,
and confidentiality are quietly surveilled to resist potential attacks with less computation
and communication overhead. To improve system efficiencies, researchers apply artificial
intelligence in developing various distributed IoT applications. Most distributed IoT appli-
cations use metaheuristic approaches to optimize resource utilization. Heuristic algorithms
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employ a proven genetic process to design an intelligent framework that applies crypto-
graphic algorithms to improve searching efficiency. Most IoT devices apply cryptographic
algorithms to offer seamless connectivity when accessing cloud-based computing resources
and communication services [13].

The cloud-based computing services employ machine and deep learning algorithms
to extract hidden patterns to maintain a large amount of IoT data in smart healthcare [14].
Healthcare can discover the hidden pattern using graph analytics to relate the connection
between the data points and organize the associated rules to manage learning databases
based on predictive modeling. The modeling applies the distributed learning algorithms
via a centralized database to train the computing data using context-aware rules to improve
the decision-making process [15]. However, the centralized database addresses various
challenging issues such as increased latency, single point of failure, and security deficien-
cies leveraged by a dynamic environment. In this environment, the learning database is
centrally located to generate the rules based on distributed learning to train the computing
data stored in a diverse location. The machine and deep learning algorithms access the
computing data across diverse locations to train the learning rules and increase the overall
efficiency of the healthcare system using distributed ML [16]. Traditional machine and
deep learning algorithms persist with the issue of device privacy. As a result, the algorithm
cannot generalize the performance of modeling with a large amount of sensitive data to
secure a deep-rooted infrastructure with advanced healthcare applications [17].

The performance modeling utilizes federated learning to train the sensing data located
across diverse devices such as wearable health monitors, security systems, and logistic
tracking [18]. The IoT device uses federated learning to compute or learn the generated
source using scalable machine learning to improve prediction accuracy with guaranteed
system latency. The personalized applications simplify the access control of the computing
systems to protect user credentials using static authentication [19]. However, static authen-
tication is susceptible to a key impersonation attack, which allows a computing device to
impersonate as an illegal entity to authenticate the service access. Therefore, healthcare
applications prefer distributed machine learning, so-called federated learning, to analyze
the key features of the authentication protocol [20]. The application system is designed
with the components of a digitized network such as control, communication, and sensing
to manage the computing tasks with the social Internet of Medical Things (Social IoMT).
The social IoMT distributes the application features of resource management to establish
secure communication with medical devices.

1.1. Technological Advancements

Healthcare application uses a machine learning algorithm to offer a promising solution
to relate the key features of the authentication protocol [21]. The features utilize a few sig-
nificant tools of the learning algorithm to handle data extraction more reliably and train the
extraction pattern to correlate the data points to perform cross-validation. The knowledge
database constructs a protective mechanism to automate the pattern discovery to prepare a
decision or prediction case that leverages the physical layer features to authenticate smart
IoT devices. Moreover, smart IoT includes wireless channel characteristics such as channel
state information and medical access control to analyze the physical layer features and
adapt context-aware authentication within a network based on the dynamic features to
improve system security [22]. The deployment of context-aware applications introduces
the edge computing paradigm as a promising solution to meet the requirements of real-
time services. The application service processes the raw data locally with data mining or
aggregation to distribute the model gradients. The centralized server utilizes a gradient
descent algorithm to preserve the privacy of localized data over different transmission
stages to achieve the functionality of distributed encryption [23].

The utilization of distributed communication technologies offers seamless integration
across 5G networks and IoT to discover business opportunities with edge computing [24].
Edge computing utilizes a core technology of IoT to manage the essential parts of in-
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terconnected networks. The integration of heterogeneous IoT inherits the properties of
next-generation networks to meet the requirements of a communication environment
such as low latency, massive connectivity, and high flow data rates [25]. However, the
coexistence of multi-access techniques cannot protect network access as the time-based
authentication increases its degree of network failures due to inadequate distributed ma-
chine learning models. Therefore, the emerging paradigms employ key technologies of
current IoT systems to present an effective decentralized system using distributed machine
learning. The learning system associates with an edge-enabled IoT network to optimize
the training model and aggregate the unique identifier of the network using blockchain
technology to ensure decentralization and immutability [26]. Moreover, the edge-based
IoT converges with intelligence modeling to utilize three basic elements of blockchain
technology including graph structure, tree, and chain.

Most application services such as healthcare, transportation, entertainment, etc., rely
on a cloud-centric machine learning model to leverage the usage of smart sensing within
the physical environment [27]. The application service initiates a few predefined actions
to transform the physical properties into measurable signals through different sensing
units. In particular, network intelligence and its advent technologies greatly expand a few
machine perceptions such as image processing, pattern recognition, and computer vision to
deal with detection, recognition, and navigation [9]. However, advanced networking and
digital processing technologies demand an expansion of decentralization to support the
growth of the modern Internet and to promote data localization and end-device portability.
The key roles of the computing layers are as follows:

Cloud [Data] Center has a powerful solution to offer an intelligent infrastructure that
handles huge amounts of computing services, namely, sharing, accessing, and processing
the data via a well-protected data center.

Learning [Data] Center applies a decentralized machine model across edge computing
systems or devices to formulate a suitable optimization problem that infers the shared
knowledge of the computing devices.

Mobile [Data] Center has a technological infrastructure to provide comprehensive
delivery of data packets with better visualization of information via a dedicated mobile
application [28].

Communication modules such as network control and storage can interconnect with
device paradigms to improve the quality of network performance. As a result, IoT devices
can invoke a cloud computing model to handle a massive amount of data. A three-tier
architecture, including mobile, learning, and cloud explores key features of decentralized
ecosystems such as visualization, data analytics, and processing. Each ecosystem has
its backbone network to access the core features of the end IoT device and to support
the interconnection of baseband units using a cloud server. The IoT device integrates an
edge computing paradigm to address key challenges, such as network latency, processing
costs, and load balancing. Layered mechanisms, such as cloud-to-fog and fog-to-cloud
processes, handle the requests of IoT devices to support mobility [29]. Parameters such as
communication protocols, network types, and services offered are configured with a mobile
sink to leverage the scope of network convergence. Devices such as wireless routers and
machine-to-machine gateways can act as fog computing nodes to store and process data
locally via dedicated cloudlets. The capabilities of cloud computing deploy intermediate
nodes, which may allow end computing devices to offload network resources such as
bandwidth usage and response time over the cloudlets.

A centralized cloud entity monitors the activities of geo-distributed fog servers, and
a decentralized network platform between end computing devices and cloud data offers
better content delivery and data analytics using a learning center [30], as shown in Figure 1.
In addition, the learning center coexists with a suitable security framework to examine
the core features of the computing systems which can be actively transmitted via a public
network to achieve technical benefits such as privacy preservation and scalability [31].
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1.2. Motivation

In real time, fog computing services evolve a scenario of IoT-Cloud architecture which
decentralizes the significant features, such as data processing, access control, application
security, and network analytics to guarantee data integrity and security [32]. The emerging
computing service enables end-user authentication to secure communication over adver-
sarial networking devices. The enabled network gains information access to train the
user modeling to learn different characteristics of user-specific services. The IoT-Cloud
application uses legacy infrastructures to analyze real-time data which operates intelligent
gateways to handle privacy-sensitive information of sustainable architectures [33]. In
practice, the users of sustainable architecture exploit direct network access to eliminate
the constraint of identity management. As a result, the architecture uses fog and cloud
computing as complementary approaches to operating the connected layer with edge net-
works to minimize the quality issues related to cyber security and transmission latency [34].
Depending on the availability of edge-IoT devices, the generated data are transmitted to
the related edge server.

To expand the storage limit horizontally and satisfy the quality requirements including
delay and mobility, the network infrastructure prefers fog computing. However, fog
computing cannot test any input data based on its similarity to learn the characteristics
of data. Moreover, the computing paradigm cannot locate the user data centrally to train
any predictive modeling due to the privacy sensitivity of any statistical database [35].
The user applications demand privacy protection to test or train any adversarial model
to determine the leakage of embedding space and examine the security vulnerabilities
using an authentication model. Thus, distributed machine learning, known as federated
learning, is chosen to train the predictive modeling with the sensitive data of IoT devices.
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This model repeatedly communicates its weights and gradients between the dedicated
server and the IoT devices to maximize the predictive correlation. In federated learning,
the training models enable data sharing without user preference to access the aggregated
models using input–output pairs. In most cases, the input–output pairs can obtain a better
user interaction to learn different data characteristics with mobile AI applications.

The application of next-generation networks interconnects with IoT devices to form
intelligent networking and provide a seamless data connection to achieve better data
transmission and storage [36]. Intelligent networking has the potential features such as
identity, data privacy, security, and connectivity to solve the problem of data collection in a
distributed machine learning technology. This technology has an extensive observation
to provide technical support to secure data sharing in distributed healthcare systems.
Most computing systems utilize distributed machine learning to reduce the computation
complexity of a centralized database and preserve the privacy of the data owner evaluated
by aggregation strategies [37]. To offer better reliability with data sharing, the modeling
strategy correlates the random binary output with embedding vectors. The data protection
with user privacy makes the computing device to train and upload the local model with its
respective weights and gradients to the centralized server. In general, federated learning
guarantees device privacy to the local data [38]. However, local training has a possibility of
data leakage while the modeling parameters are uploaded into untrusted servers.

The untrusted servers utilize the modeling weights and gradients to recover the
actual local data in order to observe its network structure. The initial parameter and its
training labels may vary over time using adversarial techniques to disclose the private
information of the social IoMT device [39]. Modern IoT demands a promising approach to
examine the behavior of the computing devices based on the extraction of user profiling
patterns to verify the modalities with smart medical devices. Advances in IoMT and social
networks communicate with high-end computing devices to establish social links in order
to process authentication requests [40]. The continuous interactions within an environment
deal with supportive infrastructure to exploit the sensitive features of the information
system such as identity and pattern. To overcome the security issues associated with
authentication protocol, the execution trade-off considers a robust optimization approach.
The optimization approach consumes less computation and communication cost to meet
the desired constraints of real-time applications and expedites the process of authentication
to detect malicious behavior with minimum power consumption [41].

This strategy motivates researchers to design a robust lightweight authentication with
unpredictable pseudonym updates which rely on hashing and XOR operation to offer high
anonymity in the social IoMT [42]. The development of computing paradigms interconnects
with medical devices and healthcare providers to offer remote consultation and patient
monitoring with minimum computation overload in healthcare systems. Of late, various
authentication schemes have been designed using elliptic-curve cryptography (ECC) for
cloud-centric eHealth systems. Jian et al. [43] designed a cloud-assisted authentication
scheme using ECC to secure communication between the users and the cloud server.
Yang et al. [44] utilized a secure hash function and elliptic-curve operator to design a
robust authentication protocol between wearable devices and cloud servers to achieve
proper mutual authentication with minimum computation cost. Izza et al. [45] devised a
hybrid authentication protocol based on ECC and lightweight operations to encrypt the
data features of wearable medical devices. This mechanism uses symmetric encryption to
perform various computing tasks with minimum energy consumption in order to guarantee
end-to-end delivery of packet transmission with reduced packet loss.

Most healthcare system applies lightweight cryptography including hash functions
and XOR operation to guarantee better transmission efficiency. Alzahrani et al. [46] de-
signed a lightweight authentication scheme for a wearable body area network that uses a
hash function and XOR operation to update the device identities locally. Chunka et al. [47]
constructed a hash-based authentication scheme to operate the system parameters at the
end of session establishment. Wei et al. [48] devised a two-factor authentication protocol
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with device anonymity for a cloud computing environment. Regrettably, this scheme can-
not resist a few security vulnerabilities such as user and gateway masquerading. To address
security issues, this paper formulates a lightweight two-factor authentication framework
(L2FAK) with the functionality of privacy preservation, which utilizes a mobile sink for
smart eHealth.

1.3. Contribution

The associated technologies interconnect the computing devices with unique iden-
tities to transfer sensitive data without human intervention. The development of the
S-IoMT applications handles the data traffic using the communication channel to prepare
a comparative study of different network-based countermeasures including security re-
quirements and authentication protocols. Healthcare systems operate wearable devices
to collect and transmit sensitive data periodically. As a result, in healthcare, the remote
monitoring system using the S-IoMT applies decentralized verification and authentication
to achieve data security with secure transmission. To meet the essential requirements of the
S-IoMT including session key agreement and credible mutual authentication, this paper
designs a lightweight two-factor authentication framework (L2FAK). For practical uses
of the S-IoMT, the proposed L2FAK includes secure data storage and transmission when
facing a privileged-insider attack. The study analysis showed that the existing lightweight
authentication frameworks using IoMT [49] do not have any specific strategy such as a
machine learning algorithm to protect the system features; therefore, the public and private
keys of the sensing units cannot be well preserved to ensure device security. The major
contributions of the proposed L2FAK are as follows.

1. Use a two-factor strategy with privacy-preserving and federated learning to block
potential threats such as privileged-insider and denial-of-service attacks through an
authentic-ware system [15] and to analyze the data features effectively without any
centralized server access.

2. Apply a secure averaging function and Boolean and Numerical (BN) responses ac-
cording to source attributes of the data to update secret keys locally and to transfer
the weighted parameters and their relevant gradients.

3. Design federated learning layered authentication (FLLA) which proactively manages
the shared data in any social network to analyze two different datasets using the
poisoning attacks. The extensive analysis utilizes the privacy features of FLLA to
resist malicious behavior and guarantee better robustness and credibility.

4. Explore the layer attributes of a communication channel to extract the authentication
features and enable the classification system to train the authentication process based
on controlled parameters with a high-level physical layer [16].

5. A practical testbed using Raspberry Pi 3 and Arduino examines quality metrics such
as transmission efficiency and overhead ratio.

1.4. Paper Organization

The remaining sections of the paper are organized as follows. Section 2 briefly de-
scribes the security efficiencies of existing authentication frameworks against threats, such
as forgery, password guessing, user tracking, and perfect secrecy, to highlight the challenges
of a resource-constrained IoT. Section 3 presents a smart healthcare system model that
addresses two key challenges: computation and communication. Section 4 presents the
phases of the proposed L2FAK and FLLA, and Section 5 discusses informal and formal
security using RoR and learning analysis, offering computational analysis and reliable
authentication. Section 6 presents the performance analysis using a real-time testbed, and
Section 7 concludes this research work.

2. Related Works

This section discusses the issues of security frameworks, artificial intelligence, and
federated learning to analyze a few crucial factors such as access rights, security, privacy,
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heterogeneous network, etc. Of late, the security frameworks have utilized an edge-
adaptive federated learning approach for various peer-to-peer computing services. In
the past decade, various system functionalities such as resource efficiency, perfect secrecy,
anonymity, mutual authentication, nontraceability, revocability, and resiliency have been
considered for the improvement of healthcare sectors. In the design of any secure authenti-
cation scheme, key properties such as session key agreement and mutual authentication
are chiefly concerned with strengthening network performance. In recent studies, various
security and privacy issues have been addressed [11–14] for significant solutions in terms
of security and performance. One study revealed that cloud-centric architectures in the
literature have not had enough work highlighting security and privacy issues.

Adbussami et al. [50] developed a provable lightweight authentication framework
to preserve the privacy of healthcare systems. This framework uses a dedicated network
architecture to explore the functional requirements of the edge computing paradigm in
order to protect the privacy of the medical service provider. Kim et al. [51] constructed a
lightweight authentication with anonymity preservation to protect the healthcare system
against replay attacks. The anonymity preservation uses biometric-based authentication
to ensure the key freshness of the message requests while integrating the gateway with
medical sensors for any clinical decision. Praveen et al. [52] utilized a bioacoustics signal
to design a robust secure lightweight authentication to meet the security requirements of
IoMT applications including integrity, authenticity, security, and privacy. This strategy
applies the Chinese Remainder Technique (CRT) to generate a group key via a protective
network to validate the performance of application systems in terms of computation and
communication overhead.

Chen et al. [53] intended to improve the lightweight authentication framework which
uses low-power wearable sensors to analyze the key requirements of medical systems.
Moreover, the lightweight framework applies biometric authentication to verify the key
freshness of the message requests via a dedicated gateway. Nair et al. [54] applied a fed-
erated learning framework to construct a lightweight authentication with privacy preser-
vation. This model adopts a strategy of big-data analytics to analyze the functionalities
of multi-tier system architecture with load reduction. Gupta et al. [55] designed context-
aware data authentication and access control to resist quantum attacks. The comprehensive
analysis proved that context-aware authentication meets the network requirements of
the IoMT networks such as anonymity, mutual authentication, and quantum security.
Chatterjee et al. [56] employed a ring signature-based authentication to validate the col-
laborative environment of the medical system. This scheme exploits quality assessment
criteria to resist the network attacks such as man-in-the-middle, denial-of-service, and
privileged insider to maintain data confidentiality and integrity.

Deebak and Al-Turjman [57] formulated a single sign-on mechanism using Chebyshev
chaotic map to analyze the computing services of the distributed network. This model
uses a strategy of unary access control to meet the service level agreements of medical IoT
systems. Dharminder et al. [58] developed an efficient authentication framework based on a
Chebyshev chaotic map to protect the management systems against security vulnerabilities
such as key impersonation and the privileged-insider attack. This modeling framework
uses key verifiers to examine the requirements of digital systems. Dsouza et al. [59]
proposed a policy-based security framework to control the flow of data transmission
with multiple application domains to provide a high level of security. This framework
initialized attribute-based authentication to acquire the essential criteria such as computing
resources and services. The main objective is to execute computing services involving
storing and processing sensitive information [60]. Shivraj et al. [61] designed a two-factor
authentication using elliptic-curve cryptography (ECC) which utilizes fewer key sizes, a
reliable infrastructure, and a robust testbed to analyze the core features of smart cities.
However, this authentication scheme cannot be more genuine to examine the key elements
of the three-tier architecture of fog computing architectures, namely, pre-processing, storage,
and security.
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Lu et al. [62] intended to develop a lightweight, privacy-preserving scheme to perform
data aggregation in a fog computing environment. In this scheme, three basic techniques
(the Chinese remainder problem, one-way hashing, and the Paillier cryptosystem) were
applied to prevent data injection attacks at the edge of the network. Examination results
demonstrated that this scheme can mitigate computation and communication costs to meet
the standard constraints of a fog computing environment. Kumar and Gandhi [63] utilized
data transport layer security to address vulnerability to denial-of-service (DoS) attacks.
Their method uses a constrained application protocol to optimize deployment with a high
number of computing devices. Ibrahim [64] designed a proper mutual authentication
framework to explore the key functionalities of a master secret key. This scheme uses smart
cards and intelligent devices to verify the identities of users who transmit sensitive data
over public channels. Unfortunately, this scheme cannot achieve better device compatibility
and user anonymity or lessen signal interference, to block unauthorized entities.

Amor et al. [65] designed a reliable authentication framework using a public-key cryp-
tosystem. It uses pseudonym-based cryptography to maintain user anonymity between
computing nodes and fog servers. However, this scheme cannot offer a secret session key
agreement to meet the general requirements of a fog computing system. Xu et al. [66],
Lee et al. [67], and Yu et al. [68] analyzed two-factor and three-factor authentication for
a multi-server architecture. Watters et al. [69] implemented short messaging services to
analyze key features of two-factor authentication. Test results revealed that the authenti-
cation scheme can only achieve about 76.5% accuracy in analyzing key features such as
authentication and anonymity [70]. Amin et al. [71] proved that the security mechanisms
of He et al. [72] and Wu et al. [73] directly contact sensors to collect or read medical data.
Therefore, their schemes could not restrict offline guessing, intractability, and a privileged-
insider attack. Amin et al. presented two-factor authentication specifically designed for
wireless medical sensor networks (WMSN) to address those security weaknesses. However,
their scheme is still susceptible to offline password guessing. Kumari et al. [74] presented
a novel lightweight authentication scheme that constructs a secure session key between
real-time entities. Unfortunately, their scheme could not restrict offline password guessing
and user traceability.

Farash et al. [75] designed a secure authentication protocol to prevent forgery and
password guessing. Cryptanalysis proved that their scheme is still susceptible to user
traceability. Wu et al. [76] presented a lightweight, two-factor authentication scheme
that blocks threats such as privileged-insider attacks, user nontraceability, session key
disclosure, and offline password guessing. Inopportunely, their scheme could not rely on
perfect secrecy. Wazid et al. [77] designed a robust authentication scheme that applies a
fuzzy extractor to manage biometric mechanisms. However, their scheme fails to prevent
attacks such as password guessing, user traceability, breach of anonymity, etc. Above all,
most of the existing authentication schemes still find it challenging to offer better security
and privacy protection [78]. Gope et al. [79] developed an authentication framework using
a one-time physical unclonable function to update the challenge–response pair dynamically
to prevent a machine learning attack. Jegadeesan et al. [80] devised a lightweight privacy
preservation framework with anonymous authentication to resolve the issue related to
response errors. Jiang et al. [81] utilized a one-way hash function and an ideal physical
unclonable function to minimize the operational cost between the medical devices and the
server. Table 1 summarizes the challenging issues of existing authentication schemes.
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Table 1. Security and privacy challenges in existing authentication schemes.

Existing Schemes Systematic
Approach Pros and Cons

Vulnerable To

Forgery Password
Guessing

User
Tracking

Perfect
Secrecy

He et al.
[72], 2015

Cryptography
Hash Function

The lightweight functions are
applied to minimize the
computation cost.
However, this scheme cannot
have any specific platform to
validate the energy consumption
of medical sensors.

Yes Yes No No

Kumari and Om [74],
2016

Cryptography
Hash Function

Two-factor authentication is
utilized to reduce cost
efficiencies including
computation and
communication.
However, this protocol cannot
resist forgery and password
guessing to meet the
requirements of wireless
medical sensor networks.

Yes No Yes No

Wu et al.
[73], 2017

Symmetric
Encryption

This scheme uses lightweight
two-factor authentication to
achieve the property of mutual
authentication and key
agreement.
Despite that, this scheme cannot
achieve a property of perfect
secrecy to resist a forgery attack.

No Yes No No

Farash et al. [75], 2017 Symmetric
Encryption

This scheme uses lightweight
authentication with user
anonymity to achieve better
computation efficiency.
In spite of its conditional
provable security, this scheme
cannot satisfy the design goals
such as forgery, password
guessing, and perfect secrecy.

No No Yes No

Amin et al. [71], 2018 Cryptography
Hash Function

An effective architecture is
designed with
anonymity-preservation to claim
the key features of the mutual
authentication framework.
Contrarily, this framework
cannot resist forgery and
password-guessing attacks to
achieve a property of perfect
secrecy.

No No Yes No

Wu et al.
[76], 2018

Cryptography
Hash Function

This scheme utilizes lightweight
authentication to guarantee the
security of data transmission
between the communication
entities.
Conversely, this authentication
scheme cannot prevent the
forgery attack unconditionally to
meet the requirement of wireless
medical sensor networks.

Partially Yes Partially No
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Table 1. Cont.

Existing Schemes Systematic
Approach Pros and Cons

Vulnerable To

Forgery Password
Guessing

User
Tracking

Perfect
Secrecy

Wazid et al. [77], 2019 Cryptography
Hash Function

Device authentication and key
management are employed to
secure the communication of an
edge-based IoT environment.
Despite that, this key
management scheme cannot
withstand forgery and
password-guessing attacks to
authenticate the cloud server
mutually.

No No Yes No

Deebak
[78], 2020

Cryptography
Hash Function

The key management scheme is
designed to offer secure data
transmission between
computing devices.
Unfortunately, this management
scheme cannot achieve the
property of traceability to
preserve the privacy of
IoT-based technologies.

Yes Yes No Yes

Kalaria et al. [70], 2021
Identity-based
elliptic curve
cryptography

A fog-based mutual
authentication framework is
constructed to protect the end
device against cyberattacks.
However, this framework
cannot resist the security
vulnerabilities such as forgery
and password-guessing to
function the fog computing
appropriately.

No No No No

Deebak and
Al-Turjman [57], 2021

Chebyshev Chaotic-
Map-Based

Single-User Sign-in

In this scheme, sensor/sensor
tag-based authentication is
introduced to offer security and
privacy.
On the contrary, this scheme
cannot resist forgery and
password-guessing attacks to
make it more suitable for
telecare medical information
systems.

No No No No

Dharminder et al. [58],
2021

Chebyshev
Chaotic-Map

In this framework, an efficient
chaotic-map based
authentication is designed to
ensure anonymous
communication with
telemedicine services.
In contrast, this authentication
scheme cannot fulfill the design
goals of healthcare systems such
as user tracking and perfect
secrecy.

Yes No No No
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Table 1. Cont.

Existing Schemes Systematic
Approach Pros and Cons

Vulnerable To

Forgery Password
Guessing

User
Tracking

Perfect
Secrecy

Proposed L2FAK and
FLLA

Elliptic-curve and
learning

framework of
neural networks

This model applies a secure
averaging function and Boolean
and Numerical (BN) responses
according to source attributes of
the data to update secret keys
locally.
Moreover, the model can
proactively manage the shared
data in any social network to
protect their system parameters

Yes Yes Yes Yes

3. System Model

This section provides a real-time scenario for an eHealth monitoring system offering a
better quality of service and context awareness. It has a core deployment of fog and cloud
network paradigms to address the challenging features of a large-scale system, such as
security, scalability, heterogeneity, and programmability. The network paradigms use a
distributed cloud computing model to handle data processing and to offload computing
tasks to the cloud. The computing model builds an intelligent platform between the end
devices and cloud data centers via authentic gateway access to examine quality metrics
such as transmission efficiency and overhead ratio. The key components are as follows.

Sensing Units (IoT Devices)—Wearable sensing units collect the source medical data,
such as blood pressure, heart rate, and glucose monitoring, to infer the conditional status of
the patient. The application allows a medical expert to process the healthcare information
of a patient via a dedicated gateway to offer better decision making.

Sink Node (Mobile Device)—A sink node can be any one of various computing nodes,
such as a smart device, a microcontroller, and a sensing component to acquire and collect
medical data. Most of the on-demand requests issued by end users share the healthcare
information of the patient to improve the lifetime of the sensing units.

Authentic Gateway Access—The gateway acts as a reversible proxy to restrict unau-
thorized access and prevent suspicious activities. Moreover, it can handle authentication
requests to protect the critical and sensitive information of the patient.

Cloud Server—In this framework, the cloud server acts as a semi-trusted entity to
characterize the malicious behavior of the mobile device and exhibit curiosity-but-honest to
deliver sufficient computing resources and data sharing between ME/PA and MS. In other
words, MS cannot delete or modify the transferred data of ME/PA; however, MS makes
an effort to correlate the relationship between the gathered data and ME/PA to infer the
actual data content.

Smart medical sensors are commonly implanted in or around the patient’s body to
read physiological data that support healthcare monitoring in real time [44]. They are
more portable and smaller to provide device intercommunication. They are designed to
be implanted in, or worn on, a patient’s body to record vital signs such as breathing rate,
heart rate, blood pressure, etc. Data communication is essential to elderly people or in an
emergency situation, processing sensitive data wirelessly. It may be necessary to monitor
or assess the medical situation or take immediate action to obtain proper treatment from
doctors or medical experts. Figure 2 shows a model smart healthcare system with authentic
gateway access. It has three real-time entities (ME, MD, and AGAccess) to handle sensitive
information of patients via dedicated fog computing. Owing to limited computation re-
sources to gather medical data, it is preferable to use lightweight cryptographic operations,
including the bitwise exclusive operator and collision-resistant functions [45].
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On the other hand, AGAccess has sufficient resources to provide a secure interface
between MD and ME. These entities demand protected transmissions to achieve mutual
authentication, data privacy, and anonymity. In addition, AGAccess must provide session
unlinkability and nontraceability to strengthen security efficiency. Because of public net-
work access, data transmissions are easily susceptible to severe security risks, such as replay
attacks, eavesdropping, data modification, data interception, etc. Moreover, intruders or
adversaries may try to launch malicious techniques such as forgery, a session key disclosure,
key impersonation, privileged-insider attacks, etc. It is worth noting that the overhead
constraints on medical sensors can substantially weaken system efficiency.

In the system model, the patient’s condition is monitored periodically using smart sen-
sors to assess status, including blood pressure, pulse rate, pedometer readings, etc. Smart
sensors infer the medical condition of the patient through an access point. Subsequently,
the inferred information is sent to the cloud via a system gateway to verify the system
attributes using federated learning. The system acts as a smart entity to register the legal
ME that collects sensitive patient data to observe their physical condition. As referred to
in [23], overall system costs may vary depending upon the usage of transmission bits, bl .
Moreover, communication costs may directly influence the transmission distance between
sensors and the target entity. Table 2 shows the notations used under the L2FAK protocol.
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Table 2. Notations Used for the L2FAK.

Parameter Description

ME/PA Medical Expert/Patient

MD Medical/Mobile Device

MS Cloud Server

DID Identity of Medical Device

Mid Identity of Medical Expert

TIDi Temporary Pseudo-identity

AGAccess Authentic Gateway Access

IDgw Gateway Identity

MKey Single Sign-on Authentication Key

SKey Secret Key

IDgw Identity of Gateway

CH Challenge

PIDi Pseudo-identity of ME/PA

SK Session Key

EK(.)/DK(.) Symmetric Encryption/Decryption

H( .) One-Way Cryptographic Function

DB Database

Adv Adversary

FID Fake Identities

KP Fake Identities of Key Pairs

SL Softmax Loss Function

K Legitimate Computing Devices

Yk Class Label

ak Predicted Values of kth Computing Device

bid′′ Model Bias

(SV , SW) Sampling Vectors of the Matrix

ql Level of Quantization

Ŵij Quantized Matrix

DP Device Prediction

Threat Model

In accordance with the system model, a formal adversarial attack is considered to
assess four different types of threats which may intimidate the security efficiency of the
proposed L2FAK.

Formal Security Definition: A formal security assumption is introduced with prob-
abilistic polynomial time (PPT) to represent the behavior of malicious or revoked users.
This malignant act may forge or deceive the cloud server to generate a privacy leakage [82].
Moreover, the assumption defines the security against the malicious user where an adver-
sary with PPT ADPPT is supposed to play the successive game with a competitor C.

Setup: C initiates non-identities of ME/PA using the proposed L2FAK. It is assumed
that ADPPT represents β as a non-identity of L2FAK to assess its behavior over C. As
a result, C instructs β to attack the non-identity of L2FAK and utilizes the subprogram
of ADPPT to work over L2FAK. In addition, β as the competitor of L2FAK trains ADPPT
and make an effort to obtain the results of ADPPT to drive an attack against the non-
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identity of L2FAK. Obtaining the inputs of non-identity L2FAK, C generates the pa-
rameters SK =

{
MSi , ps2, ps3, ps4, Skey, H( .)

}
and β produces the parameters SK′ ={

MSi , ps2, ps3, ps4, Skey, x1, pkgw, H( .)
}

to obtain the data content. In addition, the sys-
tem parameters are processed to the adversaries β and ADPPT .

Queries: The adversaries can strategically issue the data queries to C, which maintains
the query lists to explore the relationship between the data or address sequences, which is
initially recorded as empty, however.

(1) Hash Function H( .): The adversary uses hash value to obtain any identity =i. C
finds wi and returns the value to the adversary. Using this query, the adversary can obtain
the parameter of any secret key Skey.

(2) Key: In query execution, the adversary processes the function lists H( . )List to the
adversary. It is worth noting that H( . )List utilizes the hash value of H( .) to obtain the user
identities Midj

. If Skey has not been suspected before, then C will generate a legal message
request Mi. Using this query, the adversary can obtain the parameter of any Skey to acquire
the encrypted messages.

End-Game: Lastly, the entities including adversary and competitor obtain the en-
crypted messages C∗η and C∗

′
η respectively. If C∗η = C∗

′
η holds, then the adversary succeeds

in its computation process to derive the encrypted messages.

Definition 1. The L2FAK protocol can be secure over forging the encrypted messages to ensure
privacy preservation, even if any adversaryADPPTplays the game with the competitor to obtain a
negligible probability: |2Pr|C∗η +

∣∣∣C∗′η − 1
∣∣∣ ≤ ε(K).

Four Types of Adversary Acts: To analyze the security efficiencies of the proposed
L2FAK, the capabilities of an adversary ADPPT are as follows.

1. ADPPT may collude with multiple user entities to infer the secret key of ME/PA
without any proper permission of MS to gain server access.

2. MS may be a semi-trusted cloud server to collude with revoked user entities to main-
tain the encrypted data without the consent of AGAccess. Even if the outsourced data
is known to the revoked users, the semi-trusted cloud still holds the key derivatives
of ME/PA to secure the data transmission.

3. When any user of a group tries to access the shared data, it may operate its access
types in a different form to protect the content of data. Moreover, the revoked user
cannot collude with the semi-trusted cloud to guess the interested information.

4. The cloud server cannot determine the significance of encrypted data content to
explore its relationship with data and address sequences. In addition, the curious
server can attempt to track the content of data based on the access time to determine
its priority.

4. The Proposed L2FAK

This section systematically constructs the architectural processes of eHealth applica-
tions to fulfill design criteria such as confidentiality and integrity. To structure the protocol,
the design is composed of four basic entities, namely, sensors, medical experts, a mobile
sink, and an authentic gateway. The execution phases of the L2FAK protocol consider the
following assumptions for significant roles of the real-time entities:

1. AGAccess assumes the role of a trusted node to establish and manage the point of
service via proper authorization requests.

2. Mkey utilizes a hardware device to generate unique passcodes among real-time entities
for single sign-on authentication.

3. Skey uses secret key distributions to verify device identities and ensure mutual authen-

ticity via Skey = H
(

Mkey
⊕

IDgw

)
.



Electronics 2023, 12, 1250 16 of 36

The L2FAK scheme is composed of four execution phases (pre-deployment, initializa-
tion, and registration, plus login and authentication) for medical-expert registration, login,
authentication, and session key updates.

Phase 1—Pre-deployment: In this phase, ME/PA negotiates with AGAccess to obtain
Skey. To be associated with a legal system, each MD utilizes Skey along with information
about ME/PA. Furthermore, it is assumed that Skey cannot be accessed or obtained by Adv.

Phase 2—Initialization: This phase carries out systematic operations over a secure channel,
sending the registration request for medical device MD (along with its identity, DID) to server
S. After receiving the request, S generates a challenge, CH, to verify the next interaction with
DID. As a result, S has a series of new challenges, CHSYN = {ch1, ch2, . . . . . . , chn}, which
requires proper re-synchronization with DID to send a functional argument {CH, CHSYN}
to MD. Accordingly, MD extracts functional outputs RCH = PUFID(CH) and RCH−SYN =
PUFID(CHSYN) using {CH, CHSYN} to process functional parameters {RCH , RCH−SYN}
with S.

To prove the legitimacy of computing device MD, S generates first-factor authentication,
including short-term identity STID = H

(
RCH ‖ Mkey

)
and a secret key, Skey. In addition,

S finds a set of fake identities along with key pairs, (FID, KP) = {(FID1, KP1), (FID2, KP2),
. . . . . . , (FIDn, KPn)}, to prepare a valid argument,

{(
STID, Skey

)
, (FID, KP)

}
, which sets up se-

cure channel access with DID. Lastly, S stores the essential parameters, {(STID, Skey), (CH, RCH),
(CHSYN , RCH−SYN), (FID, KP)}, in its database, DB, to verify the parameters of MD, i.e.,
{(STID,Skey), (FID, KP)}.

Phase 3—Registration (ME/PA): ME/PA deal with AGAccess to register credentials
safely before message requests are transmitted via secure channels. The execution steps are
as follows.

Step 1: ME/PA select their own identities, Mid/PAid, generate a pseudo-random
number, ps1, to compute a pseudo-identity, PIDi = H(Mid/PAid ‖ H(ps1)), and then
transmit PIDi to AGAccess.

Step 2: After receiving the parameter PIDi, AGAccess determines whether PIDi is
already registered in DB. AGAccess generates a temporary pseudo-identity, TIDi, to compute
TP1 = H

(
TIDi ‖ x1 ‖ IDgw ‖ Skey

)
and assigns TP1 to ME/PA. Subsequently, AGAccess

stores values {TIDi, TP1} for MD and allows ME/PA to access PIDi via DB. Finally,
AGAccess transmits data from medical device MD to ME/PA.

Step 3: ME/PA set a strong password, pwd, in order to compute TP2 = H(PIDi ‖ TIDi
‖ pwd) to protect the device credentials of ME/PA from Adv. Later, ME/PA compute TP3 =

H
(

H
(

pwdi

)
‖ Mid/PAid

)
⊕H(ps1), TP4 = H

(
pwdi
‖ ps1

)
, and TP5 = H

(
TP1 ‖ Skey ‖ PIDi

)
to store system parameters

{
TP2, TP3, TP4, TIDi, Skey

}
in MD.

Phase 3—Registration (Sensor): Assume that a medical sensor, MS, wishes to register
with AGAccess via dedicated device MD to transmit messages via secure channels.

Step 1: AGAccess chooses an identity, MSi , for medical sensor MS and applies private
key pkgw of AGAccess to protect the MS identity.

Step 2: Additionally, AGAccess utilizes the values of MSi and pkgw to compute a pseudo-
identity for MS, i.e., PMSi

= H
(

MSi ‖ pkgw
)
.

Step 3: After obtaining PMSi
, AGAccess sends parameters

{
PMSi

, MSi , PIDi

}
to MS and

subsequently stores them in MD via MS to limit data access based on the characteristics
and to establish secure communications with uncompromised MS.

Phase 4—Login and Authentication: In this phase, the system can legally process
message requests when ME/PA reviews and verifies the credibility of patient informa-
tion. To gain system access, ME/PA enter a legible Skey into MD, which authenticates the
communication with MS via AGAccess, as shown in Figure 3. This phase shall operate
the execution steps of different communication entities ME/PA and MS via AGAccess to
exhibit the significance of secure registration and validation among the legitimate mo-
bile/medical device MD. Initially, S handles the registration process with ME/PA to verify
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the message requests and manage the medical devices MD with AGAccess to control the
system parameters. To begin with the registration process, MD safely registers the secret
key Skey with its trusted AGAccess to validate the legitimacy of the patient AGAccess and also
generates a pseudo-random number, ps3 to compute a legal message request M. Following
this process, AGAccess supplies the computation parameters {E1, E2} not only to enroll the
medical device MD but also to compute their signatures to advertise a secure session key
SK within the medical center. The center considers a learning network to generate a local
chain whereby the entities such as MS and AGAccess can handle a local batch signature
to create private and public slabs in order to validate the service management controlled
by the inter-hospital networks. The learning network forms predictive information to
validate legitimate device MD via AGAccess to determine the appropriate security features
including the decryption key which manages the network verification with MS to extract
the important parameter of MD and to establish secure communication between ME/PA
and MS.

Step 1: MEi/PAi enter login credentials Midi/PAidi along with pwdi via the preferred
MD to compute H(ps1) = H(H(pwdi) ‖ Midi/PAidi)⊕ TP3. Subsequently, MEi/PAi find

PIDi = H(Midi/PAidi ‖ H(ps1)) from H(ps1) to verify whether (H(pwdi) ‖ Midi/PAidi)
?⇔

TP4 is stored in MD. After successful verification, ME/PA is determined to be legitimate
and can successfully log in.

Then, MEi/PAi generate another pseudo-random number, ps2, to compute E1 =

ECTP5

(
ps2 ‖ MSi ‖ PIDi ‖ Skey

)
and E2 = H

(
ps2 ‖ MSi ‖ PIDi ‖ TP1

)
. Lastly, computa-

tion parameters, such as {E1, E2, TIDi}, are transmitted via MD to AGAccess.
Step 2: AGAccess initially uses TP1 = H

(
TIDi ‖ x1 ‖ pkgw

)
to obtain (ps2 ‖ MSi

‖ PIDi ‖ Skey) = DTP5(E1) via functional decryption. Additionally, AGAccess utilizes DB

to obtain the pseudo-random identities Midi/PAidi using
(

ps2 ‖ MSi ‖ PIDi ‖ Skey

)
to verify

source values with E2.
Additionally, AGAccess generates another pseudo-random number, ps3, to compute

M = H
(

ps2 ‖ MSi

)
, E3 = H

(
M ‖ MSi

)
⊕
(

ps2 ‖ ps3 ‖ PIDi ‖ Skey

)
, and E4 = H(M ‖ MSi

‖ ps2 ‖ ps3 ‖ PIDi). Finally, AGAccess transmits parameters {E3, E4} to MS.
Step 3: To check the legitimacy of AGAccess and to obtain the ps2, ps3, and PIDi val-

ues, MS computes (ps2 ‖ ps3 ‖ PIDi) = H
(

M ‖ MSi

)
⊕ E3. Furthermore, MS determines(

M ‖ MSi ‖ ps2 ‖ ps3 ‖ PIDi
)

to verify values with E4.
After successful verification, MS generates pseudo-random number ps4 to find SK =

H
(

MSi ‖ ps2 ‖ ps3 ‖ ps4 ‖ Skey

)
, which creates a random number rl to compute WL =

ECGW(rl), E5 = H
(

M ‖ ps3 ‖ MSi ‖ rl
)
⊕ ps4, and E6 = H(M ‖ ps3 ‖ ps4 ‖ SK). In the

end, MS sends system parameters {E5, E6, WL} to AGAccess.
Step 4: AGAccess finds rl = DCAG(WL) to compute a pseudo-random number, ps4 =

E5 ⊕ H(M ‖ ps3‖ MSi ‖ rl). Accordingly, AGAccess evaluates SK = H(MSi ‖ ps2 ‖ ps3
‖ ps4 ‖ Skey) to verify values with E6.

Successful verification prompts AGAccess to generate a temporary identity, TNew
ID , and to

compute TPNew
1 = H

(
TNew

ID ‖ x1 ‖ pkgw
)
, E7 = ECTP5

(
ps4 ‖ ps3 ‖ TPNew

1 ‖ TNew
ID ‖ Skey

)
,

and E8 = H
(
TPNew

1 ‖ TNew
ID ‖ SK ‖ ps3 ‖ ps4 ‖ TP1

)
. Finally, AGAccess transmits source

parameters {E7, E8} to MEi/PAi via MD.
Step 5: MEi/PAi initially decrypts E7 using TP5 to find the target value (ps4 ‖ ps3 ‖ TPNew

1

‖ TNew
ID ‖ Skey). By then, MEi/PAi find SK = H

(
MSi ‖ ps2 ‖ ps3 ‖ ps4 ‖ Skey

)
to verify

whether the source value is similar to H
(
TPNew

1 ‖ TNew
ID ‖ SK ‖ ps3 ‖ ps4 ‖ TP1

)
. Eventu-

ally, MEi/PAi change TP2 to find a new source, TPNew
2 = H(pwdi ‖ PIDi) ⊕ TPNew

1 , and
accordingly, update source parameters {TP2, TIDi}with

{
TPNew

2 , TIDNew
i

}
.
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Phase 5—Learning Framework: In this phase, the application service uses the statistical
features of the patients to discover a user behavior model. The designed model uses a
connection module to extract the statistical vectors including a timestamp that computes
the authentication levels of the interactive devices in real time. To meet the desired goals,
the proposed framework uses four basic components:

Device Communication monitors the computing data via a dedicated application
to manage complex issues in heterogeneous environments. Moreover, dynamic systems
learn machine intelligence to discover a data-driven decision to optimize the network
functionalities.

Data Preparation transforms the storage data to make an accurate prediction model
which can explore a few essential tasks to uncover the relevant attributes of the application
services, i.e.,

{(
STID, Skey

)
, (FID, KP)

}
. Data Storage creates and maintains the applica-

tion database DB to verify the parameters
{(

STID, Skey

)
, (FID, KP)

}
to leverage system

performance and manage the file systems in parallel with low delivery latency.
Seamless Authentication simplifies the signing process to explore the trials of the

password authentication scheme in order to examine the identities, social relationships,
and access privileges.

In the lightweight device, the modeling parameters are preserved to compute the
gradients effectively. In addition the parameters of the healthcare systems compare learning
algorithms with various layer attributes to characterize the significance of computing
devices. The layer attributes explore adaptive re-training to enhance the features of the
detection model and to automate the utilization of neural networks using deep learning-
based blind feature extraction. It is also worth noting that the proposed model operates the
channel estimation matrixH(N × 256) using a convolution network to capture the essential
properties of the computing layers. Specifically, the modeling system has no consistent
values between the predicted values of the authentication models, and thus, the true
predicted values are computed using the softmax loss function, i.e., SL = −∑ N

k=1Yk. log Sk,
where K defines the legitimate computing devices, Yk represents the class label initially set
to 1, and Sk denotes the kth value of the desired vector S. Hence, the softmax function can
be rewritten as:

Sk =
eak

∑K
j eaj

(1)

where ak shows the predicted values of kth computing device which is the fully connected
layer of the application system. The purpose of a knowledge-based system is to acquire the
blind features which functionalize the neuron to learn the complex features iteratively. Each
feature tries to operate the mapping function of two adjacent layers which is as follows:

Input Matrix : IMConv−Layer ∈ RV×W×D

Convolution Filter : CFConv−Layer ∈ RV′×W ′×D×D′′

Output Matrix : OMConv−Layer ∈ RV′′×W ′′×D′′

where V [V′ or V ′′ ], W[W ′ or W ′′ ], and D[D′ or D′′ ] define the height, width, and depth of
the convolution matrix. As a result, the output matrix can be expressed as:

OMConv−Layer
i′′ .j′′ .d′′ = bid′′ + ∑ V ′

i′=1 ∑ W ′

j′=1 ∑ D
d=1FConv−Layer

i′ .j′ .d. d′′ × HSv(i′′−1)+i′−Pv , Sw(j′′ −1)+j′−Pw,d
(2)

where bid′′ is the model bias, (SV , SW) denotes the sampling vectors of the matrix, namely,
vertical (V) and horizontal (W), and (P−v , P+

v , P−w , P+
w ) represents the output padding

values in the directions of V and W. The mapping functions are expressed as follows:

V ′′ = 〈V −V′ + P−v + P+
v

SV
〉+ 1 (3)
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W ′′ = 〈W −W ′ + P−w + P+
w

SW
〉+ 1 (4)

In order to quantize the mapping function, the proposed neural network utilizes a
1− bit random quantization scheme. This scheme utilizes the probabilistic quantizer to
guarantee better quantization which exploits a mapping function to identify the level of
quantization, i.e., ql = [log2 SVSW ]. Let ωi′ j′ = SVSW

wi′ j′
‖W‖F

, where ‖ . ‖F is the Frobenius
norm of two independent solutions simplified by the Euclidean norm of the matrix. Hence,
the quantized matrix Ŵij is defined as:

Ŵij = sgn
(

wi′ j′
)
〈
(⌊

ωi′ j′
⌋)

+ ∂i′ j′〉‖W ‖F (5)

where ∂i′ j′ defines a random function to express the distribution as follows:

∂i′ j′ =
1 with probability ωi′ j′ −

⌊
ωi′ j′

⌋
0 otherwise

(6)

sgn(x) is the function suited to quantizing the positive and negative values of the
sampling vectors, i.e., 1− bit level. The convolution layer directly feeds the output data
of the pooling layer to minimize the computing attributes which considers 2× 2× 128
to operate two convolutions and two pooling functions. This functional operation uses a
fully connected layer as a target one which designs its own softmax loss to optimize the
computation operation used in the proposed L2FAK while training the sensitive data, i.e.,
SL = −∑ N

k=1Yk. log Sk.
The proposed federated scheme uses three computing phases such as training, authen-

tication, and re-training to learn the significance of blind features based on a convolution
neural network. The classified attributes perform both forward and backward propagation
to converge the computed value close to 0 which determines the legitimacy of any comput-
ing device. Each device shares its relevant parameters to train the physical characteristics
of a well-trained neural network and to determine the data values of the computing device
as shown in Algorithm 1. The device prediction is defined as follows:

DP =
eak

∑K
j eaj

(7)

It is worth noting that the fully connected layer determines whether the incoming
messages of the computing devices are legitimate or not to verify the performance of the
proposed FL with other learning mechanisms.
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Algorithm 1 Federated Learning Layered Authentication (FLLA) Classifier.

Input: Collecting System Attributes {SA1, SA2, . . .} of ith Computing
Devices
Executing the number of rounds and Epoch T & τ

Output: Authenticating the results of the Computing Devices, i.e., OM of
the neurons weightsωi’j’

∆FL−Q(SA1, SA2, . . . , SAN, T , τ)
Step 1 : Initialize random computed values W with their corresponding
weights
Step 2 : Obtain the classifiers models including proposed and others

using storage database D_B to verify the parameters
{(

STID, Skey

)
, (FID, KP)

}
Step 3 : For any new physical attributes Do
Step 3.1 : Send a quantized global model to train the own local model on its relevant computa-tion
data
Step 3.2 : Obtain a quantized local trained model which applies weighted averaging to receive the
quantized local model and to perform parameter quantization on SVSW
Step 3.3 : Compute a probability level of better optimization ql trained by the proposed FL via
∼ 10
Step 4 : If the computing device is classified as a legal or legitimate device
then
Step 4.1 : Allow device access via an appropriate data center
Step 4.2 : Modify the bit level of the training database D_B to find its corresponding

prediction values of
{(

STID, Skey

)
, (FID, KP)

}
Step 5 : Else
Step 5.1 : Terminate the device connection
Step 6 : End If
Step 7 : End For

5. System Evaluation

This section discusses the security properties of the proposed L2FAK with the support
of informal, formal, computation, and learning analysis.

5.1. Informal Analysis

The analysis of security properties is as follows.
Mutual Authentication: To analyze mutual authenticity between MEi/PAi, the com-

municating parties share a common session key to authenticate each other. In the L2FAK
scheme, MS authenticates MEi/PAi using SK = H

(
MSi ‖ ps2 ‖ ps3 ‖ ps4 ‖ Skey

)
via MD.

In the system login and authentication phase, AGAccess authenticates MEi/PAi using the
calculations TP1 = H

(
TIDi ‖ x1 ‖ pkgw

)
and

(
ps2 ‖ MSi ‖ PIDi ‖ Skey

)
= DTP5(E1) to

check whether MEi/PAi meets the conditional expression
(

ps2 ‖ MSi ‖ PIDi ‖ Skey

)
to

initiate data transmission. Though Adv tries to intercept the login requests of MEi/PAi, and
attempts to falsify the activities of AGAccess, the attacker cannot find source parameters
{ps2, ps3, PIDi} to calculate derivative factors such as {E3, E4}. Therefore, Adv cannot
transmit a legitimate message to AGAccess. Hence, the proposed L2FAK adheres to mutual
authentication of MEi/PAi.

Session-Key Agreement: In L2FAK, MEi/PAi share a common secure session key via
AGAccess. Upon launch of the login and authentication phase, MEi/PAi can confidently
exchange sensitive data by knowing the common session key. PAi data gathered by MD

are encrypted from the computation of SK = H
(

MSi ‖ ps2 ‖ ps3 ‖ ps4 ‖ Skey

)
. Then,

a secure session key is determined in order to validate WL = ECGW(rl) using E5 =
H
(

M ‖ ps3 ‖ MSi ‖ rl
)
⊕ ps4, and E6 = H(M ‖ ps3 ‖ ps4 ‖ SK). Because parameters ps2,

ps3, ps4, and Skey change periodically during execution, different sets of secure SK can be



Electronics 2023, 12, 1250 22 of 36

generated to provide more communication services. Hence, the proposed L2FAK provides
session-key agreement between patient and medical expert.

Resilience against Privileged-Insider Attacks: The L2FAK scheme infrequently trans-
mits communication parameters

{
H(.), pwdi, Midi, MSi , ps2, PAidi, Skey

}
to authenticate

server access as plaintext. In order to examine them further, MEi/PAi use H(H(pwdi) ‖ Midi
/PAidi)⊕ TP3. Thus, the authentic server cannot obtain users’ secret keys without knowing
TP3 = H

(
H
(

pwdi

)
‖ Mid/PAid

)
⊕ H(ps1), TP4 = H

(
pwdi
‖ ps1

)
, and TP5 = H(TP1 ‖ Skey

‖ PIDi). Moreover, the hashing function, H
(
SN ⊕ IDgw

)
, is eventually verified using(

ps2 ‖ MSi ‖ PIDi ‖ Skey

)
to control session access by MEi/PAi. So, an attacker cannot

infer the valid session key of MEi/PAi without the presumption of {E5, E6, WL}. Hence,
the proposed L2FAK is resilient to privileged-insider attacks.

Resilience against Replay Attacks: Suppose Adv exploits old captured messages
to authenticate servers, {E1, E2, TIDi}, medical sensors,

{
PMSi

, MSi , PIDi

}
, and users,{

TP2, TP3, TP4, TIDi, Skey

}
. However, Adv cannot generate any authorized message trans-

mission to validate pseudo-identity PIDi using (H(pwdi) ‖ Midi/PAidi). Hence, the pro-
posed L2FAK can resist the replay attack.

Resilience against User Masquerade Attacks: To forge login message
{

PMSi
, MSi , PIDi

}
,

suppose Adv tries an IoT-ECF system login with message modification
{

PMSi
∗, MSi

∗, PIDi
New
}

.

The parameters
{

PMSi
∗, MSi

∗, PIDi
New
}

cannot be tampered with or verified by AGAccess,
and thus, the original data message PIDi = H(Midi/PAidi ‖ H(ps1)) cannot be deduced via
fake decryption parameter

{
MSi

∗}. Hence, the proposed L2FAK can be irrepressible when
facing a user masquerade attack.

Resilience against Gateway Masquerade Attacks: Since Adv is unaware of some param-
eters, such as {E5, E6, WL} from the data exchange protocol, Adv cannot exploit a gateway
masquerade attack against the proposed scheme. Hence, the proposed L2FAK can be
irrepressible when facing gateway masquerade attacks.

Resilience against Offline Password Guessing: In most cases, the adversary tries to
acquire system parameters over a public network. Assume he/she obtains the values of sys-
tem parameters

{
TP2, TP3, TP4, TIDi, Skey

}
from SD. In addition, MEi/PAi make an effort

to find a new secret key, SKNew, to compute E8 = H
(
TPNew

1 ‖ TNew
ID ‖ SK ‖ ps3 ‖ ps4 ‖ TP1

)
.

However, valid key SKNew cannot be computed because it is irretrievable from the MD of
MEi/PAi. Thus, the proposed L2FAK can be resilient to offline password-guessing attacks.

Resilience against User Forgery: To forge communications of any legal entities, Adv

requires parameters such as
{

TP2, TP3, TP4, TIDi, Skey

}
. To obtain them with little effort,

Adv tries to compute TP3, TP4, and TP5 consisting of PIDi, TIDi, and pwd. Since Skey is
irretrievable, Adv cannot infer or obtain a legal identity for AGAccess in order to derive
a valid message request to authorize the session. Thus, the proposed L2FAK is resilient
against the user forgery attack.

Resilience against Gateway Forgery: Assume Adv generates PIDi using H(Midi/PAidi
‖ H(ps1)). As a result, Adv claims that a legal request may be successfully generated.
However, the proposed L2FAK cannot permit anyone to generate a valid request without
proper associations for ps2, MSi , and Skey. Importantly, Skey and MKey are very hard to
derive because they are associated with high-level security features. Thus, the proposed
L2FAK can be resilient against gateway forgery.

Resilience against Gateway User Tracking: As AGAccess randomly generates private
key pkgw to establish secure sessions, MEi/PAi cannot be tracked by adversaries. In addi-
tion, Skey is irretrievable; thus, a legal request cannot be generated to track user sessions.

Perfect Forward Secrecy: In most cases, Adv tries to obtain system parameters such as
PMSi

and MSi . Moreover, Adv may examine legal message requests such as
{

PMSi
, MSi , PIDi

}
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and
{

TP2, TP3, TP4, TIDi, Skey

}
to generate valid session key SK using H(MSi ‖ ps2 ‖ ps3

‖ ps4 ‖ Skey). As a rule, MD generates a firm and secure SK that assigns a random number,
ps. As a result, it is certain that Adv cannot obtain legal values such as MPMSi

, MSi , and PIDi

to discover a secure session. Hence, the proposed L2FAK ensures perfect forward secrecy.
Under the procedures of the L2FAK scheme, MEi/PAi can mutually endorse one

another to access sensitive IoT-ECF data. Eventually, MEi can access patients’ private
information via AGAccess. As a session key is securely shared among the communication
entities, the L2FAK can achieve security, namely, the properties of mutual authenticity and
session-key agreement, and be irrepressible in the face of user and gateway masquerades,
and privileged-insider and replay attacks, improving security efficiency.

5.2. Formal Analysis Using Random Oracle Model

This section performs formal analysis during the login and authentication phase to
show the security efficiency of the proposed L2FAK [83].

Theorem 1. The revoked user cannot learn the stored files of ME/ PA even if they are in collision
with the cloud server. Moreover, the user is not capable to learn the content of data stored as the
blocks after the successful revocation.

Proof. When any user quits communication with MS based on the proposed L2FAK, the
parameters such as ps2, ps3, and ps4 are utilized to decrypt the data files. Moreover, it uses
r.ps2 + r.ps3 + r.ps4 = r.SK to perform the computation again. Observing the following
instance, the revoked user can use the secret key Skey to participate and learn the data
contents c Subsequently, the revoked user colludes with MS to decrypt the data file using
an authentic key. The key verification is as follows:

e(τps, νps)H(Ki).(Ppa ,Mpa ,PIDpa) = e(τps, νH(Ki) (Ppa + Mpa + PIDpa) ps)
= e(νps, H(Ki) Ppa ps)τ .e(νps, H(Ki) Mpa ps)τ .e(νps, H(Ki) PIDpa ps)τ

= ps2
τ .ps3

τ .ps4
τ

(8)

However, the system parameters of the encrypted key imply ps2
τ .ps3

τ .ps4
τ 6= rps2

τ

.rps3
τ .rps4

τ to ensure that the revoked user cannot perform any decryption process to
update the source file. As a consequence, the proxy MS has the ability to control the access
rights of the revoked users, whereby they cannot collude with MS to learn the actual data
content. �

Theorem 2. The semi-trusted cloud server cannot differentiate its access operation to learn the
interested data contents.

Proof. When any content of data has gained its access several times, the curious cloud
server determines such data as more significant to monitor or likely to tamper with a forged
secret key. Meantime, the curious cloud collaborates with the revoked users to learn the
data contents and its accessing capabilities. Thus, the probability of accessing data should
be identical to the data that appeared in the cloud server. The access operation includes
real and 2N pseudo-random requests to process the application services to the cloud server
while the user applies an access control algorithm. In practice, real-time data is only known
to the authentic user to gain system access. It is worth noting that the accessed data is
uniformly distributed to the cloud server to maintain better data consistency. Though the
algorithm known as lazy obfuscation is applied to access the data content, the relationship
of the data including address sequences cannot be applied by the cloud server to discover
its actual form. The user performs a specific access operation on the data content to view it
as a new one of the cloud servers. Hence, it is claimed that the semi-trusted cloud server
cannot differentiate its access operation to learn the interested data contents. �
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Theorem 3. The accessed data pattern can be secure under the adversary act of ADPPT. Assume
the proposed L2FAK can support a feature of data untraceability to enhance the privacy of data con-
tent. The adversary tries to access the proposed L2FAK over a wireless channel to initiate the session
between ME/PA and MS to arbitrate the user U activities. Moreover, the adversary is known to determine
a few computation parameters M = H

(
ps2 ‖ MSi

)
and PMSi

= H
(

MSi ‖ pkgw
)

which executes two
queries {Ms, Ns} and {Ns, Ms} to breach the secure communication of the proposed L2FAK.

ADPPT(U) = |2Pr|C∗η +
∣∣∣C∗′η − 1

∣∣∣ (9)

where C∗η is a coin flicked by the adversary, and C∗
′

η is the outcome of the flicked coin. For
the execution of hash queries, the advantage with adversary act U is as follows:

ADPPT(U) = |Pr(S2)− Pr(S1)|+ q(H2/2th)(S+1) + q((H+1)2/2th)(S+1) + q(H2/2th)(S) (10)

where q(H2/2th)(S+1) + q((H+1)2/2th)(S+1) + q(H2/2th)(S) defines the collision of the hash code
function with each user in the oracle model. Using Equation (8), we obtain:

|Pr(S3)− Pr(S2)| ≤
[

2qU +
2qME/PA

2qMS

]
(11)

The advantage with adversary act U tries to obtain the shared session key SK:

|Pr(S1)− Pr(S2)| ≤ qME/PA . ADPPT(U) (12)

In case of accessing the storage space MD, the probability with adversary U is
as follows:

|Pr(S3)| =
1
2

max
( qU

2
,

qME/PA

D

)
(13)

Using Equations (9)–(11), we obtain:

ADPPT(U) = Pr(S1)− 1
= 2|Pr(S0)− Pr(S4)|+ max

(
qU
2 ,

qME/PA
D

)
≤ 2|Pr(S0)− Pr(S4)|+ max

(
qU
2 ,

qME/PA
D

)
= 2|Pr(S1)− Pr(S2) + Pr(S3)− Pr(S4)|+ max

(
qU
2 ,

qME/PA
D

)
≤
(

qU
2+qME/PA

2+qMS
2

2q +

(
qU+qME/PA

)2

2(q−1) + 2qME/PA .ADPPT
(
UME/PA

)
+ 2.

[
qU
2q ,

qME/PA
|D|

])
(14)

5.3. Computation Analysis

In this subsection, the performance of the proposed L2FAK is evaluated along with
other existing schemes [42,44,49–51,53]. In computation analysis, the system login and
authentication phases were considered to examine the security features of the proposed
L2FAK and the other schemes [42,44,49–51,53]. The authentication schemes employ the
OpenSSL library between two computer terminals for analysis of computation costs. The
user-side terminal had a Core i3-1035G1 CPU with 8GB RAM and a clock speed of 3.6 GHz,
whereas the server-side terminal had a Core i5-1035G1 CPU with 16GB RAM and a 2.3 GHz
clock speed to construct the simulation environment. The user and server were connected
over H3C S1024R to ensure that the connected device had a 100 Mbps bandwidth to perform
the simulation more than 100 times. From the NIST [Anon] recommendation [26], P− 192
is preferred as the standard elliptic curve.

To regulate the message digest, SHA− 256 cryptographic hashing was utilized. Table 3
shows the execution times of the cryptographic operations. Since L2FAK has a low computa-
tion overhead of 15.343 ms, the phase execution time of the proposed L2FAK can be further
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reduced to achieve better computation efficiency compared to the other authentication
schemes [42,44,49–51,53], as shown in Table 4.

Table 3. Execution Times of Cryptographic Operations.

Operator
Execution Times 〈ms〉

User Server

THD 0.16073 0.208057

TSY 0.013125 0.004343

TEED 0.095417 0.011054

TMU 79.256041 6.132746

TEOR 27.987396 2.493921

TAD 0.011667 0.004737

Table 4. Assessment of Computational Efficiency.

Scheme
Registration Login and Authentication Execution

Time 〈ms〉ME AGAccess ME AGAccess MS

Proposed
L2FAK 7THA+1TEED 1THA 7THA +1TEED 8THA +2TEOR +1TEED 4THA +2TEOR +1TEED 15.343

Yang et al.
[44] 4THA +3TEOR 8THA +6TMU +3TAD 123.080

Deebak et al.
[49] 2TMU +4TXOR+2TAD 5THA +4TEOR +4TSY 281.518

Abdussami et al.
[50] 5THA +2TEOR 15THA +5TEOR +1TEED 72.380

Kim et al.
[51] 6THA +4TEOR 13THA +18TEOR 160.509

Chen et al.
[53] 5THA +1TEOR+1TEED 27THA +14TEOR +2TEED 69.441

Li et al.
[42] 19THA +11TEOR 19THA +11TEOR 342.302

THA represents the one-way hashing function; TSY represents the symmetric cryptosystem function; TEED rep-
resents the elliptic-curve encryption/decryption operation; TMU represents one-point multiplication over ECC;
TEOR represents the Exclusive-OR operation; and TAD represents one-point addition over ECC.

5.4. Learning Analysis

In learning analysis, datasets such as MNITS and FashionMNIST [84] are adopted to
evaluate the proposed FLLA and other relevant layered mechanisms [17,18]. The evaluation
mechanisms utilize a dedicated message-passing interface (MPI) to maintain optimal load
factors in a distributed environment [85]. The environment uses Python to implement the
source codes and prefers a high-performance computing package, i.e., mpi4py to access the
computing platform. This platform is compatible with 12th Gen Intel Core i7, 16GB RAM, 14
cores, and a clock rate of 4.7 GHz. The compatible system uses MPI specification to build the
source codes of the proposed FLLA and other relevant layered mechanisms [17,18], in order
to provide a separate object interface. The object interfaces exploit a few significant key
features of the configured prototype to facilitate the computation process. This prototype
has one central server CS, four computing service cps, and one coded data service Ds to test
the behavior of targeted and untargeted attacks. Table 5 shows the detailed descriptions
of the datasets. In MNIST, the data are relevant to handwritten numbers of 250 different
people, where 50% are high-school students, and another 50% are Census Bureau.
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Table 5. Detailed Description of Datasets.

Parameters MNIST FashionMNIST

Domain Name Handwritten Numbers Clothing

Training Data 60,000 60,000

Testing data 10,000 10,000

Classes 10 10

Clients 3 3

Data Type Images Images

Moreover, this dataset has a similar portion of digital data to test its relevance and
is composed of 60, 000 training and 10, 000 testing images to verify the performance of
the proposed FLLA along with other mechanisms [17,18] in terms of accuracy and testing
rate. In case of no special instructions, this analysis chooses 200 as primary data to meet
the constraint of data distribution represented as PD0. The FashionMNIST uses a similar
size as MNIST to categorize its selective images of clothing. To realize the scenario of the
proposed FLLA along with other mechanisms [17,18] in practice, this experiment uses
poisoning attacks. This attack considers the activities of a malicious client to define the roles
of targeted and untargeted attacks. The former attack arbitrarily performs its changes to
operate the global model, whereas the latter exploits label-flipping to control the behavior of
the malicious client, i.e., from l to (N − l − 1), where l ∈ {0, 1, . . . , N − 1} and N represents
the total number of labeling data.

Evaluation Metrics: The metrics such as test accuracy and error rate are used as an
indicator of the evaluation model to train the datasets. The object of the proposed FLLA is
to enhance the inference rate or detection accuracy of the global model. In data analysis,
federated learning chooses a prominent model, the so-called FEDSGD, as a baseline which
has the existence of different malicious clients to examine the results of the proposed FLLA
along with other mechanisms [17,18].

Learning Settings: The evaluation considers cross-silo settings and defines the number
of computing cores nc = 10 to exercise the clients during the training process. The selected
model uses a three-layered neural network to load two different datasets on the interface of
Keras with a backend platform of TensorFlow. Table 6 enlists the modeling parameters of
two different datasets including MNIST and FashionMNIST to allocate the data inputs to
the object interface. Each interface handles 6000 data sources which have a distribution
of malicious clients ranging from 20% to 40% to perform a few critical scenarios [86]. The
batch size bs and loss function l f are set to 128 and 50 rounds, respectively, to observe the
results of the proposed FLLA along with other mechanisms [17,18]. Note. The epoch e is set
to 50 to train the learning models in order to obtain the optimal solution for every iteration.

Table 6. Detailed Description of Datasets.

Layered Type Output Shape Set Values

Flatten [flatten] 786 0

Dense [dense] 128 100,780

Dense [dense_1] 10 1310

Experimental Results: The results show the effectiveness of the proposed FLLA along
with other mechanisms [17,18] in contact with poisoning attacks. The classified outputs
prove that the proposed FLLA achieves better robustness, accuracy, reliability, and privacy
than other mechanisms [17,18]. Table 7 shows the test error rate of the proposed and
other existing mechanisms versus the distribution of malicious clients in the global model
[targeted and untargeted attack] on MNIST and FashionMNIST. The training process
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involves 50 iterations on the given dataset MNST and Fashion MNIST to signify the
importance of the security features. Precisely, in the existence of malicious clients, the
proposed FLLA retains the constant accuracy rate as its own baseline to resist various types
of targeted and untargeted attacks. Figures 4 and 5 show test accuracy versus Epoch (#) on
MNIST and FashionMNIST. The proposed FLLA and other existing mechanisms [17,18]
acquire the layered features to observe the transition states of the distribution matrix and to
identify any abnormal condition determining any anomaly degree of the data points. The
system cores executed via a message-passing interface rely on layered features to analyze
the abnormal behavior of any computing device as shown in Table 7.

Table 7. Test Error Rate of the Proposed and other Existing Mechanisms versus Distribution of Mali-
cious Clients in the Global Model [Targeted and Untargeted Attack] on MNIST and FashionMNIST.

Dataset Learning Mechanisms
Distribution of Malicious Clients in the Global Model

20% 30% 40%

MNIST

Proposed FLLA
(Untargeted) 0.04 0.05 0.05

PBFL
(Untargeted) 0.05 0.06 0.06

CFL-ALDP
(Untargeted) 0.06 0.06 0.21

Proposed FLLA
(Targeted) 0.05 0.05 0.05

PBFL
(Targeted) 0.06 0.08 0.18

CFL-ALDP
(Targeted) 0.07 0.09 0.13

FashionMNIST

Proposed FLLA
(Untargeted) 0.15 0.18 0.19

PBFL
(Untargeted) 0.17 0.19 0.21

CFL-ALDP
(Untargeted) 0.21 0.23 0.27

Proposed FLLA
(Targeted) 0.14 0.15 0.15

PBFL
(Targeted) 0.15 0.15 0.19

CFL-ALDP
(Targeted) 0.19 0.19 0.23
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While the features such as the proposed FLLA and other existing mechanisms [17,18]
were applied to the behavior of the computing devices, we observed that the proposed
FLLA maintain a better consistent rate of accuracy than the other mechanisms [17,18].
A few hyperparameters such as learning rate α = 0.001 and influence factor γ = 0.1
were applied to change the computing models which choose its probabilistic quantizer to
guarantee better quantization. Moreover, adaptive learning may momentarily accelerate
the training process to Investigate the modeling performance of the layered features. In
order to examine in real time, the training process was repeatedly iterated ≈50 times.
From Figures 4 and 5, it is more evident that the proposed FLLA obtains a more reliable
authentication procedure in extracting the system attributes of the physical layer than
other learning mechanisms [17,18], whereby the behavior of the FLLA system can fully be
characterized to secure the authentication process. Importantly, key-based cryptosystems
demand more computation time to establish a secure connection, whereas the physical
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layer security depends on the quantification of the system attributes to enable device
authentication and adaptive training to fulfill the objectives of model-based authentication.

6. Performance Analysis

This section describes a real-time testbed that verifies the transmission efficiency of the
proposed L2FAK compared with other schemes [42,44,49–51,53]. To realize the efficiency
factor, the testbed chosen used resource-constrained devices with a low code overhead, as
shown in Table 8. Components such as the Raspberry Pi-3 Model B and Arduino Mega 2560
were deployed for authentic gateway access and edge computing devices, respectively [87].
Note that the Arduino was equipped with ATmega2560 with 8 KB of SRAM and 256 KB
of flash memory to process data transmissions from about 700 identities. Importantly, the
uninitialized power-up state, i.e., on-chip SRAM, was utilized to generate a unique device
key, and the user registration phase was executed to gain system access. The registration and
authentication phases of the proposed L2FAK and other existing schemes [42,44,49–51,53]
were implemented on Python 3.5, which generated the user identities to process the data
flow on the Ubuntu platform.

Table 8. Hardware Configuration Details.

Host Terminal
[Raspberry Pi 3 Model B]

Wireless LAN–802.11 b/g/n

Processor–1.2 GHz Quad-Core ARM

Memory–1 GB LP-DDR2

Arduino Mega 2560 ATmega2560; SRAM–8 KB; Flash Memory–256 KB

Operating System Ubuntu MATE 18.04.2

Number of user identities ≈700

In addition, dedicated firmware was written in C to read uninitialized memory be-
tween the heap and the stack when extracting SRAM data to establish communication with
the host terminal. To measure the transmission ratio, real-time analysis was conducted that
varied packet sizes of about 256 bits. The execution of firmware steps is as follows.

Step 1: Load the firmware to read the available memory space that contains only the
subroutine for SRAM data.

Step 2: Combine authentication and application subroutines to shift and store the
generated ID in the microcontroller.

Step 3: Load the function D[IDstart] to D[IDstart + 〈e− 1〉] that returns the locations
of the stable bits. However, the location of the stable bits may vary due to availability in
the hardware.

Step 4: Match the data pointers (stack and heap) to return the retrieval rate of data
transmission (DT).

Step 5: Extract the user identities to compute the session key, storing the value in the
microcontroller to authenticate device access.

6.1. Data Transmission Ratio

To test the data flow process, the DT ratio considers the number of user identities.
It is randomly generated upon successful execution of power-up states that analyze the
retrieval rate of data transmission. In Figure 6, we observe that the proposed L2FAK has a
better power-up state to achieve maximum authentication access (i.e., 0.8545) than the other
schemes [42,44,49–51,53]. Due to the increasing number of users, the collision probability
may appear high. From the analysis, the transmission delay soars when the number of
packet transmissions increases in proportion to the number of user identities. However,
the proposed L2FAK keeps the delay within the restriction limit to improve transmission
efficiency between the authentic gateway and the edge devices compared to the other
schemes [42,44,49–51,53].
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6.2. Overhead Analysis Ratio

Overhead analysis (OA) included the system authentication phase of the proposed
L2FAK and the other schemes [42,44,49–51,53] to examine the core features of AGAccess and
edge computing device ME. Flow connectivity is as follows:

Step 1: The authentication phase prefers a dedicated AGAccess to generate valid to-
kens, e.g., for ME. The real-time entities, including AGAccess and ME, use a reliable au-
thentic token to process authentication requests that integrate a legal message request,{

H(.), C, Ni, Skey

}
, to generate valid session key SK.

Step 2: ME applies
{

Ni, Skey

}
to retrieve and convert the computational parameters

using the SHA− 2 algorithm. It can execute the extraction subroutines of user identities to
construct a 256− bit stable identity using the addressed slots from SRAM. Computation
parameters such as Mid and SHA− 2〈Ni〉 are processed to generate a valid 〈X−OR〉 value
for Skey.

Step 3: AGAccess processes the generated Mid retrieved from ME〈Ni〉 to decrypt the
authentication request, i.e., M′

id = SHA − 2〈Ni〉 ⊕ Skey. The generated identity then
compares the values with a stored identity to process the authentication request.

As to analyzing overhead costs, key parameters such as key size and timing frame
are preferred. The overall function has an overhead ratio of 3.65% in processing the
system authentication phase. The overhead cost includes the hash algorithm and string
processing to compute the memory requirements that use the symmetric key to store
256− bit values. Device security plays a crucial role in achieving the security level of the
IoT architecture; thus, a proper configuration setup is made to examine the core features of
low-cost application systems.

Figure 7 shows the overhead ratio versus the number of user identities. It is worth
noting that the performance of IoT devices considers the generated identities to authorize
the legal authentication requests of ME at regular intervals. The system analysis included
the generation of about 700 IoT devices in order to analyze the RAM power-up states
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among different computing devices. The examination reveals that the proposed L2FAK
incurs lower overhead costs, ≈89.45% , to determine genuine legal authentication requests,
i.e., the identities of IoT devices, than the other schemes [42,44,49–51,53].
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7. Conclusions

In this paper, the L2FAK protocol has been presented using a mobile sink in the IoT-
ECF paradigm for smart eHealth systems. Two factors are strategically exploited through
an authentic-ware system to mitigate computation costs. Computation analysis proves
that the proposed L2FAK incurs lower operational costs to enhance the performance of
a real-time system. The proposed L2FAK includes a lightweight operation to improve
the computational efficiencies from system authentication and key agreement phases.
Using informal and formal analysis, the security efficiency of the proposed L2FAK proved
it strengthens the security level of the authentication phase. Moreover, the performance
analysis shows that the L2FAK achieves better transmission efficiency and a better overhead
ratio than other schemes [23,24,44,47,48]. In addition, applied layered authentication
using federated learning, i.e., FLLA, utilizes the most appropriate system attributes of
the proposed L2FAK to ensure device privacy and improve authentication accuracy in
healthcare applications. The experiments are established using TensorFlow Federated to
examine the proposed FLLA and other relevant mechanisms on two different datasets
including MNIST and FashionMNIST. The analytical results show that the proposed FLLA
preserves the privacy features of authentication schemes exceedingly better than other
mechanisms used to promise accuracy on standard datasets.

In the future, we will use reliable resource-constrained IoT devices, such as gateway
devices and an advanced Raspberry Pi, to implement and evaluate several instances of a
cloud server. In addition, we prefer to incorporate lightweight operators to analyze different
traffic patterns, which may evolve into several test cases to examine the core features of
fog instances and cloud servers to enhance system efficiencies, including computation,
communication, and storage.
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