
Citation: Razzaq, A.; Altamimi, A.B.;

Alreshidi, A.; Ghayyur, S.A.K.; Khan,

W.; Alsaffar, M. IoT Data Sharing

Platform in Web 3.0 Using Blockchain

Technology. Electronics 2023, 12, 1233.

https://doi.org/10.3390/

electronics12051233

Academic Editors: Galina Ilieva and

George A. Tsihrintzis

Received: 25 January 2023

Revised: 26 February 2023

Accepted: 27 February 2023

Published: 4 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoT Data Sharing Platform in Web 3.0 Using
Blockchain Technology
Abdul Razzaq 1,* , Ahmed B. Altamimi 2,* , Abdulrahman Alreshidi 3 , Shahbaz Ahmed Khan Ghayyur 4,
Wilayat Khan 5 and Mohammad Alsaffar 3

1 Ocean Technology and Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
2 Department of Computer Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia
3 Department of Information and Computer Science, University of Ha’il, Ha’il 81481, Saudi Arabia
4 Department of Computer Science and Software Engineering, International Islamic University,

Islamabad 44000, Pakistan
5 Department of Electrical and Computer Engineering, COMSATS University Islamabad,

Wah Cantt 47010, Pakistan
* Correspondence: 11934071@zju.edu.cn (A.R.); altamimi.a@uoh.edu.sa (A.B.A.)

Abstract: As Internet of Things (IoT)-based systems become more prevalent in the era of data-
driven intelligence, they are prone to some unprecedented challenges in terms of data security and
systems scalability in an era of context-sensitive data. The current advances in IoT-driven data
sensing and sharing rely on third-party sources of information (TTPs) that gather data from one
party, then transmit it to the other. As a result of TTPs’ involvement, such IoT systems suffer from
many issues including but not limited to security, transparency, trust, and immutability as a result
of the involvement of the company. Moreover, a multitude of technical impediments, such as the
computation and storage poverty of IoTs, privacy concerns, and energy efficiency, enhances the
challenges for IoTs. To address these issues of IoT security, we propose a blockchain-enabled open IoT
data-sharing framework based on the potential of the interplanetary file system (IPFS). We have used
a case study-based approach to evaluate the proposed solution. It is submitted that the proposed
scenario is implemented by building smart contracts in Solidity and deploying them on the local
Ethereum test network, using the Solidity programming language. With the implementation of smart
contracts on the blockchain for access roles in IoT data sensing, the proposed solution advocates for a
blockchain-based approach to data security for IoT systems that makes use of smart contracts for
access roles.

Keywords: Web 3.0; Internet of Things; blockchain; smart contract; distributed storage; IPFS;
data sharing

1. Introduction

In an Internet of Things (IoT), physical objects (things) that are connected to the
internet are equipped with software and sensors which allow them to exchange data with
the rest of the world’s systems and devices by means of the internet. The recommended
method for secure data sharing fails in these circumstances because of the volume of data
created, different devices [1], lack of confidence as well as participants, and the lack of
openness in data management.

The information interconnection of the entire production process is the key compo-
nent of Industry 4.0. In order to transition industry production to the industry 4.0 age,
information physics system development must be accelerated. In each stage of production,
businesses use a sizable number of sensors and actuators, but each one can only affect the
subsystem to which it belongs. The Internet of Things’ effectiveness is constrained by the
close coupling of components [2,3].

Electronics 2023, 12, 1233. https://doi.org/10.3390/electronics12051233 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051233
https://doi.org/10.3390/electronics12051233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4465-6365
https://orcid.org/0000-0003-2893-0042
https://orcid.org/0000-0002-9034-3909
https://orcid.org/0000-0001-8116-5322
https://doi.org/10.3390/electronics12051233
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051233?type=check_update&version=3

Electronics 2023, 12, 1233 2 of 17

The first version of the internet, known as Web 1.0, denotes the beginning of the
internet in the late 1980s. Only static "read-only" messages created by a small number of
users were included. The development of web 2.0, which placed a strong emphasis on
enhancing user engagement and interaction, was then observed around the world. Users
were able to create accounts using a variety of Web 2.0 apps, allowing them to establish
distinctive online personas. With the advent of web 3.0, the globe is now moving toward
the most recent paradigm in the web’s evolution. What benefits does the new internet
have to offer, then? Let us learn more about the new way of looking at the internet and the
technologies which will be key in igniting this new revolution.

In essence, interconnection and interoperability are two key qualities that the IoT
inevitably requires [4]. While interoperability refers to how IoT devices may swap infor-
mation and utilize that information to carry out data analytics [5], interconnection refers
to how these devices are connected to one another through ubiquitous networks with
high-speed transmission. In other words, to break the data isolation in IoTs, which also
supports decision-making capability at the system level [6,7] for an extensive range of in-
dustrial architectures, seamless data exchange among multiple industrial sectors and their
systems, such as carriers, suppliers, and manufacturers, is necessary. For instance, logistics
companies can optimize the schedule of delivering packages in order to cut down the
delivery time [8] and significantly reduce delivery costs when they receive road conditions
and provided real-time traffic information from the industry.

Blockchain technology has emerged as a potential solution in several distributed
applications where trust and transparency are essential aspects. As a result, it is not
unexpected that both businesses and academia are debating how to effectively merge IoT
systems with blockchains. To address the issue of secure data interchange, a number of
research projects suggest directly connecting IoT systems to a blockchain platform [9,10].
The vast majority use hybrid storage strategies like a provider who keeps the data current,
while the blockchain offers benefits such as integrity and reliable distribution [11]. Authors
propose, for example, storing access control strategies that the storage provider queries
as it receives an access request. As a result, the storage provider operates as a hub for
making and enforcing policy decisions, while the blockchain safeguards policy integrity
and enables open audits of policy changes.

The research community has made technical advances in the past decade to support
data-sharing methodologies. Collaboration and wise judgments can help research-based
activities develop in this way. Data sharing is a necessary step in maximizing the benefits
of scientific advances [12]. However, it is critical to understand when the best moment is
to share the data. Before beginning the data exchange procedure, these questions must be
answered completely. By employing the resources of blockchains [13], this research allows
for protected data sharing and sale. In the realm of information technology, blockchain, or
a distributed ledger, is a novel trend. Blockchains have been used in several financial and
non-financial applications.

The centralized authorities known as cloud servers store a vast amount of data [14]. A
single-point failure is one of the potential hazards associated with a dominant authority. To
avoid any catastrophe, data backup services from third parties are used. The issue is that
network nodes have storage and processing constraints. A peer-to-peer framework named
IPFS is being used for this purpose [15].

Among peer-to-peer protocols, IPFS is content-based, and assigns a cryptographic
hash to each IoT data file. The hash is targeted to make the text unchangeable [16]. By
cutting bandwidth costs, speeding up IoT data downloads, and sharing vast volumes of
data without duplication, IPFS allows storage savings. Up to 256 KB of unstructured binary
data can be stored in a single IPFS object. If the data is over 256 KB, it is split up and
stored as IPFS objects with one empty object connecting the IoT data files. The IPFS storage
system is therefore an immutable storage system since, if a file’s hash value is modified, it
will affect the hash value of the file. The IPFS data transport protocol supports hash string
routes. Encrypted data and additional information can be stored in it.

Electronics 2023, 12, 1233 3 of 17

The system architecture design is shown in Figure 1, which is intended to guide system
developers in maintaining the layer of abstraction that is maintained throughout the system
development process. As a result, there are three layers which are all interconnected. The
first layer consists of a deployed sensor system, where all of the sensors are deployed and
all of them produce data in package form. The second layer is a data processing algorithm,
and the third layer is a data analytics system that provides readable data to be analyzed.
During the cryptographic process, the blockchain ledger receives data from the IoT data
server, which stores all the data generated by the sensors. Some of the contributions that
this study can provide include the following:

• Enable trust-based access management—implemented via smart contracts—to enable
access control and authorization for IoT-based security-critical data.

• Modularize the solution with algorithmic implementation that automates and cus-
tomizes the solution with parameterized input from the users.

• Validate the solution via a scenario-driven approach to assess system performance
based on algorithmic execution and query response times.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 18

will affect the hash value of the file. The IPFS data transport protocol supports hash string
routes. Encrypted data and additional information can be stored in it.

The system architecture design is shown in Figure 1, which is intended to guide sys-
tem developers in maintaining the layer of abstraction that is maintained throughout the
system development process. As a result, there are three layers which are all intercon-
nected. The first layer consists of a deployed sensor system, where all of the sensors are
deployed and all of them produce data in package form. The second layer is a data pro-
cessing algorithm, and the third layer is a data analytics system that provides readable
data to be analyzed. During the cryptographic process, the blockchain ledger receives data
from the IoT data server, which stores all the data generated by the sensors. Some of the
contributions that this study can provide include the following:
• Enable trust-based access management—implemented via smart contracts—to ena-

ble access control and authorization for IoT-based security-critical data.
• Modularize the solution with algorithmic implementation that automates and cus-

tomizes the solution with parameterized input from the users.
• Validate the solution via a scenario-driven approach to assess system performance

based on algorithmic execution and query response times.

Sensors Data
Packaging

Data Retrieval
& Public Access

Tools Algorithms

D
ep

lo
ye

d
Se

ns
or

s

Algorithms Data Analytics

Blockchain

Design

IoT
Blockchain for IoT

Figure 1. Overview of the recommended Model.

Paper Organization
As for the remainder of the paper: Section 2 presents the state-of-the-art, while Sec-

tion 3 presents the rationale and problem description. In section 4, we examined the algo-
rithmic design, technology implementation, and system model of the proposed scheme
and smart contracts. Section 5 contains details about the evaluation and simulation results.
The last section, Section 6, concludes the paper.

2. Existing Work and Technical Challenges
This section provides background information to assist in putting the components of

a blockchain-based IoT data-sharing system into perspective. Additionally, we review
and impartially contrast the most pertinent studies that are currently available in order to
support the contributions and scope of the proposed model.

Figure 1. Overview of the recommended Model.

Paper Organization

As for the remainder of the paper: Section 2 presents the state-of-the-art, while
Section 3 presents the rationale and problem description. In Section 4, we examined
the algorithmic design, technology implementation, and system model of the proposed
scheme and smart contracts. Section 5 contains details about the evaluation and simulation
results. The last section, Section 6, concludes the paper.

2. Existing Work and Technical Challenges

This section provides background information to assist in putting the components
of a blockchain-based IoT data-sharing system into perspective. Additionally, we review
and impartially contrast the most pertinent studies that are currently available in order to
support the contributions and scope of the proposed model.

Despite its promising qualities, a security problem [17] will always exist which pre-
vents open data sharing in the IoT. After shared information has been received by numerous
recipients, the data owner has little control over who can view the information. In most

Electronics 2023, 12, 1233 4 of 17

data-sharing situations, the sender merely permits the recipient to make use of the provided
data, and does not let the recipient divulge the shared data to other parties or the general
public without authorization for the goal of profit or other self-interest. It is essential that if
there is a data leakage incident, the sending party should be found and held accountable,
regardless of whether the data leakage occurred intentionally or accidentally (for example,
if the sending party is aware of the data breach and had obtained the leaked data through
the Internet).

For auditable private data sharing, Kokoris-Kogias et al. [18] introduced CALYPSO,
where access control laws are enacted, and data is stored on-chain by a collective authority
made possible by the blockchain. The massive amounts of IoT data generated by numerous
IoT devices in real-world systems are too much for this method to manage. A system
for exchanging time-series IoT data was developed by Shafagh et al., and it requires data
owners to make transactions in order to set policies each time the data is shared with a new
party. After that, only the proprietor is allowed to make changes to the policy [19].

To get the most out of the research’s capabilities, data exchange is essential. The
literature proposes and discusses a variety of data exchange strategies. There is not enough
research on incentive mechanisms to encourage data sharing. To address these flaws, the
authors of [20] performed a study of health and medical data in order to find incentive
processes and compare pre- and post-empirical outcomes. According to the survey, the rate
of data sharing for a single reward for medical and health data is being analyzed. As a result,
it is argued that further incentive-based research is required to stimulate data collection.

The Internet of Things significantly enables in the automation of our everyday lives
(IoT). Information is frequently shared and exchanged between electronic devices on-
line [21]. A system must be created to ensure data integrity and digital device authentica-
tion due to security and privacy concerns. The authors of [22] proposed a decentralized
blockchain-based scenario called a “bubble of trust.” However, the suggested technique
has certain drawbacks, such as the inability to adjust to a real-time setup, the need for an
initiation step, and the lack of discussion of cryptocurrency rate progression.

The blockchain-based IoT data-sharing schemes have drawbacks, including security
concerns, high maintenance costs, and the monitoring of enormous amounts of data coming
from IoT networks [23]. The output of smart industries depends on data collected from IoT
devices or their DTs. The data that is gathered may come from erroneous sensors, RFID,
actuators, or their DTs, which introduce inaccurate data for analysis and action [24,25].
The authors proposed a secure fabric-based data transport system as a solution to these
problems. Data is stored using a data consensus technique through a dynamic linked-
assisted storage system. But power data security is neglected, and this technology is only
suggested for modest uses [26].

The blockchain has a substantial storage problem, particularly when large volumes
of data must be retained on network nodes. Because it does not support the storage of
very large files, terminal node storage capacity is constrained. This conundrum leads to
several problems, such as the need for great computing power and the high computational
cost for vast amounts of data. In response to these problems, Stiechen et al. [27] presented
an IPFS-based decentralized storage technique. The files are segmented on each node; on
the other hand, until users are granted the proper rights, a file cannot be seen. This is a
clever tactic for protecting sensitive information. The suggested schemes encounter latency
when downloading files from the server because of blockchain interaction, and they do not
provide real-time data saving.

Table 1 lists the benefits and drawbacks of centralized and decentralized identity
management systems. To demonstrate the differences between current blockchain-based
systems and old central systems, we provided four major aspects.

Electronics 2023, 12, 1233 5 of 17

Table 1. Comparison between centralized and decentralized.

Acreage Conventional Systems Blockchain Systems

1- Control Centralized Decentralized

2- Identity Change Simple to alter details on the server. History is unchangeable and secure to alter.

3- Storage Centralized servers Distributed Nodes.

4- Freedom Identity theft is a possibility for users. Ownership of the data is returned to the users.

3. Research Methodology and Motivational Consequence of Solution

We now present the research methodology that gives the details of the design for a
proposed solution. An overview of the research method is presented in Figure 2 which is
based on four steps, following an incremental mechanism to analyze, design, implement,
and validate the solution, as detailed below.

Figure 2 is the visualized overview of our research methodology and is divided
into four different modules. In the first module of literature analysis, we conducted a
critical analysis of the available literature of published research including a road map
of technology and technical reports. We followed the recommendations to perform the
literature analysis [28]. Prior to implementation, the solution is discussed in the second
module of design. The third module of implementation has a thorough discussion of how
the answer is implemented using computational and storage-intensive methods.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

Table 1. Comparison between centralized and decentralized.

Acreage Conventional Systems Blockchain Systems
1- Control Centralized Decentralized
2- Identity Change Simple to alter details on the server. History is unchangeable and secure to alter.
3- Storage Centralized servers Distributed Nodes.

4- Freedom Identity theft is a possibility for users. Ownership of the data is returned to the us-
ers.

3. Research Methodology and Motivational Consequence of Solution
We now present the research methodology that gives the details of the design for a

proposed solution. An overview of the research method is presented in Figure 2 which is
based on four steps, following an incremental mechanism to analyze, design, implement,
and validate the solution, as detailed below.

Figure 2 is the visualized overview of our research methodology and is divided into
four different modules. In the first module of literature analysis, we conducted a critical
analysis of the available literature of published research including a road map of technol-
ogy and technical reports. We followed the recommendations to perform the literature
analysis [28]. Prior to implementation, the solution is discussed in the second module of
design. The third module of implementation has a thorough discussion of how the answer
is implemented using computational and storage-intensive methods.

Literature
Analysis

System
Designing Implementation Solution

Validation

Human involvement Tools Support

Figure 2. Illustration of Research Methodology.

The suggested system is summarized at an abstract level in Figure 3, where the mod-
ule flow is shown. It is intended that all modules and stakeholders will communicate.
Every component of the system design demonstrates the usage of data to illustrate the IoT
idea. For instance, the data sensing module deals with gathering and representing data
that is gathered from sensors, transmitted to the server, and stored in the database. System
design helps programmers create and improve systems while abstracting away some im-
plementation specifics that can be supplied with the right tools.

According to Figure 3, this system is composed of four layers: the sensing layer, the
storage layer, the processing and blockchain layer, and the user layer. In addition to read-
ing data from sensors, the sensing layer is responsible for packaging the sensing infor-
mation for sending to the second layer of IoT storage for further processing. As part of
layer 2, the data from all deployed sensors’ data is stored in detail, the details of the sens-
ing. The processing Blockchain layer 3 is used to save the transaction for each data-sharing
action with the required detail. The fourth layer is the user interface layer used to share
data.

Figure 2. Illustration of Research Methodology.

The suggested system is summarized at an abstract level in Figure 3, where the module
flow is shown. It is intended that all modules and stakeholders will communicate. Every
component of the system design demonstrates the usage of data to illustrate the IoT idea.
For instance, the data sensing module deals with gathering and representing data that
is gathered from sensors, transmitted to the server, and stored in the database. System
design helps programmers create and improve systems while abstracting away some
implementation specifics that can be supplied with the right tools.

According to Figure 3, this system is composed of four layers: the sensing layer, the
storage layer, the processing and blockchain layer, and the user layer. In addition to reading
data from sensors, the sensing layer is responsible for packaging the sensing information
for sending to the second layer of IoT storage for further processing. As part of layer 2,
the data from all deployed sensors’ data is stored in detail, the details of the sensing. The
processing Blockchain layer 3 is used to save the transaction for each data-sharing action
with the required detail. The fourth layer is the user interface layer used to share data.

We have obtained inspiration to work on digital data exchange utilizing blockchain
based on the current research stated above. Although most researchers have worked in

Electronics 2023, 12, 1233 6 of 17

comparable areas, there is a great room to improve and alter previous work in order to
assist the research community.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

API Gateway

Data User Administrator

Smart
Contracts

Blockchain

Data Storage

IoT Server
Sensors Data

Retrieving
Layer 1 (Sensing)

Layer 2 (Storage)

Layer 3 (Processing)

Layer 4 (User)

Layer 1

Layer 2

Layer 3

Layer 4

Figure 3. Overview of the proposed solution.

We have obtained inspiration to work on digital data exchange utilizing blockchain
based on the current research stated above. Although most researchers have worked in
comparable areas, there is a great room to improve and alter previous work in order to
assist the research community.

Figure 4 shows the flow of getting IoT data and storing it in a blockchain using a
smart contract as the method for storing IoT data. The package file of IoT data is uploaded
and saved the transaction record by the hash key when uploaded to IPFS. It is transferred
to the DApp and uploaded. There are two kinds of uploading classifications in the DApp:
one is carried out manually by the admin, and the other is carried out instantly by the
system. The admin gets the hash key from the blockchain along with other necessary data
and manually uploads the available package file of IoT data to IPFS. In other kinds, the
system uploads immediately after receiving a fresh package file from the IoT server. Using
the path, the system downloads the file from the IoT server, uploads it to IPFS, and then
retrieves the back file hash that is recorded in the blockchain along with other information.
Both execution processes are the same, but one is manual uploading by a user and the
second is auto uploading by the system.

Figure 3. Overview of the proposed solution.

Figure 4 shows the flow of getting IoT data and storing it in a blockchain using a smart
contract as the method for storing IoT data. The package file of IoT data is uploaded and
saved the transaction record by the hash key when uploaded to IPFS. It is transferred to
the DApp and uploaded. There are two kinds of uploading classifications in the DApp:
one is carried out manually by the admin, and the other is carried out instantly by the
system. The admin gets the hash key from the blockchain along with other necessary data
and manually uploads the available package file of IoT data to IPFS. In other kinds, the
system uploads immediately after receiving a fresh package file from the IoT server. Using
the path, the system downloads the file from the IoT server, uploads it to IPFS, and then
retrieves the back file hash that is recorded in the blockchain along with other information.
Both execution processes are the same, but one is manual uploading by a user and the
second is auto uploading by the system.

Electronics 2023, 12, 1233 7 of 17Electronics 2023, 12, x FOR PEER REVIEW 7 of 18

IoT Data Server

File Hash + Sensor detail

Upload file to IPFS

Re
tu

rn

Fi
le

 H
as

h
K

ey

Admin

Smart
ContractBlockchain

Returning Result

Figure 4. Data storing process.

The manual or system starts the digital data-sharing process by creating metadata
for the original file. The metadata would contain details about the file's name, category,
description, and size. Once finished, the information and the entire data file are uploaded
to IPFS. Here is an illustration of a file transfer to IPFS (see in list 1):

List 1. Function source for uploading the data into IPFS and return hash.

 //var UploadingType = ReactSession.get(“uploadingType”);
var func1 = performance.now();
console.log(func1);
var loc = document.getElementById(“locationid”); // locationid.options[locationid.selectedIndex].value;
var location = loc.options[loc.selectedIndex].text;
const sensor = this.sensorid.value;
const description = this.descriptionid.value;
ipfs.add(this.state.buffer, (error, result) => {
console.log(‘Ipfs result’, result)
if(error) {
console.error(error)
return
}
sm1 = performance.now();
this.props.AddDataPackegeRecord(sensor, location, result [0].hash, description, ‘Admin’)
sm2 = performance.now();
})

Figure 4. Data storing process.

The manual or system starts the digital data-sharing process by creating metadata
for the original file. The metadata would contain details about the file’s name, category,
description, and size. Once finished, the information and the entire data file are uploaded
to IPFS. Here is an illustration of a file transfer to IPFS (see in Listing 1):

Listing 1. Function source for uploading the data into IPFS and return hash.

//var UploadingType = ReactSession.get(“uploadingType”);
var func1 = performance.now();
console.log(func1);
var loc = document.getElementById(“locationid”); //
locationid.options[locationid.selectedIndex].value;
var location = loc.options[loc.selectedIndex].text;
const sensor = this.sensorid.value;
const description = this.descriptionid.value;
ipfs.add(this.state.buffer, (error, result) => {
console.log(‘Ipfs result’, result)
if(error) {
console.error(error)
return
}
sm1 = performance.now();
this.props.AddDataPackegeRecord(sensor, location, result [0].hash, description, ‘Admin’)
sm2 = performance.now();
})

Electronics 2023, 12, 1233 8 of 17

When a file is uploaded to IPFS, it generates hashes of the contents and sends them
back to the admin or system. When IPFS sends the hash to the admin or system, it maps the
available parameters with the hash key. If this process is started by the admin (manually),
admin will select the package file of IoT data and upload it manually to IPFS through the
given system, and IPFS returns a hash key. The admin will map the required parameters
(sensor, location, description) through the available input form and submit it to a smart
contract where all data will be saved in the blockchain. The same execution process will
be started for system uploading. The system will fetch the latest last uploaded file from
the IoT data server by the given path; it will be uploaded by the system directly to IPFS,
retrieve the hash key which will be mapped with available information, and stored in the
blockchain through a smart contract. See the next code snippet (see in Listing 2):

Listing 2. Smart Contract Function to Record the Transaction in Blockchain Ledger.

function AddDataPackegeRecord(uint _sensorId, string memory _location, string memory
_hashKey,
string memory _desc, string memory _uploadingType) public{
dataUploadCount ++;
GetDataList[dataUploadCount] = DataUpload(dataUploadCount, _sensorId, _location,
_hashKey, _desc, _uploadingType, now);
GetData_sid[_sensorId] = DataUpload(dataUploadCount, _sensorId, _location, _hashKey,
_desc, _uploadingType, now);
GetData_date[now] = DataUpload(dataUploadCount, _sensorId, _location, _hashKey, _desc,
_uploadingType, now);
GetData_loc[_location] = DataUpload(dataUploadCount, _sensorId, _location, _hashKey,
_desc, _uploadingType, now);
GetData_sid_loc[_location][_sensorId] = DataUpload(dataUploadCount, _sensorId, _location,
_hashKey, _desc, _uploadingType, now);
emit DataUploadCreated(dataUploadCount, _sensorId, _location, _hashKey, _desc,
_uploadingType, now);
}

Phase 1 is a part of the sensors’ data in IoT. There are also several sorts of sensor data.
The data is packaged in a file for a certain time period, such as an IoT data package for
10 min, though it might be less or more. The gateway service sends this packet of IoT data
to the IoT server. As an IoT server where all the data is processed of the deployed sensors,
MSSQL is used in the same server to store the data.

Phase 2 is part of the system’s service. There are two sorts of IoT data uploading
categories in the DApp. Manually uploading and using a system, we have created a service
called system service or auto uploading service for system uploading. The system service
runs on the server’s backend and makes a request to the IoT server to obtain the most
up-to-date package file containing IoT data. The system service grabs the package file from
the server and uploads it to an IPFS server, which then returns the hash of the file to the
system. The smart contract performs the function to save the data in the blockchain by
receiving the file hash and other necessary parameters from the system service. This service
cycle of actions repeatedly occurs after a predetermined amount of time or is started by
getting a package file of IoT data from the server.

Phase 3 is part of the manual uploading category by Admin; the technique for upload-
ing a package file of IoT data to IPFS and storing it on the blockchain through a smart contract
is the same, with the exception that this activity is conducted by the admin (manually).

Phase 4 is for accessing the existing data publicly. Users can view and download all
IoT data packages for free from this open-access platform. By using a web portal, users can
view the IoT data. The user will be able to access the data in a variety of ways, depending
on their needs.

Failed_Transactions = ∑n
i=1 TotalRequests −∑j

i=1 AcceptedRequests (1)

Electronics 2023, 12, 1233 9 of 17

In order to determine the number of failed transactions, we take the number of
accepted requests and subtract them from the total number of requests in the equation (i).

Successful_Transactions = ∑n
i=1 TotalRequests −∑j

i=1 RejectedRequest (2)

Using Equation (2) and subtracting the number of rejected requests from the total
number of requests, one can obtain the number of successful transactions.

4. Algorithms and Technologies for Solution Implementation

The specifics of the implementation are given in this section. A private network of the
Ethereum blockchain makes up the proposed solution. Solidity is effectively used by the
open-source distributed network Ethereum, a computer language that enables the creation
of smart contracts.

4.1. Overview of System

• A lightweight cross-platform code editor called Visual Studio Code is available in the
Microsoft Visual Studio Code product family. VSC is a lightweight code editor for a
wide variety of operating systems [29].

• An emulator that works on a blockchain can be used to run a wide range of kinds of
tests and commands by utilizing Ganache, a blockchain-assisted emulator. In order
to run tests, deploy apps, and establish contracts, you can use a personal Ethereum
blockchain called Ganache that you can access throughout the browser [30].

• A browser extension known as Metamask is used to connect to dispersed web pages
by connecting to the Internet. Rather than running the complete Ethereum node in the
browser, it runs Ethereum decentralized apps that are run in the browser [31].

• A hash string path can be used to transfer files using the distributed open storage
system IPFS. It is employed to keep protected data that includes other data. The
pathways work in a manner comparable to the traditional web URI. As a result, using
their hash, all IoT data can be viewed at any time.

4.2. Proposed Solution—Algorithms

The Algorithms’ Interpretation: the computational stages, data storage operations, and
algorithm flow. By mapping the processes with algorithmic steps, the consistency between
the proposed solution (Figure 5) and algorithmic specifications (Algorithm 1) is preserved.

Algorithm 1 Contract Creating

1: Input: σ, L, h(γ℘), ∆p, ψ, ρD, Φp Sensor, Location, Hash, Description
2: Uploading Type, Date, Blockchain Address
3: Output: bool
4: procedure SMARTCONTRACT

5: if msg.sender is not Φp then Get Blockchain address to execute the smart contract
6: throw;
7: end if
8: mapping h(γ℘) to (σ / L / ρD) Map with each parameter
9: end procedure

Electronics 2023, 12, 1233 10 of 17
Electronics 2023, 12, x FOR PEER REVIEW 10 of 18

Sensors Actuator

SI
IM

Data
Packaging

Data
Unpackaging

IoT Server

Data

File-Hash Paramet
ers

Mapping with
Parameters

Web ServerIoT Data Data Storage

BlockChain

Database Server
Sm

ar
t

Co
nt

ra
ct

s

Data Access
Figure 5. Overview of the detailed solution.

Algorithm 1 Contract Creating
1: Input: σ, L, h(γ℘), ∆p, ψ, ρD, Φp Sensor, Location, Hash, Description

2: Uploading Type, Date, Blockchain Address

3: Output: bool

4: procedure SMARTCONTRACT
5: if msg.sender is not Φp then Get Blockchain address to execute the smart contract

6: throw;

7: end if
8: mapping h(γ℘) to (σ / L / ρD) Map with each parameter

Figure 5. Overview of the detailed solution.

The functionality for uploading data is described in this section and seen in Algorithm 2.
The technique is used to save the file hash and mapping of some other attributes in a smart
contract and upload the data to IPFS. With a hash of the uploaded data, various parameters
are mapped (date, uploading type, location, sensor, and description).

• Input(s): The input to the algorithm is used to map the parameters with a hash key.
• Processing: IoT data is read from the file and converted into a buffer, which is then

uploaded to IPFS as an IoT data file and gives the hash key. A smart contract is used to
record the uploaded data’s hash key in the blockchain along with the extra attributes
like sensor, location, description, uploading type, and date.

• Output: To save the mapped data in the blockchain is the result.

Electronics 2023, 12, 1233 11 of 17

Algorithm 2 Uploading Data

1: Input: σ, L, ∆p, ψ, ρD, Θλ Sensor, Location, Description
2: Uploading Type, Date, Meta Data File
3: Output: R Uploading Message
4: procedure DATAUPLOADINGMODULE Event based function
5: if ψ == User || ψ == System then Uploading by User OR System
6: FS← File(Θλ) Get File stream
7: FB← Buffer.form (FS) Convert to Buffer
8: FH← IPFS.Add (FB) Get Hash of Uploaded Data
9: R← SBC(σ, L,FH, ∆p, ψ, ρD) Store Data to Blockchain with file hash
10: end if
11: end procedure

The data accessing functionality is validated in Algorithm 3 and specified in this sec-
tion. Data from the blockchain is accessed using the protocol and made publicly accessible
to users. In accordance with the necessary criteria, the user can obtain the data from the
blockchain. There are different types for accessing the data. A user can access the data
based on sensor, location data, and sensor with location mapping.

• Input(s): The parameters used to obtain the data are mapped using the algorithm’s input.
• Processing: The data could be accessed from the blockchain based on different selec-

tions such as sensor, location, date, and sensor mapping with a location.
• Output: The output is available mapped data to public access.

Algorithm 3 Data Access

1: Input: σ,L,ρD Sensor, Location, Date
2: Output: R, µ

3: procedure INTERFACEMODULE

4: if σ == N then
5: µ← GetData(σ) Get Data against Sensor
ρD == N
6: µ← GetData(ρD) Get Data against given Date
L == N
7: µ← GetData(L) Get Data against Location
σ == N && L == N
8: µ← GetData(σ,L) Get Data against Sensor Location
9: end if
10: R← UpdateDashboard(µ) Update available data on user screen
11: end procedure

The platform where all scenarios are successfully executed is shown in Figure 7 of the
case study we are about to give, which includes the developed algorithms. Figure 6 shows
how stakeholders submit the IoT dataset to IPFS’s decentralized storage, and that data is
then published to IPFS. The from date, to date, list of sensors, and list of locations where
all the sensors are deployed are some of the custom parameters used by the custom query.
Figure 7 depicts the internal blockchain ledger where we store the IPFS dataset, uploading
information together with the dataset hash. Several sensors have been deployed in the area,
and some of these include temperature, salinity, and pH sensors.

Electronics 2023, 12, 1233 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

8: µ GetData(σ,L) Get Data against Sensor Location
9: end if

10: R UpdateDashboard(µ) Update available data on user screen
11: end procedure

The platform where all scenarios are successfully executed is shown in Figure 7 of
the case study we are about to give, which includes the developed algorithms. Figure 6
shows how stakeholders submit the IoT dataset to IPFS’s decentralized storage, and that
data is then published to IPFS. The from date, to date, list of sensors, and list of locations
where all the sensors are deployed are some of the custom parameters used by the custom
query. Figure 7 depicts the internal blockchain ledger where we store the IPFS dataset,
uploading information together with the dataset hash. Several sensors have been de-
ployed in the area, and some of these include temperature, salinity, and pH sensors.

Figure 6. Case Study Trail Performed.

Figure 7. Data in the blockchain ledger.

4.3. Algorithmic Execution of Tools and Technologies
This section summarizes how relevant technologies and tools complement the sug-

gested solution. In this debate, readers are encouraged to gain a better understanding of
technology in general. A stack of technologies and tools is depicted in Figure 8. For in-
stance, the sensor data is put into a CSV file and then encrypted and posted to the IPFS
network, producing a hash key. The NodeJS framework has several tools that are utilized
to generate a server-side application. We used VSC to start the NodeJS application. To
rapidly build a personal Ethereum blockchain that you can use to run tests, issue com-
mands, and examine the state while controlling how the chain functions, we used the Ga-
nache Truffle Suite package.

Figure 6. Case Study Trail Performed.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

8: µ GetData(σ,L) Get Data against Sensor Location
9: end if

10: R UpdateDashboard(µ) Update available data on user screen
11: end procedure

The platform where all scenarios are successfully executed is shown in Figure 7 of
the case study we are about to give, which includes the developed algorithms. Figure 6
shows how stakeholders submit the IoT dataset to IPFS’s decentralized storage, and that
data is then published to IPFS. The from date, to date, list of sensors, and list of locations
where all the sensors are deployed are some of the custom parameters used by the custom
query. Figure 7 depicts the internal blockchain ledger where we store the IPFS dataset,
uploading information together with the dataset hash. Several sensors have been de-
ployed in the area, and some of these include temperature, salinity, and pH sensors.

Figure 6. Case Study Trail Performed.

Figure 7. Data in the blockchain ledger.

4.3. Algorithmic Execution of Tools and Technologies
This section summarizes how relevant technologies and tools complement the sug-

gested solution. In this debate, readers are encouraged to gain a better understanding of
technology in general. A stack of technologies and tools is depicted in Figure 8. For in-
stance, the sensor data is put into a CSV file and then encrypted and posted to the IPFS
network, producing a hash key. The NodeJS framework has several tools that are utilized
to generate a server-side application. We used VSC to start the NodeJS application. To
rapidly build a personal Ethereum blockchain that you can use to run tests, issue com-
mands, and examine the state while controlling how the chain functions, we used the Ga-
nache Truffle Suite package.

Figure 7. Data in the blockchain ledger.

4.3. Algorithmic Execution of Tools and Technologies

This section summarizes how relevant technologies and tools complement the sug-
gested solution. In this debate, readers are encouraged to gain a better understanding
of technology in general. A stack of technologies and tools is depicted in Figure 8. For
instance, the sensor data is put into a CSV file and then encrypted and posted to the IPFS
network, producing a hash key. The NodeJS framework has several tools that are utilized to
generate a server-side application. We used VSC to start the NodeJS application. To rapidly
build a personal Ethereum blockchain that you can use to run tests, issue commands, and
examine the state while controlling how the chain functions, we used the Ganache Truffle
Suite package.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

Smart Contract

Solidity

MetamaskEthereum

TERABLU

RaspberryPi

Data
Packaging Blockchain

Figure 8. Overview of System Implementation Tools and Technologies.

5. Evolutions and Validity Threats
This section presents the results of the proposed solution. The evaluation setting is

examined first, and then the operation of smart contracts as measured by fuel consump-
tion. Then, using metrics like efficiency, we gauge and assess data uploading and storage
to the blockchain as well as query answer, including performance and algorithmic execu-
tion. Using the ISO/IEC-9126 model as the basis for the assessment criteria [32], In soft-
ware-intensive systems, it is often necessary to use a quality evaluation tool to assess their
performance. Additionally, a risk of the validity of this study is discussed, as well as pos-
sible limitations that must be taken into account in future research.

5.1. Evaluation Environment

Hardware and Software
A collection of hardware and software resources is used in the evaluation environ-

ment in order to run the solution, which can also be used to keep track of every step of
execution and the result of the solution. Evaluation tests were conducted on the hardware
side using both manual user input and automatic IoT data uploading via the Windows
Platform (core i7 with 16 GB of runtime memory). Through execution evaluation, also
referred to as evaluation scripts in the world of software, system testing is automated.
Similar NodeJS scripts written in the ReactJS programming language were executed in
Visual Studio Code. Additionally, the review process makes use of a variety of already-
existing libraries, containing but not limited to ipfs.http, web3, and react. Using a JavaS-
cript performance library script, for example, the CPU consumption of data is monitored
when data is being uploaded to IPFS and placed on a blockchain, as well as when it is
being retrieved from the blockchain using a JavaScript performance library script. To cre-
ate a local Ethereum blockchain environment, a Ganache suit is employed, and a browser
extension called Metamask is used to enable connections to distributed websites. In order
to make use of gas transaction fees for the purpose of carrying out system functions, the
Ganache suit and Metamask extension are linked to local Ethereum accounts.

Without paying for gas, the Ethereum smart contract cannot be carried out. In order
to compare the fuel needed for the two methods of uploading the data, the fuel utilized to
upload the original data was measured. The smallest unit of Ethereum money, the Gwei,
is used to quantify fuel consumption. 109 Wei is referred to as Gwei.

Figure 8. Overview of System Implementation Tools and Technologies.

5. Evolutions and Validity Threats

This section presents the results of the proposed solution. The evaluation setting is
examined first, and then the operation of smart contracts as measured by fuel consumption.
Then, using metrics like efficiency, we gauge and assess data uploading and storage to

Electronics 2023, 12, 1233 13 of 17

the blockchain as well as query answer, including performance and algorithmic execution.
Using the ISO/IEC-9126 model as the basis for the assessment criteria [32], In software-
intensive systems, it is often necessary to use a quality evaluation tool to assess their
performance. Additionally, a risk of the validity of this study is discussed, as well as
possible limitations that must be taken into account in future research.

5.1. Evaluation Environment
Hardware and Software

A collection of hardware and software resources is used in the evaluation environment
in order to run the solution, which can also be used to keep track of every step of execution
and the result of the solution. Evaluation tests were conducted on the hardware side using
both manual user input and automatic IoT data uploading via the Windows Platform (core
i7 with 16 GB of runtime memory). Through execution evaluation, also referred to as
evaluation scripts in the world of software, system testing is automated. Similar NodeJS
scripts written in the ReactJS programming language were executed in Visual Studio
Code. Additionally, the review process makes use of a variety of already-existing libraries,
containing but not limited to ipfs.http, web3, and react. Using a JavaScript performance
library script, for example, the CPU consumption of data is monitored when data is being
uploaded to IPFS and placed on a blockchain, as well as when it is being retrieved from
the blockchain using a JavaScript performance library script. To create a local Ethereum
blockchain environment, a Ganache suit is employed, and a browser extension called
Metamask is used to enable connections to distributed websites. In order to make use of
gas transaction fees for the purpose of carrying out system functions, the Ganache suit and
Metamask extension are linked to local Ethereum accounts.

Without paying for gas, the Ethereum smart contract cannot be carried out. In order
to compare the fuel needed for the two methods of uploading the data, the fuel utilized to
upload the original data was measured. The smallest unit of Ethereum money, the Gwei, is
used to quantify fuel consumption. 109 Wei is referred to as Gwei.

The price of contract migration execution is indicated in our proposed system (see
Table 2). The price is specified in ether and includes the gas utilized. The amount of gas
consumed multiplied by the price of gas equals one unit of ether. In this arrangement, the
gas spent stands in for the continuous cost of computing. The value variations of ether in
the account, the network has changed the price of gas [33].

Table 2. Analyse of the costs associated with data storage.

Execution Type Gas Used Cost in Ether

Contract Creation 2,027,188 0.04054376

Contract Migration Call 27,363 0.0054726

Initial Contract 225,237 0.0450474

Initial Migration Call 42,363 0.0084726

In the working prototype of our system, we automatically establish a gas restriction.
The cost of creating the contract is 0.04054376 in ether, and the total amount of gas utilized
is 2,027,188. The migration requires the establishment of contracts, which has a relatively
low cost of 0.0027363 (ether) and uses only 27,363 of gas. If the input data is little in size,
the general costs can be decreased even more.

The duration of time required for users to share data with others was the final test
item. Data sharing time is a measurement of the overall amount of time spent reading,
recalling, and sharing data. The outcomes of several sets of trials we ran with an average
data size are displayed in Figure 9. A 450-byte upload consumes an average of 671,807 gas;
a 1500-byte storage consumes an average of 1,942,901 gas. The data size increases with fuel

Electronics 2023, 12, 1233 14 of 17

consumption. When IoT data was transferred to IPFS using the suggested system, there
was no discernible difference in fuel consumption despite the increased quantity of data.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

The price of contract migration execution is indicated in our proposed system (see
Table 2). The price is specified in ether and includes the gas utilized. The amount of gas
consumed multiplied by the price of gas equals one unit of ether. In this arrangement, the
gas spent stands in for the continuous cost of computing. The value variations of ether in
the account, the network has changed the price of gas [33].

Table 2. Analyse of the costs associated with data storage.

Execution Type Gas Used Cost in Ether
Contract Creation 2,027,188 0.04054376

Contract Migration Call 27,363 0.0054726
Initial Contract 225,237 0.0450474

Initial Migration Call 42,363 0.0084726

In the working prototype of our system, we automatically establish a gas restriction.
The cost of creating the contract is 0.04054376 in ether, and the total amount of gas utilized
is 2,027,188. The migration requires the establishment of contracts, which has a relatively
low cost of 0.0027363 (ether) and uses only 27,363 of gas. If the input data is little in size,
the general costs can be decreased even more.

The duration of time required for users to share data with others was the final test
item. Data sharing time is a measurement of the overall amount of time spent reading,
recalling, and sharing data. The outcomes of several sets of trials we ran with an average
data size are displayed in Figure 9. A 450-byte upload consumes an average of 671,807
gas; a 1500-byte storage consumes an average of 1,942,901 gas. The data size increases
with fuel consumption. When IoT data was transferred to IPFS using the suggested sys-
tem, there was no discernible difference in fuel consumption despite the increased quan-
tity of data.

Figure 9. Gas consumption is based on transaction count and block size.

All of the network’s entities and their interactions are depicted in a sequence diagram
in Figure 10. Five distinct entities exist. Only the administrator, who has direct access to
the dataset, uses the manual uploading entity. The dataset-based time cycle in the system
is uploaded using a system uploading entity. Any stakeholder with public access might
be a user entity and could access the data using their own custom queries. For the purpose
of illustrating how the system works, Figure 9 depicts the execution flow.

Figure 9. Gas consumption is based on transaction count and block size.

All of the network’s entities and their interactions are depicted in a sequence diagram
in Figure 10. Five distinct entities exist. Only the administrator, who has direct access to
the dataset, uses the manual uploading entity. The dataset-based time cycle in the system
is uploaded using a system uploading entity. Any stakeholder with public access might be
a user entity and could access the data using their own custom queries. For the purpose of
illustrating how the system works, Figure 9 depicts the execution flow.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Manual Uploading
(Admin)

System
Uploading User IPFS Smart

Contract

Upload Sensor Data New Packege By System

Return Hash of uploaded packege

Upload Sensor Data Packege Manually

Return Hash of uploaded packege

Store the packege Hash Key & other mapping detail to blockchain by System

Store the packege Hash Key & other mapping detail to blockchain manually by Admin

Search Data with available options (Sensor/LocationDate)

Return File hash key with other detail

Data Access by Hash Key

Data DownloadRecieved

Figure 10. Data sharing process.

5.2. Evaluations of Query Response Time
Data querying is the key entity needed to store IPFS data packages and chain the

details of IoT records. The performance of the solution in terms of storing and retrieving
data from the blockchain may be evaluated using the query response time. Test results
were conducted on two different methods: IPFS for IoT data storage and blockchain for
file hashes. According to Figure 11, the horizontal axis indicates the two different execu-
tion functions, while the vertical axis is the response time as measured in milliseconds. As
you can see from the title "Complete function", it explains how the entire method will be
implemented from the moment the IoT data package is stored in IPFS to the point the
record details are saved to the blockchain using the file hash that was created. “Smart
Contract Function” shows the delay because of the Smart Contract execution call through
Metamask. During the execution of a collection of functions using smart contracts, we also
evaluate the performance of CPU consumption (see Figure 12). As with the data exchange,
we assessed each stage of every strategy. There are several approaches, including calling
encryption of the dataset, storing data in the blockchain ledger, and uploading it to IPFS
storage.

Figure 10. Data sharing process.

Electronics 2023, 12, 1233 15 of 17

5.2. Evaluations of Query Response Time

Data querying is the key entity needed to store IPFS data packages and chain the
details of IoT records. The performance of the solution in terms of storing and retrieving
data from the blockchain may be evaluated using the query response time. Test results
were conducted on two different methods: IPFS for IoT data storage and blockchain for file
hashes. According to Figure 11, the horizontal axis indicates the two different execution
functions, while the vertical axis is the response time as measured in milliseconds. As
you can see from the title "Complete function", it explains how the entire method will be
implemented from the moment the IoT data package is stored in IPFS to the point the record
details are saved to the blockchain using the file hash that was created. “Smart Contract
Function” shows the delay because of the Smart Contract execution call through Metamask.
During the execution of a collection of functions using smart contracts, we also evaluate the
performance of CPU consumption (see Figure 12). As with the data exchange, we assessed
each stage of every strategy. There are several approaches, including calling encryption of
the dataset, storing data in the blockchain ledger, and uploading it to IPFS storage.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18

Figure 11. The time required to execute a function and keep the data in IPFS and Blockchain.

Figure 12. CPU time spent performing calculations.

6. Conclusions and Future Work
Typically, Internet of Things systems refer to a group of pervasive systems that take

advantage of embedded sensors, applications, and networks in order to provide intelli-
gent surroundings and systems. In order to make IoT data sharing and storage effective,
it is crucial that a framework is put in place that enables IoT data storage in impromptu,
unsafe settings. During the development of a reliable and distributed access control sys-
tem, we looked into blockchain technology, specifically Ethereum smart contracts, which
can be used for sharing data from IoT devices. To provide a distributed and reliable access
control mechanism, we used Ethereum smart contracts to share IoT data in a distributed
and secure manner. The solution described in this article combines IPFS and the Ethereum
blockchain to store IoT data securely. Users may save and manage access roles for their
IoT data more easily with the use of smart contracts. The suggested workaround logs the
hash value along with other information in a blockchain ledger and encrypts IoT data
provided to IPFS’ decentralized storage. As part of this experiment, data lengths of differ-
ent sizes were used to assess the performance of data uploading and access. It was found
that the higher the size of the data, the more efficient and faster the process of uploading
can be achieved. The researchers have further established that the upload technique that

Figure 11. The time required to execute a function and keep the data in IPFS and Blockchain.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18

Figure 11. The time required to execute a function and keep the data in IPFS and Blockchain.

Figure 12. CPU time spent performing calculations.

6. Conclusions and Future Work
Typically, Internet of Things systems refer to a group of pervasive systems that take

advantage of embedded sensors, applications, and networks in order to provide intelli-
gent surroundings and systems. In order to make IoT data sharing and storage effective,
it is crucial that a framework is put in place that enables IoT data storage in impromptu,
unsafe settings. During the development of a reliable and distributed access control sys-
tem, we looked into blockchain technology, specifically Ethereum smart contracts, which
can be used for sharing data from IoT devices. To provide a distributed and reliable access
control mechanism, we used Ethereum smart contracts to share IoT data in a distributed
and secure manner. The solution described in this article combines IPFS and the Ethereum
blockchain to store IoT data securely. Users may save and manage access roles for their
IoT data more easily with the use of smart contracts. The suggested workaround logs the
hash value along with other information in a blockchain ledger and encrypts IoT data
provided to IPFS’ decentralized storage. As part of this experiment, data lengths of differ-
ent sizes were used to assess the performance of data uploading and access. It was found
that the higher the size of the data, the more efficient and faster the process of uploading
can be achieved. The researchers have further established that the upload technique that

Figure 12. CPU time spent performing calculations.

Electronics 2023, 12, 1233 16 of 17

6. Conclusions and Future Work

Typically, Internet of Things systems refer to a group of pervasive systems that take
advantage of embedded sensors, applications, and networks in order to provide intelligent
surroundings and systems. In order to make IoT data sharing and storage effective, it
is crucial that a framework is put in place that enables IoT data storage in impromptu,
unsafe settings. During the development of a reliable and distributed access control system,
we looked into blockchain technology, specifically Ethereum smart contracts, which can
be used for sharing data from IoT devices. To provide a distributed and reliable access
control mechanism, we used Ethereum smart contracts to share IoT data in a distributed
and secure manner. The solution described in this article combines IPFS and the Ethereum
blockchain to store IoT data securely. Users may save and manage access roles for their IoT
data more easily with the use of smart contracts. The suggested workaround logs the hash
value along with other information in a blockchain ledger and encrypts IoT data provided
to IPFS’ decentralized storage. As part of this experiment, data lengths of different sizes
were used to assess the performance of data uploading and access. It was found that the
higher the size of the data, the more efficient and faster the process of uploading can be
achieved. The researchers have further established that the upload technique that uses the
system costs the same amount of gas regardless of the size of the data when it comes to the
consumption of fuel, even when the data size increases.

Author Contributions: Conceptualization, A.R. and A.A.; methodology, A.R., S.A.K.G. and A.B.A.;
resources, W.K. and M.A. writing—original draft preparation, A.R.; writing—review and editing,
A.R., M.A., A.A. and W.K.; Supervision, A.B.A.; funding acquisition, A.B.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi
Arabia through project number RG-22020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shafiq, M.; Gu, Z.; Cheikhrouhou, O.; Alhakami, W.; Hamam, H. The Rise of “Internet of Things”: Review and Open Research

Issues Related to Detection and Prevention of IoT-Based Security Attacks. Wirel. Commun. Mob. Comput. 2022, 2022, 8669348.
[CrossRef]

2. Fahmideh, M.; Ahmad, A.; Behnaz, A.; Grundy, J.; Susilo, W. Software Engineering for Internet of Things: The Practitioners’
Perspective. IEEE Trans. Softw. Eng. 2021, 48, 2857–2878. [CrossRef]

3. Alreshidi, A.; Ahmad, A. Architecting software for the internet of thing based systems. Future Internet 2019, 11, 153. [CrossRef]
4. Liu, C.H.; Lin, Q.; Wen, S. Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning.

IEEE Trans. Ind. Informat. 2019, 15, 3516–3526. [CrossRef]
5. Razzaq, A.; Mohsan SA, H.; Ghayyur SA, K.; Alsharif, M.H.; Alkahtani, H.K.; Karim, F.K.; Mostafa, S.M. Blockchain-Enabled

Decentralized Secure Big Data of Remote Sensing. Electronics 2022, 11, 3164. [CrossRef]
6. Shafiq, M.; Tian, Z.; Bashir, A.K.; Jolfaei, A.; Yu, X. Data mining and machine learning methods for sustainable smart cities traffic

classification: A survey. Sustain. Cities Soc. 2020, 60, 102177. [CrossRef]
7. Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic

identification for internet of things in smart city. Future Gener. Comput. Syst. 2020, 107, 433–442. [CrossRef]
8. Ahmad, A.; Khan, A.A.; Waseem, M.; Fahmideh, M.; Mikkonen, T. Towards process centered architecting for quantum software

systems. In Proceedings of the 2022 IEEE International Conference on Quantum Software (QSW), Barcelona, Spain, 11–15 July
2022; pp. 26–31.

9. Chen, Y.; Hu, B.; Yu, H.; Duan, Z.; Huang, J. A Threshold Proxy Re-Encryption Scheme for Secure IoT Data Sharing Based on
Blockchain. Electronics 2021, 10, 2359. [CrossRef]

10. Razzaq, A.; Mohsan, S.A.H.; Li, Y.; Alsharif, M.H. Architectural Framework for Underwater IoT: Forecasting System for Analyzing
Oceanographic Data and Observing the Environment. J. Mar. Sci. Eng. 2023, 11, 368. [CrossRef]

http://doi.org/10.1155/2022/8669348
http://doi.org/10.1109/TSE.2021.3070692
http://doi.org/10.3390/fi11070153
http://doi.org/10.1109/TII.2018.2890203
http://doi.org/10.3390/electronics11193164
http://doi.org/10.1016/j.scs.2020.102177
http://doi.org/10.1016/j.future.2020.02.017
http://doi.org/10.3390/electronics10192359
http://doi.org/10.3390/jmse11020368

Electronics 2023, 12, 1233 17 of 17

11. Xia, Q.I.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service
providers via blockchain. IEEE Access 2017, 5, 14757–14767. [CrossRef]

12. Razzaq, A. Blockchain-based secure data transmission for internet of underwater things. Cluster Comput. 2022, 25, 4495–4514.
[CrossRef]

13. Shrestha, A.K.; Vassileva, J. Blockchain-Based Research Data Sharing Framework for Incentivizing the Data Owners. In Blockchain—
ICBC 2018, Proceedings of the International Conference on Blockchain, Seattle, WA, USA, 25–30 June 2018; Springer: Cham, Switzerland,
2018; pp. 259–266.

14. Fahmideh, M.; Grundy, J.; Ahmad, A.; Shen, J.; Yan, J.; Mougouei, D.; Peng, W.; Ghose, A.; Gunawardana, A.; Aickelin, U.; et al.
Engineering Blockchain Based Software Systems: Foundations, Survey, and Future Directions. ACM Comput. Surv. 2022, 55, 1–44.
[CrossRef]

15. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
16. Benet, J. IPFS—Content Addressed, Versioned, P2P File System(DRAFT 3). 2014. Available online: https://arxiv.org/abs/1407.3

561 (accessed on 14 March 2021).
17. Ahmad, A.; Malik, A.W.; Alreshidi, A.; Khan, W.; Sajjad, M. Adaptive security for self-protection of mobile computing devices.

Mob. Netw. Appl. 2019, 1–20. [CrossRef]
18. Kokoris-Kogias, E.; Ceyhun Alp, E.; Gasser, L.; Jovanovic, P.; Syta, E.; Ford, B. Calypso: Auditable Sharing of Private Data Over

Blockchains. Cryptology ePrint Archive, Report 2018/209, 2018. Available online: https://eprint.iacr.org/2018/209 (accessed on
25 February 2023).

19. Shafagh, H.; Burkhalter, L.; Hithnawi, A.; Duquennoy, S. Towards blockchain-based auditable storage and sharing of IoT data. In
Proceedings of the 2017 on Cloud Computing Security Workshop, CCSW ‘17, Dallas, TX, USA, 30 October–3 November 2017;
ACM: New York, NY, USA, 2017; pp. 45–50.

20. Rowhani-Farid, A.; Allen, M.; Barnett, A.G. What incentives increase data sharing in health and medical research? A systematic
review. Res. Integr. Peer Rev. 2017, 2, 4.

21. Razzaq, A. A Systematic Review on Software Architectures for IoT Systems and Future Direction to the Adoption of Microservices
Architecture. SN Comput. Sci. 2020, 1, 350. [CrossRef]

22. Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized blockchain-based authentication system
for IoT. Comput. Secur. 2018, 78, 126–142. [CrossRef]

23. Alsamhi, S.H.; Shvetsov, A.V.; Shvetsova, S.V.; Hawbani, A.; Guizan, M.; Alhartomi, M.A.; Ma, O. Blockchain-empowered security
and energy efficiency of drone swarm consensus for environment exploration. IEEE Trans. Green Commun. Netw. 2022, 7, 328–338.
[CrossRef]

24. Sahal, R.; Alsamhi, S.H.; Brown, K.N.; O’shea, D.; McCarthy, C.; Guizani, M. Blockchain-empowered digital twins collaboration:
Smart transportation use case. Machines 2021, 9, 193. [CrossRef]

25. Alsamhi, S.H.; Almalki, F.A.; Afghah, F.; Hawbani, A.; Shvetsov, A.V.; Lee, B.; Song, H. Drones’ edge intelligence over smart
environments in B5G: Blockchain and federated learning synergy. IEEE Trans. Green Commun. Netw. 2021, 6, 295–312. [CrossRef]

26. Liang, W.; Tang, M.; Long, J.; Peng, X.; Xu, J.; Li, K.C. A Secure Fabric Blockchain-based Data Transmission Technique for
Industrial Internet-of-Things. IEEE Trans. Ind. Inform. 2019, 15, 358–3592. [CrossRef]

27. Steichen, M.; Fiz Pontiveros, B.; Norvill, R.; Shbair, W. Blockchain-Based, Decentralized Access Control for IPFS. In Proceedings
of the 2018 IEEE International Conference on Blockchain (Blockchain-2018), Halifax, NS, Canada, 30 July 2018–3 August 2018;
pp. 1499–1506.

28. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering
a systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [CrossRef]

29. Truffle Suite. Available online: https://www.trufflesuite.com/guides/configuring-visual-studio-code.html (accessed on 15
March 2021).

30. Truffle Suite. Available online: Https://truffleframework.com/docs/ganache/overview (accessed on 15 March 2021).
31. MetaMask. Available online: https://metamask.io/ (accessed on 15 March 2021).
32. Estdale, J.; Georgiadou, E. Applying the iso/iec 25010 quality models to software product. In Proceedings of the Systems, Software

and Services Process Improvement, European Conference on Software Process Improvement, Bilbao, Spain, 5–7 September 2019;
Springer: Cham, Switzerland, 2018; pp. 492–503.

33. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Available online: https://gavwood.com/paper.pdf
(accessed on 20 March 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2017.2730843
http://doi.org/10.1007/s10586-022-03701-4
http://doi.org/10.1145/3530813
https://arxiv.org/abs/1407.3561
https://arxiv.org/abs/1407.3561
http://doi.org/10.1007/s11036-019-01355-y
https://eprint.iacr.org/2018/209
http://doi.org/10.1007/s42979-020-00359-w
http://doi.org/10.1016/j.cose.2018.06.004
http://doi.org/10.1109/TGCN.2022.3195479
http://doi.org/10.3390/machines9090193
http://doi.org/10.1109/TGCN.2021.3132561
http://doi.org/10.1109/TII.2019.2907092
http://doi.org/10.1016/j.infsof.2008.09.009
https://www.trufflesuite.com/guides/configuring-visual-studio-code.html
Https://truffleframework.com/docs/ganache/overview
https://metamask.io/
https://gavwood.com/paper.pdf

	Introduction
	Existing Work and Technical Challenges
	Research Methodology and Motivational Consequence of Solution
	Algorithms and Technologies for Solution Implementation
	Overview of System
	Proposed Solution—Algorithms
	Algorithmic Execution of Tools and Technologies

	Evolutions and Validity Threats
	Evaluation Environment
	Evaluations of Query Response Time

	Conclusions and Future Work
	References

