
Citation: Altulaihan, E.A.; Alismail,

A.; Frikha, M. A Survey on Web

Application Penetration Testing.

Electronics 2023, 12, 1229.

https://doi.org/10.3390/

electronics12051229

Academic Editors: Marko Horvat,

Igor Mekterović,

Manuel Palomo-Duarte and Juan

Antonio Caballero-Hernandez

Received: 1 February 2023

Revised: 26 February 2023

Accepted: 27 February 2023

Published: 4 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A Survey on Web Application Penetration Testing
Esra Abdullatif Altulaihan * , Abrar Alismail and Mounir Frikha

Department of Computer Networks and Communications, King Faisal University, Al-Ahsa 31982, Saudi Arabia
* Correspondence: 221400737@student.kfu.edu.sa

Abstract: Websites are becoming increasingly effective communication tools. Nevertheless, web
applications are vulnerable to attack and can give attackers access to sensitive information or unautho-
rized access to accounts. The number of vulnerabilities in web applications has increased dramatically
over the past decade. Many are due to improper validation and sanitization of input. Identifying
these vulnerabilities is essential for developing high-quality, secure web applications. Whenever a
website is released to the public, it is required to have had penetration testing to a certain standard to
ensure the security of the information. Application-level security vulnerability detection is possible
for many commercial and open-source applications. However, developers are curious about which
tools detect security vulnerabilities and how quickly they do so. The purpose of this study is to
discuss penetration testing and how it can be implemented. This paper also explores the hazards
and vulnerabilities associated with the web environment as well as the protective measures that can
be taken. In addition, a comprehensive review and comparison of common web penetration testing
tools is provided. The aim of this paper is to help web penetration testers choose a technology that is
optimal for their requirements. The paper also sets out to guide and provide recommendations to
users for choosing the best web penetration test tool and increasing their awareness of secure web
environments. The study results indicate that not all web penetration testing tools offer the same
features and that combining analysis tools can provide detailed information about web vulnerabilities.

Keywords: web application pen-testing; pen-testing tools; vulnerability; security; mitigation
techniques; threats

1. Introduction

In the era of information and digitalization, web applications are essential. The num-
ber of people using the Internet and web applications has recently increased. Due to their
nature, web applications and services are prone to security risks because they are con-
nected to the Internet [1] As the Internet and web applications become more widespread,
every web application needs an adequate level of security to prevent cyberattacks and
store information safely. Various logical and technical vulnerabilities can affect web ap-
plications. Technical vulnerabilities include structured query language (SQL) injection,
cross-site scripting (XSS), remote file inclusion, and local file inclusion. These vulnerabilities
compromise the security of web applications and can be caused by poor programming or
an outdated system. Web applications go through rapid development phases with short
turnaround times, making it a challenge to eliminate vulnerabilities. Despite the difficulty
of eliminating these vulnerabilities, it is important to ensure that any web applications are
kept up to date and securely coded. A penetration test, which is a technique for gaining
access to a system to secure it, can be used to analyze the vulnerability of a web application.
To conduct this type of testing legally, we must ask permission from the application’s
owner; as a result, penetration testing is effective in addressing network security issues.
Furthermore, web penetration testing refers to testing web-based applications, including
thin client applications, file transfers, appliances, and portals, to discover vulnerabilities
prone to exploitation, check for the appropriate controls, and conduct probing and vulner-

Electronics 2023, 12, 1229. https://doi.org/10.3390/electronics12051229 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051229
https://doi.org/10.3390/electronics12051229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9566-5416
https://doi.org/10.3390/electronics12051229
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051229?type=check_update&version=2

Electronics 2023, 12, 1229 2 of 23

ability analyses [2]. To stay safe against cyber-attacks, penetration testing can be used to
assess the effectiveness and ineffectiveness of web application security arrangements.

In a penetration test, the target systems and the goal are identified, then the information
is reviewed, and measures are taken to achieve the goals. By performing a penetration
test, one can determine if a system is vulnerable to attack, if its defenses are adequate,
and if any defenses have been overcome. This information is paired with an accurate
assessment of potential impacts on the organization and a range of technical and procedural
countermeasures to mitigate them [3]. Once the vulnerability scan of a host has been
completed, the results of these tests or attacks are documented and presented as a report to
the system owner. A penetration test can be conducted using various tools, so selecting the
right one is very important.

During penetration testing, it is important to implement secure coding practices,
educate web application developers, and implement automated security scans. So, or-
ganizations can be better prepared to prevent malicious attacks [4]. Moreover, during
penetration testing, security measures must be improved to prevent harmful actors from
exploiting these vulnerabilities. In the case of [5], while particular security measures, such
as encryption and authentication procedures, were installed, they were not fully employed.
Additionally, other steps, such as the use of firewalls and intrusion detection systems, could
have been taken to strengthen the security of the websites. These security procedures could
have offered a stronger defense against prospective attacks and notified the company of any
suspicious activity on its websites. Additionally, the use of secure coding practices and reg-
ular security audits was recommended to ensure that any newly discovered vulnerabilities
would be identified and patched promptly.

Web application penetration testing is a necessity today. In contrast to other types of
penetration testing, website penetration testing usually focuses on a specific target and is
more detailed. The main purpose of this type of testing is to identify vulnerabilities and
cybersecurity risks in websites, their databases, and their code, as well as their backend
networks. To protect a website from security flaws, one needs to take an in-depth approach.
It is crucial to penetration-test all web applications before they go online and become prone
to hacking by black hat cyber warriors. There is a constant hunt for vulnerabilities in
web apps by hackers, and it is imperative to learn the hackers’ methodologies to mitigate
their attacks. There are numerous tools available on the market for achieving the goal of
web application pen testing, and they have varying degrees of effectiveness and provide
quick and easy results. Consequently, individuals and organizations must decide which
tool is the most effective for performing a web penetration test. The increasing number
of cyberattacks in the web environment necessitates the creation of new technologies to
ensure a secure environment. In this article, we go beyond simply advocating for a technical
solution to discuss the challenges concerning security in web applications. This article
aims to provide a comprehensive review of penetration testing approaches and tools used
for web applications and to analyze the previous literature in this area and determine the
advantages and limitations of each solution proposed. In addition, it sets out to provide
recommendations on how to select the appropriate tool for conducting web penetration
tests as well as recommendations for future research in this area. This article is important
from both a scientific and an industrial perspective. It may be helpful for penetration
testers to review the results that are presented to make better decisions. It may also be
beneficial for future researchers in this area to have a clear picture of the limitations and
future directions.

Therefore, this study discusses penetration testing and how to implement it. Fur-
thermore, it examines the vulnerabilities, dangers, and hazards of the web environment,
as well as the protective solutions that may be used. A comprehensive assessment and
comparison of common web penetration testing tools is also provided. We aim to help web
penetration testers choose a technology that is optimal for their requirements. As a result
of the study’s literature review and selection and analysis of relevant research, individuals

Electronics 2023, 12, 1229 3 of 23

and organizations will become more aware of the best tools for performing web penetration
tests. Therefore, this study aims to achieve the following:

• Highlight the most common vulnerabilities and threats targeting web applications.
• Review and analyze the literature on web penetration testing and its associated methods.
• Describe the recent mitigation techniques to defend against web application threats.
• Review the available tools for conducting web penetration tests and make comparisons

between them.
• Provide recommendations for individuals and businesses on how to decide which tool

is the best for performing web penetration tests.

This paper is organized as follows. Section 2 presents the methodology. Section 3
defines penetration testing and explains its types. Section 4 presents and analyzes the
related work. Section 5 discusses web application vulnerabilities and techniques to mitigate
them. Section 6 reviews web penetration tests and compares the tools that can be used for
it. Section 7 concludes the research and suggests future work.

Penetration Testing

Penetration testing is a security evaluation process that simulates an attack by an
ethical hacker on a network or computer system. It differs from hacking in the sense
that it is done with a license under a signed contract with an organization or company,
and the output is provided as a report. Penetration tests are designed to improve data
security [1], and the information and weaknesses that they identify remain confidential
until all deficiencies have been resolved [6]. As part of penetration testing, developers
check the vulnerability and exploitation of an organization’s system to create a secure
system that meets the organization’s requirements. Keeping track of the severity of security
issues is very important for any organization or company.

It is possible to perform a penetration test manually or automatically. In a manual
test, everything needs to be controlled by a skilled and experienced tester team, and a
physical presence is required throughout the course of the test. As a result, this option
is not affordable. An automatic penetration test is a simple and safe way to carry out
all penetration test tasks. In addition, since most of the work is automated, it is more
time-efficient. A further advantage of this type of test is that the parameters can be reused.
Table 1 shows the fundamental differences between manual and automated penetration
tests [1,6].

Table 1. Manual vs. Automated Penetration Tests.

Criteria Manual Penetration Testing Automated Penetration Testing

Testing process The process is manual, non-standard, and
capital intensive; expensive to customize.

Easy to use, provides clear, actionable reports, and
eliminates errors and tedious manual tasks.

Network modification Results in numerous system
modifications. There is no change in the systems.

Exploiting development and
management

Maintaining an exploit database is
time-consuming and requires

considerable expertise. To achieve
cross-platform functionality, it is

necessary to rewrite and port code.

All exploits are developed and maintained by the
product vendor. For maximum effectiveness, exploits
are continuously updated. These exploits have been
professionally developed and thoroughly tested, and

they are safe to use. Various platforms and attack
vectors are used in the development of exploits.

Reporting

Needs significant effort to record and
collate all results manually. It also
requires all reports to be manually

generated.

Reports can be customized and include
comprehensive histories and findings.

Clean-up
Every time a vulnerability is discovered,

the tester must manually undo the
changes.

Clean-up solutions are offered by automated testing
products.

Electronics 2023, 12, 1229 4 of 23

Table 1. Cont.

Criteria Manual Penetration Testing Automated Penetration Testing

Logging/auditing The process is slow, cumbersome, and
often inaccurate. All activities are automatically recorded.

Training
Testing methods that are not

standardized and ad hoc must be learned
by testers.

Testing with automated tools is easier than testing
manually.

Based on this comparison, advanced security specialists with many years of experience
are needed to perform the complex manual process of penetration testing. Manual testing
is time-consuming and expensive, and competent penetration testers are hard to find.
Penetration testers can create an automated tool that combines their experience. Non-
expert users, rather than a penetration team, can perform a security scan using automated
tools to get a picture of the situation in the organization’s system.

Traditionally, manual penetration testing was an integral part of application security.
Although manual web application penetration testing is highly effective, it is also time-
consuming and expensive, which limits its viability and scalability. Although automated
penetration testing can help integrate penetration testing more cost-effectively into software
development lifecycles, its testing tools may still be monitored by security professionals.
Nevertheless, the tools can scan far more applications in less time, bringing down costs
and preventing development deadline delays.

2. Methodology

The search was guided by the four stages of PRISMA. During the identification
stage, the Saudi Digital Library and Google Scholar databases were searched using the
inclusion and exclusion criteria in Table 2. The papers that were included were those
that described penetration testing tools, cybersecurity threats, and the web environment
and were published between January 2018 and December 2022 in academic journals or
conference proceedings, which were listed as the source type.

Table 2. Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Papers describing cybersecurity threats or
penetration testing tools in the web environment

Papers that do not address risks or
penetration testing tools.

Papers published between January 2018 and
December 2022 Papers that are not written in English

Papers published in academic journals or conference
papers Papers that are not available online

Papers that were excluded were those that did not address risks or penetration testing
tools in the web environment; were not written in English; and were not directly relevant
to web cybersecurity threats or penetration testing tools. Furthermore, some documents
were not available online.

Figure 1 explains the PRISMA methodology. The PRISMA flow diagram passes
through four stages. The identification stage is when items are identified for review, and
during this stage, the papers were identified from two main sources, namely the Saudi
Digital Library and Google Scholar. The screening stage is when the papers are screened
and selected for review. The eligibility stage is when the papers are eligible to be included.
The inclusion stage yields a list of studies to be included in the systematic review. Figure 1
shows that 22,280 articles were selected during the identification stage after duplicates had
been removed. At the screening stage, 16,810 articles were reviewed for title and abstract,

Electronics 2023, 12, 1229 5 of 23

and all but 680 were rejected at the eligibility stage because they did not closely fulfill the
requirements. In the inclusion stage, 667 were rejected, leaving 13 for review.

Electronics 2023, 12, 1229 5 of 24

Table 2. Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria
Papers describing cybersecurity threats or penetration testing

tools in the web environment
Papers that do not address risks or

penetration testing tools.

Papers published between January 2018 and December 2022
Papers that are not written in Eng-

lish
Papers published in academic journals or conference papers Papers that are not available online

Figure 1 explains the PRISMA methodology. The PRISMA flow diagram passes
through four stages. The identification stage is when items are identified for review, and
during this stage, the papers were identified from two main sources, namely the Saudi
Digital Library and Google Scholar. The screening stage is when the papers are screened
and selected for review. The eligibility stage is when the papers are eligible to be included.
The inclusion stage yields a list of studies to be included in the systematic review. Figure
1 shows that 22,280 articles were selected during the identification stage after duplicates
had been removed. At the screening stage, 16,810 articles were reviewed for title and ab-
stract, and all but 680 were rejected at the eligibility stage because they did not closely
fulfill the requirements. In the inclusion stage, 667 were rejected, leaving 13 for review.

Figure 1. PRISMA flow chart.

3. Literature Review
Mirjalili et al. [1] proposed the design and development of a distributed framework

to automate web pentation testing, the major components of which are an operational unit
called an executor that conducts attacks, and a control unit called an orchestrator that or-
chestrates them across consecutive stages. The authors defined the general activities

Figure 1. PRISMA flow chart.

3. Literature Review

Mirjalili et al. [1] proposed the design and development of a distributed framework
to automate web pentation testing, the major components of which are an operational
unit called an executor that conducts attacks, and a control unit called an orchestrator that
orchestrates them across consecutive stages. The authors defined the general activities
carried out during a penetration test and presented a method for integrating the attackers
that execute such jobs. Moreover, they defined a flexible method for integrating external
tools to achieve the desired hacking goals by mapping vulnerabilities to the framework’s
integrated tools. To realize the full potential of this distributed framework, they presented
a suite of tools with a web-based user interface that integrates seamlessly into their system.
This framework has many advantages, such as scalability, a distributed nature, and ease of
use, which allow the user to rapidly develop and deploy attacks that leverage the wealth of
the available resources. This framework provides a comprehensive solution for building
distributed hacking frameworks, allowing users to access, modify, and integrate tools
into their framework with minimal effort. It enables users to maximize the effectiveness
of their attacks and quickly respond to changing conditions to capitalize on vulnerabil-
ities before they are patched. As a result, the framework allows users to be nimble and
agile when exploiting vulnerabilities, enabling them to stay ahead of their adversaries.
This, in turn, provides users with unprecedented control and flexibility over their hacking
activities. In conclusion, the distributed hacking framework provides an invaluable re-
source for users looking to enhance their cyber security. Despite the benefits of distributed
hacking, it suffers from process synchronization, although global knowledge is required;
resource management, since global security knowledge is required; fault tolerance; and
error recovery.

Electronics 2023, 12, 1229 6 of 23

Fredj et al. [7] covered the 10 most significant attacks for web applications based on
the best-known web vulnerabilities disclosed by the Open Web Application Security Project
(OWASP) project. Furthermore, they discussed the primary recommended techniques
for mitigating web threats and the associated countermeasures. Their report provided
an overview of the OWASP Top 10 Web Application Security Risks, including detailed
descriptions and scenarios of how each risk was posed. The report offered a comprehensive
look at the web security landscape, demonstrating how the different threats interact with
each other and how organizations should prioritize their security efforts to address them.
The report also discussed a variety of security controls and best practices for managing
web application security risks. In conclusion, the report provides a valuable resource
for organizations that wish to understand web application security and implement the
appropriate countermeasures. By providing this overview of the OWASP Top 10, the report
offers an excellent means for organizations to take a proactive approach to securing their
web applications. The report outlined the current threat landscape, highlighted the OWASP
Top 10 security risks, and discussed the risk mitigation measures organizations can take to
better protect their web applications. Additionally, the report discussed the importance of
implementing secure coding practices, educating web application developers about the
OWASP Top 10 risks and how to avoid them, and implementing automated security scans
that can detect vulnerabilities in web applications.

Wibowo et al. [5] stated that web applications are required to respond to the ease of
use of Internet technology. Cross-site scripting (XSS) is one of the most widespread security
threats or attacks. Numerous solutions may be utilized to avoid cyber-attacks, such as
OWASP Security Shepherd, a secure platform with various tools and techniques, including
XSS, to protect web applications from cyber-attacks. Using a combination of secure coding
practices, automated tools, and manual code reviews, OWASP Security Shepherd provides
an effective solution to protect web applications from XSS attacks. With OWASP Security
Shepherd, developers and organizations can mitigate the risks associated with XSS attacks
by ensuring that their web applications are properly tested and patched. Additionally,
OWASP Security Shepherd provides an intuitive interface and features such as easy-to-use
reports, real-time monitoring, and support for multiple programming languages. This
makes it possible for developers to quickly identify and address potential vulnerabilities in
their web applications, thereby improving the overall security of their online assets.

Muhammet et al. [8] stated that the languages used by web-based systems can cause
certain inherent security flaws. Numerous free and paid technologies are available to
identify online application security flaws. The purpose of this study was to evaluate and
analyze the most popular online vulnerability test programs, and its findings showed
that some online vulnerability test programs were more accurate than others. The results
indicated that the technologies used to detect security flaws were not always reliable and,
in some cases, failed to identify any potential vulnerabilities. Despite their differences in
accuracy, all vulnerability testing programs showed potential for discovering security flaws
that could expose applications to malicious attacks. Therefore, the results demonstrated the
need for organizations to use multiple vulnerability testing programs to identify potential
security issues. This underscores the importance of using multiple layers of security
measures, since more than a single vulnerability test program may be required to identify
all potential security issues. In addition, organizations should ensure that the security
measures they use are up to date, since newer technologies may be more accurate in
detecting security flaws. Organizations can utilize multiple vulnerability testing programs
to ensure that their applications remain secure against malicious attackers.

Wardana et al. [5] declared that vulnerability assessment and penetration testing on
published websites following specific standards are critical for information security. Testing
was done utilizing the NIST 1100–125–125 Standard through the four primary stages of
preparation, discovery, attack, and reporting. One high-level, two medium-level, and four
low-level vulnerabilities were identified. During the penetration testing, it was found
that while specific security measures had been implemented, including encryption and

Electronics 2023, 12, 1229 7 of 23

authentication techniques, they were not utilized to their full potential. Furthermore, other
measures could have been implemented to improve the security of the websites, such
as using firewalls and intrusion detection systems. These security measures could have
provided more robust protection against potential attacks and alerted the organization to
any malicious activity occurring on their websites. This assessment and testing showed
that while specific security measures were in place, there was still a need to strengthen
security by taking advantage of all the available resources. The testing demonstrated the
need for improving security measures to prevent potential malicious actors from exploiting
vulnerabilities. In conclusion, the penetration testing revealed that while security measures
were already in place, they needed to be strengthened and utilized more effectively. To this
end, recommendations were put forth to ensure that advantage was taken all the available
resources and that the security measures in place were sufficient.

Nagendran et al. [9] described client-side and server-side attacks in classifying web
attacks. In addition, they provided an in-depth explanation of how to perform a manual
penetration test in web applications to ensure their integrity and security as well as a guide
to test the OWASP’s top 10 security vulnerabilities. The authors also discussed manual
web application penetration testing methodologies, which they classified into five phases:
reconnaissance, scanning, exploitation, maintaining access and privilege escalation, and
clearing tracks and reporting.

Auricchio et al. [10] proposed a design for an automated web application penetration
testing architecture. In addition, they developed an orchestration-based approach to web
application penetration testing that they called hacking goals. The researchers identified
the generic tasks performed during a penetration test and developed a mechanism for
integrating attacks that implement these tasks into a component that executes them. To
enable the orchestration of tasks across all phases of a testing campaign, they also defined a
communication protocol between the two components. To illustrate how the framework
could be applied, the researchers demonstrated how multiple types of attacks could be
integrated and an ad-hoc behavioral model that can be embedded to detect cross-site
scripting attacks.

Alanda et al. [11] performed penetration testing using the black-box method on
web applications based on OWASP’s most common attack, namely SQL injection. The
researchers randomly attacked several commercial, government, and school websites with
various SQL injection techniques. Testing was performed randomly on 10 websites by
looking for gaps in security using the SQL injection attacks. According to the testing results,
80% of the websites tested were vulnerable to SQL injection attacks. According to the
authors’ findings, SQL injection remains the most prevalent threat to web applications. In
addition, they provided detailed information about SQL injection and how to prevent it.

Alhassan et al. [12] proposed the fuzzy classifier (FC) vulnerability assessment and
penetration testing (VAPT) model using the intelligent learning scheme. This model
detects vulnerabilities in web applications and indicates the threat or penetration level
for recognized cases. The proposed FCVAPT model was evaluated using XSS and SQL
injections. Using the established values of the variables considered, the RAE showed a
14.81% deviation. Its classification performance for MSE, MAPE, and RMSE was 33.33,
14.81%, and 5.77%, respectively. The FCVAPT effectively detected vulnerabilities and
identified web application threats/risks.

Hasan et al. [13] conducted a literature survey, provided an overview of VAPT, and
identified several limitations. They found it beneficial to use VAPT to secure a web applica-
tion. They also discussed several tools that can be useful for conducting a VAPT process
to detect SQL injection, XSS, local file inclusion, and remote file inclusion vulnerabilities.
They found that VAPT helped identify security defects very effectively.

Albahar et al. [14] compared pen-testing tools for detecting vulnerabilities in web
applications based on approved standards and methods to facilitate penetration testers’
selection of the most appropriate tools. To enhance the effectiveness of web penetration
testers and penetration testers in real life, they proposed a benchmarking framework that

Electronics 2023, 12, 1229 8 of 23

incorporates the latest research into benchmarking and evaluation criteria in addition to
new criteria that provide more coverage with benchmarking metrics. Moreover, a score-
based comparative analysis was used to evaluate the tool’s abilities. They also carried out
simulation tests of commercial and noncommercial pen-testing tools. In their study, Burp
Suite Professional was rated the highest out of the commercial tools, while OWASP ZAP
was rated the highest out of the non-commercial tools.

Ablahd [15] proposed a system that detects web application vulnerabilities before they
can be exploited by attackers. To detect these vulnerabilities, a special scanner was built
using Python 3.7’s built-in tools, including AST, CFG, Flask, and Django. This proposed
system solves two types of risks that can infect a web application due to vulnerability. The
proposed scanner detects injection flaws such as command execution and XSS. Fixed-point
algorithms are used to determine web application vulnerabilities after analysis and extract
their features. A flexible set of tools was designed for the scanner, called SCANSCX, and
several vulnerable applications were designed for testing and evaluating SCANSCX’s
ability. It was a long-term project that spent a great deal of time on analysis and designing
an application, and eventually it ended up being terminated.

Pareek [16] explained the types of penetration testing used for web applications, in-
cluding white box, black box, and gray box penetration testing. In addition, they described
the seven phases of penetration testing for web applications. A review of OWASP’s top
10 web application security risks was also conducted. Moreover, they presented five
tools for web application penetration testing, namely Astra’s Pentest, NMAP, Wireshark,
Metasploit, and Burp Suite, in terms of their features.

Based on the reviewed studies, Table 3 presents the key findings on the penetration
test types and the suggested technique, advantages, and limitations of each study.

Table 3. Summary of related works.

Author Publication
Year Pen Test Type Suggested Technique Advantages Limitations

Mirjalili
et al. [1] 2014 Automated

Automated
penetration testing
framework with the
following two major

components:
1. An operational unit
called an executor that

conducts attacks;
2. A control unit called

an orchestrator that
orchestrates attacks
across consecutive

stages.

The distributed hacking
framework provides

scalability, a distributed
nature, and ease of use

and is an invaluable
resource for users

looking to enhance their
cybersecurity.

Suffers from process
synchronization,

resource management,
fault tolerance, and

error recovery.

Fredj et al. [7] 2018 Automated

A proactive approach
was taken covering the

top 10 OWASP
projects. A variety of
security controls and

best practices for
managing web

application security
risks were also

provided.

The report outlined the
current threat landscape,
highlighted the OWASP

Top 10 security risks,
and discussed risk

mitigation measures that
organizations can take to
better protect their web

applications, and it
emphasized the need to
implement automated
security scans that can
detect vulnerabilities in

web applications.

No limitation was
found.

Electronics 2023, 12, 1229 9 of 23

Table 3. Cont.

Author Publication
Year Pen Test Type Suggested Technique Advantages Limitations

Wibowo
et al. [5] 2021

Integrated
(automated
and manual)

An integrated
approach for OWASP

Security Shepherd
based on using a

combination of secure
coding practices,

automated tools, and
manual code reviews.

OWASP Security
Shepherd provides the

following:
1. An effective solution

for protecting web
applications from XSS

attacks;
2. An intuitive interface

and features such as
easy-to-use reports,

real-time monitoring,
and support for multiple
programming languages.

This makes it possible
for developers to quickly

identify and address
potential vulnerabilities

in their web
applications, thereby
improving the overall
security of their online

assets.

The present web
application firewalls

only offer basic
protection rules that

do not consider
advancements in the
sector. The authors

wanted to build and
create a lightweight
and adaptable web

application firewall in
the future as part of

their ongoing
development.

Muhammet
et al. [8] 2021 Manual

Manual online
vulnerability test

programs based on
available free and paid

technologies for
identifying security

flaws in online
applications are

important because the
languages used by
web-based systems
may cause certain

inherent to security.

By utilizing multiple
vulnerability testing

programs, organizations
can ensure that their
applications remain

secure against malicious
attackers.

In addition,
organizations should

ensure that the security
measures they use are
up to date, since newer

technologies may be
more accurate in

detecting security flaws.

The results indicated
that the technologies

used to detect security
flaws were not always
reliable and, in some

cases, failed to identify
any potential

vulnerabilities.
This underscores the
importance of using

multiple layers of
security measures,

since a single
vulnerability test

program may not be
sufficient to identify
all potential security

issues.

Wardana
et al. [5] 2022 Manual

Manual penetration
testing on published
websites following

certain standards with
four primary stages:

1. Preparation
2. Discovery
3. Attack
4. Report

To improve the security
of the websites, other
measures could have

been implemented, such
as using firewalls and

intrusion detection
systems.

These security measures
could have provided

more robust protection
against potential attacks

and alerted the
organization to any
malicious activity
occurring on their

websites.

The testing
demonstrated the need
for an improvement in
security measures to

prevent potential
malicious actors from

exploiting
vulnerabilities.

In conclusion, the
penetration testing
revealed that while
security measures

were already in place,
they needed to be
strengthened and

utilized more
effectively.

Electronics 2023, 12, 1229 10 of 23

Table 3. Cont.

Author Publication
Year Pen Test Type Suggested Technique Advantages Limitations

Nagendran
et al. [9] 2019 Manual

Manual web application
penetration testing with

the following five
phases:

1. Reconnaissance
2. Scanning
3. Exploitation
4. Maintaining access

and privilege esca-
lation

5. Clearing tracks
and reporting

An in-depth
explanation was

provided for how to
perform a manual
penetration test on
web applications.

Performing manual
penetration tests

requires a great deal of
expertise in working
with HTTP requests

and responses.

Auricchio
et al. [10] 2022 Automated

Developed an
orchestration-based

approach to web
application penetration
testing called hacking

goals.

An automated
framework was

presented for
penetration testing.
Since the proposed

framework is flexible
enough to

accommodate different
attack models, it can
be easily customized
for different domains.

No limitations were
found.

Alanda
et al. [11] 2021 Automated

and manual

Implemented the
black-box method to test

web applications for
vulnerabilities using

OWASP’s most common
attack, SQL injection.

Various web
applications were

examined in terms of
their penetration

methods and SQL
injection impact.

A detailed explanation
of SQL injection, and

how to prevent it, was
provided.

The conclusion is short
and does not include

future work.

Alhassan
et al. [12] 2018 Automated

Proposed an FCVAPT
model using an

intelligent learning
scheme called a fuzzy

classifier.

The proposed model is
extremely effective in

detecting
vulnerabilities and

identifying web
application

threats/risks.

Details were limited
about how to

implement the
proposed model.

Hasan
et al. [13] 2018 Automated

and manual
Used VAPT to secure a

web application.

Security defects can be
identified very

effectively with VAPT.

The mentioned tools
that can be helpful

during VAPT
processes need to be

compared.

Albahar
et al. [14] 2022 Automated

and manual

To enhance the
effectiveness of web

penetration testers and
penetration testers in

real life, a benchmarking
framework was

proposed incorporating
the latest benchmarking
and evaluation research.

A comprehensive
framework is offered
with all the necessary

features for pen
testers.

Benchmarking should
be applied to other

tools, and the
framework should be
extended to include
more new metrics.

Electronics 2023, 12, 1229 11 of 23

Table 3. Cont.

Author Publication
Year Pen Test Type Suggested Technique Advantages Limitations

Ablahd [15] 2023 Automated

A system was
proposed that detects

web application
vulnerabilities using
Python 3.7 to identify
injection flaws such as
command execution

and cross-site
scripting.

The proposed scanner is
easy to use (in each web
application) and flexible

when it comes to
updating.

The authors needed to
adapt the scanner to
detect other types of
web vulnerabilities.

Pareek [16] 2019 Automated

Five web application
penetration testing

tools were presented,
namely Astra’s
Pentest, NMAP,

Wireshark, Metasploit,
and Burp Suite.

It explains the types,
phases, and tools of web

penetration testing.

There is not enough
discussion about the

tools and how to select
the optimal one.

4. Web App Vulnerabilities
4.1. The Evolution of Web App Vulnerabilities

FORM components, such as buttons and text fields, are commonly used by web
programs to communicate with users. Moreover, the GET or POST variables are important
during the communication process. GET and POST variables are part of the hypertext
transfer protocol (HTTP), which is responsible for facilitating communication between
web programs and users by providing them with certain form components, such as text
fields and buttons. Improper handling of data items inside HTTP requests results in the
most severe security vulnerabilities in web programs. SSL does not avoid security issues,
since it enables secure data transport and does not evaluate HTTP queries. Web apps
serve as a gateway to databases that contain crucial application data and assets. Some of
the key dangers to the database server layer are SQL injection, illegal server access, and
password-cracking attacks. Most SQL injection vulnerabilities are triggered by insufficient
input validation. Most online applications store sensitive data in databases or file systems.
Developers routinely make errors in the encryption approaches they use to secure this
information. Because HTTP is a stateless protocol, web programs utilize different methods
to retain the session state. A session is a sequence of interactions between the user and the
web app during a single visit to the website. Session management is often accomplished by
a unique string, called a session ID, which is sent to the web server with each request. Most
web programming languages enable sessions using GET variables and/or cookies. If an
attacker can guess or steal a session ID, they can modify the session of another user [7].

4.2. Top 10 Security Threats for the Web Environment

OWASP has produced a renowned top-10 list that includes the most critical security
vulnerabilities in web applications and provides ideas about how to cope with such faults.
Figure 2 lists the top 10 OWASP vulnerabilities.

In the following, we provide an investigation of the top 10 security threats for web
environments. The investigation covers a wide range of topics, such as malicious software,
unpatched vulnerabilities, inadequate network and server security practices, insecure user
authentication protocols, and other security risks.

Electronics 2023, 12, 1229 12 of 23Electronics 2023, 12, 1229 12 of 24

Figure 2. Top 10 Security Threats for Web Applications.

In the following, we provide an investigation of the top 10 security threats for web
environments. The investigation covers a wide range of topics, such as malicious software,
unpatched vulnerabilities, inadequate network and server security practices, insecure
user authentication protocols, and other security risks.

4.2.1. Broken Access Control
Some web applications verify access permissions at the function level before making

the functionality available to the user. Nonetheless, once each feature is accessible, pro-
grams must pass the same access control check as the server. When requests are not veri-
fied, attackers could get access to features without the necessary authorization.

The following are some examples of attacks that can take advantage of the broken
access control flaw. In a local file inclusion attack, the attacker attempts to locate a page
that accepts as input a path to a file that will be included in the calling page. Moreover,
the distant file inclusion attack is similar to the local file inclusion attack, except instead
of including files on the same server, the attacker manipulates user input to include re-
mote files [5,8].

4.2.2. Cryptographic Failure
Cryptography refers to the methods and procedures used to maintain secrecy, non-

repudiation, integrity, and authenticity. A cryptographic failure is a significant online ap-
plication security issue that exposes sensitive application data due to a poor or non-exist-
ent cryptographic method. These data can include passwords, patient health details, com-
pany secrets, credit card information, email addresses, and other sensitive user infor-
mation. Modern online applications process data both at rest and in transit, necessitating
sophisticated security procedures for full threat mitigation.

The following are some examples of attacks that can take advantage of the crypto-
graphic failure flaw. Some deployments use poor cryptographic algorithms that can be
cracked in a reasonable amount of time. Cryptographic failures include the transmission
of secret material in plain text and the use of an outdated or insecure algorithm, as well as
exploitable side-channel information or cryptographic error signals. Inadequate random-
ness for cryptographic functions and the presence of sensitive data in source control are
among the common causes of these failures [17].

4.2.3. Injection
An interpreter may receive or be sent untrusted information from an attacker. The

attacker can trick the interpreter and trigger unauthorized instructions by supplying

Figure 2. Top 10 Security Threats for Web Applications.

4.2.1. Broken Access Control

Some web applications verify access permissions at the function level before making
the functionality available to the user. Nonetheless, once each feature is accessible, programs
must pass the same access control check as the server. When requests are not verified,
attackers could get access to features without the necessary authorization.

The following are some examples of attacks that can take advantage of the broken
access control flaw. In a local file inclusion attack, the attacker attempts to locate a page
that accepts as input a path to a file that will be included in the calling page. Moreover,
the distant file inclusion attack is similar to the local file inclusion attack, except instead of
including files on the same server, the attacker manipulates user input to include remote
files [5,8].

4.2.2. Cryptographic Failure

Cryptography refers to the methods and procedures used to maintain secrecy, non-
repudiation, integrity, and authenticity. A cryptographic failure is a significant online
application security issue that exposes sensitive application data due to a poor or non-
existent cryptographic method. These data can include passwords, patient health details,
company secrets, credit card information, email addresses, and other sensitive user infor-
mation. Modern online applications process data both at rest and in transit, necessitating
sophisticated security procedures for full threat mitigation.

The following are some examples of attacks that can take advantage of the crypto-
graphic failure flaw. Some deployments use poor cryptographic algorithms that can be
cracked in a reasonable amount of time. Cryptographic failures include the transmission of
secret material in plain text and the use of an outdated or insecure algorithm, as well as ex-
ploitable side-channel information or cryptographic error signals. Inadequate randomness
for cryptographic functions and the presence of sensitive data in source control are among
the common causes of these failures [17].

4.2.3. Injection

An interpreter may receive or be sent untrusted information from an attacker. The
attacker can trick the interpreter and trigger unauthorized instructions by supplying mali-
cious information. The following three types of injection attacks are the most serious: SQL
injection, code injection, and XPath injection.

The following are some examples of attacks that can take advantage of the injection
flaw. The first category of attack is called an SQL injection attack, and it involves introducing
SQL instructions into input forms or queries to access databases or modify their contents,
such as by deleting or changing database information. The second category of attack is

Electronics 2023, 12, 1229 13 of 23

called code injection, and it involves injecting code that the application understands and
runs to take advantage of the sloppy handling of untrusted input. The third category of
attack is called XPATH injection, and it occurs when a web application constructs an XPath
query for XML data using user input [5,8].

4.2.4. Insecure Design

To avoid security holes, developers are advised to employ safe design patterns, well-
designed threat modeling, and reference architecture when creating apps.

The following are some examples of attacks that can take advantage of the insecure
design flaw. Insecure design flaws occur when developers as well as quality assurance
and/or security teams fail to foresee and analyze dangers during the code design process.
These flaws are also the result of failing to follow security best practices while creating an
application. Mitigating design vulnerabilities as the threat environment changes necessi-
tates ongoing threat modeling to prevent known attack methods. It is difficult to discover
and correct architectural faults such as unprotected credential storage, trust boundary
violations, the generation of error messages containing sensitive information, and improper
isolation or compartmentalization without a secure design [18].

4.2.5. Security Misconfiguration

A security misconfiguration problem happens when one or more of the components of
the system, such as the applications, frameworks, application server, web server, database
server, network router, and platform, is not well configured. Secure settings need to be
developed, implemented, and maintained.

The following are some examples of attacks that can take advantage of the security
misconfiguration flaw. Default settings are frequently the source of such danger [19].
The attacker might use this issue to launch several attacks. The intensity of the attack is
determined by the degree and location of the misconfiguration.

4.2.6. Vulnerable and Outdated Components

A software component, such as a module, software package, or API, is part of a system
or application that expands the functionality of the program.

The following are some examples of attacks that can take advantage of the vulnerable
and outdated components flaw. When a software component is unsupported, out of date,
or vulnerable to a known attack, a component-based vulnerability occurs. Inadvertently
using insecure software components in production situations might endanger the web
application. For example, a company may download and utilize a software component,
such as OpenSSL, but neglect to update or fix it when weaknesses are revealed. Because
many software components share the same rights as the web application, any vulnerabilities
or faults in the component can pose a danger to the application. Using components that
have known vulnerabilities exposes an application to attacks that can target any portion
of the application stack. For example, the following attack scenarios may target known
component vulnerabilities: code injection, buffer overflow command injection, XSS, and
vulnerable and obsolete components. In the following scenario, the attacker uses an
unpatched system to execute malicious code on the server. The attacker obtains access
to the internal network of a company and then uses a scanning tool to identify internal
systems with unpatched or obsolete components. The attacker then takes advantage of a
defect in the outdated component to install malicious code on the application server [20].

4.2.7. Identification and Authentication Failures

Hackers exploit this vulnerability to take advantage of improper authentication, as its
name suggests. A hacker can access user information, passwords, ID sessions, and other
login credentials, posing a security risk [21]. The following is an example of attacks that
can take advantage of the identification and authentication failure flaw. Credential stuffing
is considered a type of broken authentication attack that is driven by brute force.

Electronics 2023, 12, 1229 14 of 23

4.2.8. Software and Data Integrity Failures

Failures of software and data integrity are caused by code and infrastructure that do
not protect against integrity violations.

The following are some examples of attacks that can take advantage of the software and
data integrity flaws. A good example is when an application depends on plugins, libraries,
or modules downloaded from untrustworthy sources, repositories, or content delivery
networks. CI/CD pipelines that are insecure can expose systems to unauthorized access,
malicious code, and system compromises. Furthermore, many applications now allow
auto-updates, whereby updates are downloaded without enough integrity verification
and applied to previously trusted applications. Attackers could potentially upload their
updates to all installations and distribute them [22].

4.2.9. Security Logging and Monitoring Failures

Without logging, suspicious actions and events can stay unmonitored for longer
periods, potentially allowing security breaches to continue undetected for longer than they
would with better logging. Website hackers can do a lot of damage, but hacking becoming
more difficult if web application owners are not monitoring code behavior for suspicious
activity. Monitoring systems can be very useful in this situation. The following is an
example of attacks that can take advantage of the security logging and monitoring failures
flaw. Cyberattacks can have repercussions that leave one with a limited understanding
of what has happened to one’s system if one lacks a proper logging and monitoring
process [23].

4.2.10. Server-Side Request Forgery (SSRF)

An attacker can exploit this vulnerability to send requests to an unintended location
via a server-side application. The following are some examples of attacks that can take
advantage of the SSRF flaw. In a typical SSRF attack, an attacker might also use SSRF to
connect the server to internal-only services within an organization’s infrastructure. It is
also possible for them to force the server to connect to arbitrary external systems, exposing
credentials and sensitive data [24].

4.3. Web Vulnerabilities Mitigation Techniques

This section aims to present the various security countermeasures that have been
proposed to mitigate web vulnerabilities. In addition, it provides an overview of web
vulnerabilities and maps suitable detection methodologies for each vulnerability.

4.3.1. Protection against SQL Injection Attacks

Many methods have been developed to deal with SQL injection, the most used at-
tack [5]. Shahriar et al. [25] suggested an information-theoretic paradigm for identifying
SQL injection attacks. The proposed framework statically calculates query entropy based
on a query’s token probability distribution. The entropy of each query in an application
is computed twice; that is, once before deployment and again during operation. Moosa
et al. [26] presented a system based on semantic comparison. The system is divided into
two steps: training and working. During the training phase, the system is given a collection
of regular and malicious data to train the artificial neural network (ANN). To identify
web application threats, the collected ANN is integrated into the web application firewall.
Mamadhan et al. [27] presented a strategy based on semantic comparison. During training
and run-time, a semantic comparison is conducted between the two syntax trees of a query.
If the two trees are comparable, the query is classified as benign; otherwise, it is classified
as malicious. Halfond et al. [28] presented a technique for preventing SQLIAs based on the
concept of “positive tainting” an on-the-spot assessment. In situations of incompleteness, it
produces more false positives than negatives.

Electronics 2023, 12, 1229 15 of 23

4.3.2. Protection against Broken Authentication and Session Hijacking Attacks

The standard countermeasure strategy for session hijacking is to bind the client’s IP
address. In more detail, the web server connects a user’s session to a specific IP address
and subsequently rejects any request arriving from a different IP address. This method
necessitates each client to have a unique and unchanging public IP address. However,
because a network employs the NAT protocol to share the same IP address with different
clients, this strategy is rendered worthless [29]. Another approach to avoiding session
hijacking is to track the user’s browser fingerprint. A browser fingerprint is made up of
several features of the user’s browser. Any change to the user’s browser fingerprint could
indicate an attacker hijacking a session [30]. Session lock incorporates integrity checks
into each client request based on a secret shared with the server. A valid request cannot
be calculated if a session identification is stolen, since the value of the secret is unknown.
Session lock’s vulnerability to script-based attacks is one of its limitations [31]. To mitigate
session hijacking threats, Ryck et al. [32] advocated replacing the static session identification
with disposable tokens for each request, inspired by the idea of Kerberos service tickets [33].
Macaroons [34] target cloud services and control cookie access. They use chains of nested
hash-based message authentication codes built from a shared secret and a message chain.

4.3.3. Protection against XSS Attacks

A first line of defense against XSS on the server side is to employ user input validation
to enforce security. Validation can employ either blacklisting or whitelisting strategies.
Moreover, once user input is confirmed to be harmful, it can either be sanitized or re-
jected [35]. The secure input processing approach, on the other hand, cannot be used, nor
can it attain comprehensive protection, especially for complicated sites. A second defensive
line, which is increasingly being deployed in webservers, is based on the content secu-
rity policy, which typically establishes trustworthy origins so that the browser is allowed
to download resources (which may be a script, a stylesheet, an image, etc.) from them.
Therefore, although an attacker can inject vulnerable material into the website, the CSP
approach may stop its execution. Wurzinger et al. [36] proposed a secure web application
proxy for detecting and preventing XSS attacks. The proposed system includes a reverse
proxy that intercepts returned HTML messages before utilizing an altered web browser to
find vulnerable scripts. Shahriar et al. [37] suggested a proxy-level detection mechanism
for XSS attacks based on the Kullback–Leibler divergence (KLD) metric. The approach is
predicated on the perception that valid web application JavaScript code should remain
equivalent to or extremely close to a displayed web page’s JavaScript code. With this in
mind, Shahriar et al. [38] continued with the tokenization of the considered script code
into unique components and computed the probability of their occurrence to create two
sets: P (legal JavaScript code available on the application page) and Q (observed JavaScript
code available in the response page). The distance between these two suggested probability
distributions is calculated by KLD. When there is a large difference between the two sets,
an XSS attack is identified.

4.3.4. Protection against Insecure Direct Object References and Missing Function-Level
Access Control

Most security systems employ access control techniques to safeguard access to re-
sources and the usage of internal web application functions. In role-based access control
(RBAC) [38], for example, programmers control objects through permissions, assign per-
missions to roles, and assign roles to users. Permission grants a user access to a role in
a particular session. Separation of duty constraints prohibits a user from taking on two
or more competing responsibilities. RBAC, for example, is used by the Cisco ACE WA
Firewall to specify the administrative responsibilities of the web application firewall (WAF)
itself. The authors of [39] presented a secure cookie-based implementation of RBAC with
role hierarchies on the web. The user’s role information is encoded in a collection of secure
cookies and sent to the appropriate web servers. They employ reasonably good privacy to

Electronics 2023, 12, 1229 16 of 23

design cookie-verification processes to validate the cookies. The authors of [39] presented
an access control mechanism for open web service applications. Their work [40] is built on
the eXtensible access control markup language, which is an access control language.

4.3.5. Protection against Sensitive Data Exposure

There are three different categories of sensitive data exposure. The first is information
leakage, against which only the developer can improve security by paying attention to
what they leave in their code and managing it in a safe way to reduce the faults that might
arise. The second category is transmission attacks, which are mostly prevented by a robust
encryption method, and we are unaware of any well-known solution employed in WAFs.
The third category is database theft, and encryption is a vital solution to deal with this
threat. For Access databases using a suitable security strategy, the authors of [41] presented
a dynamic database security strategy as a remedy for this type of attack.

4.3.6. Protection against CSRF Attacks

There are several server-side methods to minimize CSRF attacks [5,41,42]. OWASP
embarked on a project called CSRFGuard [41], which is a library that implements a modified
version of the synchronizer token pattern to reduce the danger of CSRF attacks. The
developers of [5] created a server-side proxy named NoForge that can be plugged into the
system under consideration to find and avoid CSRF attacks, and it is transparent to users
and apps. This proxy’s primary function is to identify and defend PHP applications against
CSRF attacks. Zeller et al. [43] listed the features of server-side safeguards to protect users.
They [41] also created a server-side plug-in to protect users from the attacks.

4.3.7. Protection against Unvalidated Redirects and Forwards

Scott et al. [44] classified phishing countermeasures into four types: blacklist-based,
heuristic-based, visual similarity–based, and machine learning–based. The blacklist-based
solutions provide a library of found phishing URLs, which should be updated regularly.
The most notable solutions in this category are the Google Safe Browsing API [36], Phish-
Net [45], which predicts phishing URLs based on known ones, and automated individual
whitelist [46], which maintains a list of trusted login user interfaces (LUIs). Nevertheless,
this list suffers from the problem of untrustworthy LUI prediction; in general, blacklists
have high true-positive rates but low false-positive rates. SPHERES [10] is a behavior-based
WAF installed on a web application server that prevents phishing attacks by creating a
profile for each web client parameter.

5. Web Penetration Test

Web security is an important concern as the Internet expands and web applications
are increasingly used in different fields, including the military, health care, and finance.
Web security is ensured by penetration tests. Manual or automatic penetration tests can
be conducted.

5.1. Web Penetration Testing Tools

This section aims to present attack tools that can be utilized to perform penetration
testing based on the type of vulnerability present in the web environment. Moreover,
it provides an overview of web penetration testing tools. Table 4 shows the list of web
vulnerability and a corresponding tool we can use to detect it.

5.2. Overview of Penetration Testing Tools

Seven commercial and open-source testing tools are covered in this section. These
are Netsparker, Acunetix, Vega, OWASP ZAP, Wapiti, IronWASP, and W3af. Each tool has
unique features and advantages that can be used to identify a variety of web application
security vulnerabilities.

Electronics 2023, 12, 1229 17 of 23

Table 4. Web Vulnerabilities and Attack Tools.

Web Vulnerability Attack tool

Carriage return and line feed (CRLF) injection RLF-Injection scanner

Components with known vulnerabilities Vulners API

Cross-origin resource sharing (CORS) policy CORScanner

Cross-site scripting (XSS) XSSMap

Injection flaw Custom

Directory traversal LFISuite

HTTP response splitting Custom

HTTP verb tampering nmap HTTP-methods script

Improper certificate validation MassBleed MassBleed

Insufficient transport layer protection Custom

Lightweight directory access protocol (LDAP) injection Custom

Improper certificate validation MassBleed

Insufficient transport layer protection Custom

Lightweight directory access protocol (LDAP) injection Custom

Operating system (OS) command injection Commix

Remote file inclusion (RFI) Fimap

SQL injection SQLmap XML

External entities (XXE) Custom

5.2.1. Netsparker

Netsparker is an online security testing tool. It detects and discloses security flaws at
the application level of any website. Netsparker comes in two flavors: desktop and cloud.
We can scan hundreds of websites or web-based apps at the same time using the cloud
version [47]. A desktop version is a convenient tool that can be used on individual websites,
while the cloud version enables users to scan multiple websites simultaneously, making it
an incredibly powerful tool for website administrators and developers.

5.2.2. Acunetix

Acunetix is an online security testing tool that comprehensively monitors and reg-
ulates websites, particularly those dependent on HTML and JavaScript. The software
development lifecycle interfaces with project management or bug-tracking systems and
contains extensive compliance reports. It runs independently of the operating system by
using web browsers [48]. All one needs to do is enter the URL of the target website, and
it comes with all the necessary features. Acunetix is the ideal tool for monitoring and
regulating websites, especially those that are heavily reliant on HTML and JavaScript.

5.2.3. Vega

Vega is a free and open-source online security testing tool for detecting flaws in web
applications, and its graphical user interface (GUI) is built in Java. Vega has two points of
view, which are scanner and proxy. For debugging, the Vega interactive web app provides
a blocking proxy. The attack modules for Vega are written in JavaScript, and because
these are open source, they may be enhanced via a JavaScript API and modified by the
user [49]. Vega is a very powerful tool for debugging web applications, since it is capable
of identifying security flaws that are hidden from the user. It also offers great flexibility,
allowing the user to customize their attack scenarios by adding new attack modules and
modifying existing ones.

Electronics 2023, 12, 1229 18 of 23

5.2.4. OWASP ZAP

OWASP is a multinational non-profit organization dedicated to improving software
security. ZAP is a simple, open-source integrated penetration testing tool for discovering
vulnerabilities in online applications. OWASP openly distributes papers, methodologies,
documentation, and tools on the subject of web app security [50]. Utilizing the security
tools provided by OWASP, such as ZAP, and following its methodologies for secure coding
are essential for organizations when building or maintaining applications. In addition to
providing security tools such as ZAP, OWASP also offers educational resources for those
involved in the process of building or maintaining software.

5.2.5. Wapiti

Wapiti is a free online security testing tool for detecting flaws in web applications. It
runs a black-box test, which means it does not examine the application’s source code but
instead scans the web pages of the web application being tested and searches for scripts
and forms that potentially inject data. Wapiti functions as a fuzzier after it has a list of
URLs, forms, and their inputs, injecting payloads to test if a script is susceptible [51]. This
can be used to detect common issues, such as SQL injection, XSS, local and remote file
inclusion, LDAP injection, and server-side request forgery. Wapiti can also detect different
kinds of vulnerabilities in an application, such as weaknesses in authentication systems,
improper error handling, and weak encryption functions.

5.2.6. IronWASP

Iron Web Application Advanced Security Testing Platform (IronWASP) is a free and
open-source web security testing tool for detecting flaws in web applications. It can identify
more than 25 web vulnerabilities. It is a GUI-based utility created in Python and Ruby
and can identify false positives and false negatives. IronWASP generates HTML and RTF
reports. It can be supplemented using plug-ins or modules written in Python, Ruby, C#,
or VB.NET [52]. IronWASP is easy to use and set up and includes a range of tools such as
fizzers, proxies, crawlers, traffic analyzers, and even site map generation tools. It is highly
versatile, and its modularity makes it an ideal tool for penetration testing, allowing users
to combine different features and create powerful solutions tailored to their own needs.

5.2.7. W3af

W3af is a free, open-source tool for automating the scanning of web applications.
Both GUI and command line interfaces are available for this tool, which can assess a
web application for vulnerabilities and exploit them. There are interconnected plugins
that share information between them [10]. This allows W3af to crawl a web application,
map its contents, detect known vulnerabilities, and identify problems that may arise from
the application’s source code. It is important to note that W3af should only be used by
experienced professionals, as its powerful capabilities can lead to system damage if used
incorrectly. W3af offers users the ability to customize and fine-tune an application according
to their specific needs.

In Table 5, we use a set of metrics in terms of the technology being used, the program-
ming language used during tool development, the supported platform on which the tool
can be used, the supported interface on which the tool was developed, the online or offline
status during tool use, the vulnerabilities detected through this tool, tool usability, and
tool cost. These metrics will be useful for the relevant decision-makers during the tool
selection process.

Electronics 2023, 12, 1229 19 of 23

Table 5. Penetration Testing Tools.

Tool Technology Platform Interface Online or
offline Vulnerabilities Usability Cost

Netsparker PHP
Java Web Command

line interface Online
Identify vulnerabilities
such as heartbleed SSL

in web applications.

Setup and use
are extremely

simple.

Request a
quote from

Sales

Acunetix Java

Uses web
browsers to

run
independently

of the
operating

system

GUI Online More than 4500
vulnerabilities

Easy-to-use
and intuitive

Request a
quote from

Sales

Vega Java Linux, OS X,
and Windows GUI Online

Identify vulnerabilities
such as reflected

cross-site scripting,
stored cross-site

scripting, blind SQL
injection, remote file

inclusion, shell
injection, and more.

Easy to use. Free

Wapiti Python

Unix/Linux,
FreeBSD Mac

OS, OSX,
Windows

GUI Online More than
23 vulnerabilities

Easy and fast
activation and
deactivation of

attack
modules.

Free

OWASP
ZAP Java Linux, Mac OS,

OSX, Windows GUI Online

Examines the web
application for issues

linked to SQL injection.
Authentication failure.
Exposed sensitive info.
Compromised access

control.
Misconfiguration of

security.
XSS

deserialization is
insecure.

Components that have
known flaws.

Easy to use
and report

vulnerabilities.
Free

IronWASP Python and
Ruby

Linux, Mac OS,
OSX, Windows

Both the GUI
and

command
line

interfaces.

Online More than 25 web
vulnerabilities

Beginners may
utilize it, since
it is extremely
simple to use.

Free

W3af Python Linux, Mac OS,
OSX, Windows

Both the GUI
and

command
line

interfaces.

Online

Identify vulnerabilities
such as SQL injection,

cross-site scripting,
guessable credentials,

unhandled application
problems, and PHP
misconfigurations.

Fairly simple
to install, and
the automatic
SVN updates

will assist both
users and
writers in
resolving
problems
rapidly.

Free

6. Discussion and Future Research

The results of one study indicates that not all web penetration testing tools offer the
same features and that combining analysis tools may enable detailed information to be
provided about web vulnerabilities. In this study, the goal is to guide users in selecting the
best web penetration test tool and increase their awareness of secure web environments.
In addition, each of these tools has its advantages and disadvantages, so the choice will
depend on the needs of the organization or the individual. Our recommendation for
choosing a web application penetration testing tool is to look for the following features:

Electronics 2023, 12, 1229 20 of 23

detection and exploitation (the tool should be able to detect as well as exploit vulnerabilities)
and reports on results (the tool should generate detailed reports on the results of the tests
and scans performed). The tool must also enable testing across multiple operating systems
and devices.

We reviewed and compared several tools that are available to perform web penetration
testing. However, more tools are available for that purpose that can be reviewed and
compared. Furthermore, the installation and use of these tools are not described in detail.
As a result, we recommend the following future research directions. First, we recommend
the further study of automated techniques to enhance web security and privacy. Second,
despite the growing interest in web cybersecurity, little research has been conducted on web
penetration testing tools. Our recommendation is for further research on web penetration
testing tools to be conducted in the future. Third, our paper identifies the most critical web
application security vulnerabilities according to the OWASP top 10 list. Other researchers
can explore other types of web threats, such as weak passwords, code injection, cross-
site scripting, data breaches, and phishing attacks, and how to mitigate them. Fourth,
in this article, we have reviewed the most popular web penetration testing tools and
compared them based on several criteria. We recommend that other researchers look for
different tools and compare them based on a variety of criteria, such as their advantages
and disadvantages. Fifth, other researchers can investigate the installation and experiments
of the penetration testing tools in greater detail.

7. Conclusions

The current study analyzed research on the subject of penetration testing, and mainly
web penetration testing. Since manual penetration testing is inefficient in terms of time,
money, and effort, its automated counterpart was examined. Web scanners are used
to execute automated web penetration tests, and testing with automated tools is less
time-consuming than testing manually. This paper began by explaining penetration tests
and identifying the differences between manual and automated tests. It then reviewed
articles about web penetration testing and its associated methods. The most common
web application variabilities and techniques to mitigate or prevent attacks were presented,
after which, most of the vulnerability types present in the web environment were linked
with attack tools that could be utilized to perform penetration testing to detect these
vulnerabilities. Furthermore, this paper reviewed and compared some of the available
penetration test tools. According to publications that examined numerous scanners, the
Netsparker web Vulnerability Scanner, Acunetix, Vega, Wapiti, OWASP ZAP, IronWASP,
and W3af were more important than the others. In the last phase, seven test criteria
were introduced in terms of technology, platform, interface, online/offline, vulnerability,
usability, and cost. One study found that not all web penetration testing tools offered the
same features and that combining the tools might provide detailed information about web
vulnerabilities. Additionally, all these tools have their own advantages and disadvantages,
so the choice depends on the organization’s or the individual’s needs. Nevertheless, we
recommend that they consider features such as vulnerability detection, detailed reports,
and compatible operating systems and devices when selecting a tool. The purpose of this
paper was to assist web penetration testers in choosing a technology that is optimal for
their needs. This study can assist individuals and organizations in determining the best
tools for performing web penetration tests. It may be helpful for penetration testers to
review the presented results to make better decisions. Furthermore, a clear understanding
of the limitations and directions in this area may be helpful for future researchers. Our
goal in this paper was not just to advocate for a technical solution but also to describe the
challenges faced by web applications regarding security.

8. Managerial Implications

Web applications are becoming more prevalent in corporate, public, and government
services today as a result of advances in web technologies and a changing business envi-

Electronics 2023, 12, 1229 21 of 23

ronment. While web applications can make life easier and more efficient, several security
threats could pose significant risks to an organization’s IT infrastructure if they are not
handled correctly. Since attacks are now specifically targeting security flaws in web applica-
tion designs, the traditional network security measures and technologies may no longer be
adequate for safeguarding web applications from new threats. Along with the development
of web applications, new security measures, both technical and administrative, should be
implemented. Since the number of web applications continues to increase, it is important
to know what threats exist for web applications. An organization can be targeted by a web
application threat through its website or applications. During the development process,
organizations should address these security concerns by implementing penetration testing
to find web vulnerabilities and secure them before real attackers can exploit them. In this
paper, we aim to help organizations understand web application threats, mitigate them,
and choose the best tool for performing web penetration testing.

9. Practical/Social Implications

Web applications are becoming increasingly vulnerable to cyber-attacks as the internet
grows and evolves. The importance of testing one’s web application’s cyber security has
never been greater. This article covered some of the best web application penetration testing
tools to ensure that individuals and organizations can test their applications’ security and
ensure they will withstand any attacks.

Author Contributions: Conceptualization, E.A.A. and A.A.; methodology; E.A.A. and A.A. formal
analysis, E.A.A. and A.A.; investigation, E.A.A. and A.A.; resources, E.A.A. and A.A.; writing
original draft preparation, E.A.A. and A.A.; writing—review and editing, E.A.A., A.A. and M.F.;
supervision, M.F.; funding acquisition, M.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by King Faisal University, Saudi Arabia [Project No. GRANT2,948].

Acknowledgments: This work was supported through the Annual Funding track by the Deanship
of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal
University, Saudi Arabia [Project No. GRANT2,948].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mirjalili, M.; Nowroozi, A.; Alidoosti, M. A survey on a web penetration test. Adv. Comput. Sci. Int. J. 2014, 3, 117–121.
2. Kam, H.J.; Pauli, J.J. Work in progress—web penetration testing: Effectiveness of student learning in Web application security. In

Proceedings of the 2011 Frontiers in Education Conference (FIE), Rapid City, SD, USA, 12–15 October 2011; p. F3G-1.
3. Mukhopadhyay, I.; Goswami, S.; Mandal, E. Web penetration testing using nessus and metasploit tool. IOSR J. Comput. Eng. 2014,

16, 126–129. [CrossRef]
4. Baykara, M. Investigation and comparison of web application vulnerabilities test tools. Int. J. Comput. Sci. Mob. Comput. (IJCSMC)

2018, 7, 197–212.
5. Wibowo, R.M.; Sulaksono, A. Web vulnerability through cross site scripting (XSS) detection with OWASP security shepherd.

Indones. J. Inf. Syst. 2021, 3, 149–159. [CrossRef]
6. Abu-Dabaseh, F.; Alshammari, E. Automated penetration testing: An overview. In Proceedings of the 4th International Conference

on Natural Language Computing, Copenhagen, Denmark, 28–29April 2018; pp. 121–129.
7. Fredj, O.B.; Cheikhrouhou, O.; Krichen, M.; Hamam, H.; Derhab, A. An OWASP top ten driven survey on web application

protection methods. In Risks and Security of Internet and Systems, Proceedings of the 15th International Conference, CRiSIS 2020, Paris,
France, 4–6 November 2020; Springer: Cham, Switzerland, 2021; pp. 235–252.

8. Wardana, W.; Almaarif, A.; Widjajarto, A. Vulnerability assessment and penetration testing on the xyz website using NIST 800-115
standard. J. Ilm. Indones. 2022, 7, 520–529. [CrossRef]

9. Nagendran, K.; Adithyan, A.; Chethana, R.; Camillus, P.; Varshini, K.B.S. Web application penetration testing. IJITEE 2019, 8,
1029–1035. [CrossRef]

10. Auricchio, N.; Cappuccio, A.; Caturano, F.; Perrone, G.; Romano, S.P. An automated approach to web offensive security. Comput.
Commun. 2022, 195, 248–261. [CrossRef]

11. Alanda, A.; Satria, D.; Ardhana, M.; Dahlan, A.A.; Mooduto, H.A. Web application penetration testing using SQL Injection attack.
JOIV Int. J. Inform. Vis. 2021, 5, 320–326. [CrossRef]

http://doi.org/10.9790/0661-1634126129
http://doi.org/10.24002/ijis.v3i2.4192
http://doi.org/10.36418/syntax-literate.v7i1.5800
http://doi.org/10.35940/ijitee.J9173.0881019
http://doi.org/10.1016/j.comcom.2022.08.018
http://doi.org/10.30630/joiv.5.3.470

Electronics 2023, 12, 1229 22 of 23

12. Alhassan, J.K.; Misra, S.; Umar, A.; Maskeliūnas, R.; Damaševičius, R.; Adewumi, A. A fuzzy classifier-based penetration testing
for web applications. In Advances in Intelligent Systems and Computing, Proceedings of the International Conference on Information
Technology & Systems (ICITS 2018), Libertad City, Ecuador, 10–12 January 2018; Springer: Cham, Switzerland, 2018; pp. 95–104.

13. Hasan, A.; Meva, D. Web application safety by penetration testing. Int. J. Adv. Stud. Sci. Res. 2018, 3, 159–163.
14. Albahar, M.; Alansari, D.; Jurcut, A. An empirical comparison of pen-testing tools for detecting web app vulnerabilities. Electronics

2022, 11, 2991. [CrossRef]
15. Ablahd, A.Z. Using python to detect web application vulnerability. resmilitaris 2023, 13, 1045–1058.
16. Pareek, K. A study of web application penetration testing. IJITE 2019, 7, 1776–2321.
17. Sołtysik-Piorunkiewicz, A.; Krysiak, M. The cyber threats analysis for web applications security in industry 4.0. In Recent Advances

in Computational Optimization; Springer Science and Business Media LLC: Cham, Switzerland, 2020; pp. 127–141.
18. Alenezi, M.; Agrawal, A.; Kumar, R.; Khan, R.A. Evaluating Performance of web application security through a fuzzy based

hybrid multi-criteria decision-making approach: Design tactics perspective. IEEE Access 2020, 8, 25543–25556. [CrossRef]
19. Qi, L.; Meng, S.; Zhang, X.; Wang, R.; Xu, X.; Zhou, Z.; Dou, W. An exception handling approach for privacy—Preserving service

recommendation failure in a cloud environment. Sensors 2018, 18, 2037. [CrossRef]
20. Gupta, R. An innovative security strategy using reactive web application honeypot. arXiv 2020, arXiv:2115.04773. [CrossRef]
21. Priyawati, D.; Rokhmah, S.; Utomo, I.C. Website vulnerability testing and analysis of website application using OWASP. Int. J.

Comput. Inf. Syst. (IJCIS) 2022, 3, 142–147. [CrossRef]
22. Willberg, M. Web Application Security Testing with Owasp Top 10 Frameworks. Bachelor’s Thesis, Turku University of Applied

Sciences, Turku, Finland, 2019.
23. Lauinger, T.; Chaabane, A.; Arshad, S.; Robertson, W.; Wilson, C.; Kirda, E. Thou shalt not depend on me: Analysing the use of

outdated javascript libraries on the web. arXiv 2017, arXiv:1811.00918. [CrossRef]
24. Shahriar, H.; Zulkernine, M. Information-theoretic detection of SQL injection attacks. In Proceedings of the 2012 IEEE 14th

International Symposium on High-Assurance Systems Engineering, Omaha, NE, USA, 25–27 October 2012; pp. 40–47.
25. Mnif, A.; Cheikhrouhou, O.; Ben Jemaa, M. An ID-based user authentication scheme for wireless sensor networks using ECC. In

Proceedings of the ICM 2011 Proceeding, Hammamet, Tunisia, 19–22 December 2011; pp. 1–9. [CrossRef]
26. Moosa, A. Artificial neural network-based web application firewall for SQL injection. Int. J. Comput. Inf. Eng. 2011, 4, 611–6120.
27. Mamadhan, S.; Manesh, T.; Paul, V. SQLStor: Blockage of stored procedure SQL injection attack using dynamic query structure

validation. In Proceedings of the 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA),
Kochi, India, 27–29 November 2012; pp. 240–245. [CrossRef]

28. Halfond, W.; Orso, A.; Manolios, P. WASP: Protecting web applications using positive tainting and syntax-aware evaluation.
IEEE Trans. Softw. Eng. 2008, 34, 65–81. [CrossRef]

29. De Ryck, P.; Desmet, L.; Piessens, F.; Johns, M. Primer on Client-Side Web Security; Springer: Cham, Switzerland, 2014. [CrossRef]
30. Nikiforakis, N.; Kapravelos, A.; Joosen, W.; Kruegel, C.; Piessens, F.; Vigna, G. Cookieless monster: Exploring the ecosystem of

web-based device fingerprinting. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 19–22
May 2013; pp. 541–555. [CrossRef]

31. Adida, B. Sessionlock: Securing web sessions against eavesdropping. In Proceedings of the 17th International Conference on
World Wide Web, Beijing China, 21–25 April 2008; pp. 517–524.

32. Dacosta, I.; Chakradeo, S.; Ahamad, M.; Traynor, P. One-time cookies: Preventing session hijacking attacks with stateless
authentication tokens. ACM Trans. Internet Technol. (TOIT) 2012, 12, 1–24. [CrossRef]

33. Johns, M.; Braun, B.; Schrank, M.; Posegga, J. Reliable protection against session fixation attacks. In Proceedings of the SAC 2012
ACM Symposium on Applied Computing, Trento, Italy, 26–30 March 2012; pp. 1531–1537.

34. Kallin, J.; Valbuena, I.L. Excess XSS: A Comprehensive Tutorial on Cross-Site Scripting. 2016. Available online: https://excess-
xss.com (accessed on 1 February 2023).

35. Wurzinger, P.; Platzer, C.; Ludl, C.; Kirda, E.; Kruegel, C. SWAP: Mitigating XSS attacks using a reverse proxy. In Proceedings of
the 2009 ICSE Workshop on Software Engineering for Secure Systems, Vancouver, BC, Canada, 19 May 2009; pp. 33–311.

36. Shahriar, H.; North, S.; Chen, W.C.; Mawangi, E. Design and development of Anti-XSS proxy. In Proceedings of the 8th
International Conference for Internet Technology and Secured Transactions (ICITST-2013), London, UK, 9–12 December 2013; pp.
4114–41111.

37. Ferraiolo, D.; Cugini, J.; Kuhn, D.R. Role-based access control (RBAC): Features and motivations. In Proceedings of the 11th
Annual Computer Security Application Conference, New Orleans, LA, USA, 11–15 December 1995; pp. 241–248.

38. Park, J.S.; Sandhu, R.; Ghanta, S. RBAC on the Web by Secure Cookies. In Research Advances in Database and Information Systems
Security; Springer: Boston, MA, USA; pp. 411–462.

39. Ardagna, C.A.; Vimercati, S.D.C.D.; Paraboschi, S.; Pedrini, E.; Samarati, P.; Verdicchio, M. Expressive and deployable access
control in open web service applications. IEEE Trans. Serv. Comput. 2010, 4, 96–109. [CrossRef]

40. Doshi, J.; Bhushan, T. Sensitive data exposure prevention using dynamic database security policy. Int. J. Comput. Appl. 2014, 106,
18600–19869.

41. Kiernan, J.; Agrawal, R.; Haas, P.J. Watermarking relational data: Framework, algorithms and analysis. VLDB J. 2003, 12, 157–169.
[CrossRef]

42. Pasha Deshmukh, A.; Qureshi, R. Transparent data encryption–Solution for security of database contents. arXiv 2013, arXiv:1303.

http://doi.org/10.3390/electronics11192991
http://doi.org/10.1109/ACCESS.2020.2970784
http://doi.org/10.3390/s18072037
http://doi.org/10.35940/ijitee.E2957.039520
http://doi.org/10.29040/ijcis.v3i3.90
http://doi.org/10.14722/ndss.2017.23414
http://doi.org/10.1109/icm.2011.6177359
http://doi.org/10.1109/isda.2012.6416544
http://doi.org/10.1109/TSE.2007.70748
http://doi.org/10.1007/978-3-319-12226-7
http://doi.org/10.1109/sp.2013.43
http://doi.org/10.1145/2220352.2220353
https://excess-xss.com
https://excess-xss.com
http://doi.org/10.1109/TSC.2010.29
http://doi.org/10.1007/s00778-003-0097-x

Electronics 2023, 12, 1229 23 of 23

43. Jovanovic, N.; Kirda, E.; Kruegel, C. Preventing cross site request forgery attacks. In Proceedings of the 2006 Securecomm and
Workshops, Baltimore, MD, USA, 28 August 2006–1 September 2006; pp. 1–10. [CrossRef]

44. Scott, D.; Sharp, R. Specifying and enforcing application-level web security policies. IEEE Trans. Knowl. Data Eng. 2003, 15,
771–783. [CrossRef]

45. Google. Overview. Safe Browsing Apis (V4). Available online: https://developers.google.com/safe-browsing/v4/ (accessed on
20 December 2022).

46. Cao, Y.; Han, W.; Le, Y. Anti-phishing based on automated individual white-list. In Proceedings of the 4th ACM Workshop on
Digital Identity Management, Alexandria, VA, USA, 31 October 2008; pp. 51–60.

47. Joshi, C.; Singh, U.K. Performance evaluation of web application security scanners for more effective defense. Int. J. Sci. Res. Publ.
(IJSRP) 2016, 6, 660–667.

48. Elisa, N. Usability, accessibility and web security assessment of e-government websites in tanzania. Int. J. Comput. Appl. 2017,
164, 42–48. [CrossRef]

49. Tundis, A.; Mazurczyk, W.; Mühlhäuser, M. A review of network vulnerabilities scanning tools: Types, capabilities, and
functions. In Proceedings of the 13th international Conference On Availability, Reliability, and Security, Hamburg, Germany,
27–30 August 2018; pp. 1–10.

50. Bennetts, S. Owasp Zed Attack Proxy; AppSec USA: San Francisco, CA, USA, 2013.
51. Alsaleh, M.; Alomar, N.; Alshreef, M.; Alarifi, A.; Al-Salman, A. Performance-Based comparative assessment of open source web

vulnerability scanners. Secur. Commun. Netw. 2017, 2017, 1–14. [CrossRef]
52. Amankwah, R.; Chen, J.; Kudjo, P.K.; Towey, D. An empirical comparison of commercial and open—Source web vulnerability

scanners. Softw. Pr. Exp. 2020, 50, 1842–1857. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/seccomw.2006.359531
http://doi.org/10.1109/TKDE.2003.1208998
https://developers.google.com/safe-browsing/v4/
http://doi.org/10.5120/ijca2017913632
http://doi.org/10.1155/2017/6158107
http://doi.org/10.1002/spe.2870

	Introduction
	Methodology
	Literature Review
	Web App Vulnerabilities
	The Evolution of Web App Vulnerabilities
	Top 10 Security Threats for the Web Environment
	Broken Access Control
	Cryptographic Failure
	Injection
	Insecure Design
	Security Misconfiguration
	Vulnerable and Outdated Components
	Identification and Authentication Failures
	Software and Data Integrity Failures
	Security Logging and Monitoring Failures
	Server-Side Request Forgery (SSRF)

	Web Vulnerabilities Mitigation Techniques
	Protection against SQL Injection Attacks
	Protection against Broken Authentication and Session Hijacking Attacks
	Protection against XSS Attacks
	Protection against Insecure Direct Object References and Missing Function-Level Access Control
	Protection against Sensitive Data Exposure
	Protection against CSRF Attacks
	Protection against Unvalidated Redirects and Forwards

	Web Penetration Test
	Web Penetration Testing Tools
	Overview of Penetration Testing Tools
	Netsparker
	Acunetix
	Vega
	OWASP ZAP
	Wapiti
	IronWASP
	W3af

	Discussion and Future Research
	Conclusions
	Managerial Implications
	Practical/Social Implications
	References

