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Abstract: Alzheimer’s disease (AD) has become a serious hazard to human health in recent years,
and proper screening and diagnosis of AD remain a challenge. Multimodal neuroimaging input can
help identify AD in the early mild cognitive impairment (EMCI) and late mild cognitive impairment
(LMCI) stages from normal cognitive development using magnetic resonance imaging (MRI) and
positron emission tomography (PET). MRI provides useful information on brain structural abnormal-
ities, while PET data provide the difference between physiological and pathological changes in brain
anatomy. The precision of diagnosing AD can increase when these data are combined. However, they
are heterogeneous and appropriate, and an adequate number of features are required for AD classifi-
cation. This paper proposed a multimodal fusion-based approach that uses a mathematical technique
called discrete wavelet transform (DWT) to analyse the data, and the optimisation of this technique
is achieved through transfer learning using a pre-trained neural network called VGG16. The final
fused image is reconstructed using inverse discrete wavelet transform (IDWT). The fused images
are classified using a pre-trained vision transformer. The evaluation of the benchmark Alzheimer’s
disease neuroimaging initiative (ADNI) dataset shows an accuracy of 81.25% for AD/EMCI and
AD/LMCI in MRI test data, as well as 93.75% for AD/EMCI and AD/LMCI in PET test data. The
proposed model performed better than existing studies when tested on PET data with an accuracy
of 93.75%.

Keywords: Alzheimer’s disease; MRI; PET; data fusion; vision transformer

1. Introduction
1.1. Background

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that gradually de-
stroys brain cells, resulting in memory and thinking skill loss, as well as the eventual loss
of the ability to perform even the most fundamental duties. Patients with AD gradually
develop dementia and lose physiological functions, eventually leading to death [1]. Around
55 million people worldwide have dementia, and more than 60% of them live in low- and
middle-income countries [2]. This figure is expected to rise to 78 million in 2030 and
139 million in 2050, as the share of older people in the population increases in practically
every country.

The pathophysiology of AD is still very complex to understand. Mild cognitive
impairment (MCI) is an early stage of AD that occurs as a transition between normal
aging and AD [3]. However, a mild cognitive impairment that will convert to AD may
begin 20 years or more before any symptoms of AD appears. The phases of EMCI, MCI,
and LMCI are when the condition has progressed to the point where it is impairing daily
activities. Although AD cannot be cured, it can be slowed down in its early stages. As a
result, early identification of AD is extremely desirable to improve patient quality of life
and treatment trial outcomes.

Neuroimaging diagnosis has become the most intuitive and reliable way to diagnose
AD due to the rapid advancement of neuroimaging technologies [4]. Several neuroimag-
ing modalities, including structural magnetic resonance imaging (sMRI) [5–7], functional
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magnetic resonance imaging (fMRI) [8–10], fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET) imaging [11,12], and diffusion tensor imaging (DTI) [13] have been used
successfully for an early and accurate diagnosis of AD. To evaluate the progression and
phases of patients with MCI, some existing research has used a single modality successfully.
For the classification between EMCI and cognitive normal (CN), using sMRI, the cortical,
subcortical, and hippocampus subfields were found to be the most discriminating areas of
the brain for AD [14–17]. Unfortunately, the scanned image is occasionally of poor quality
due to focusing errors and noise. As a result, a quality evaluation method is required for
practical use [18].

For fMRI, some features, such as occipital-mid-region, precentral-left, caudate-region,
postcentral-left, and temporal-pole-mid-left are highlighted in the discrimination of EMCI
and NC [19–21]. As for FDG- PET, the average relative cerebral glucose metabolic rate
in the precuneus, superior temporal gyrus in both hemispheres, middle frontal gyrus
and superior frontal gyrus, middle cingulate cortex, and the angular gyrus in the left
hemisphere were examined [22,23]. Because single-modal neuroimaging only offers some
and not all information about brain disorders, it may be insufficient for the classification of
cognitively normal (CN), EMCI, LMCI, and AD people. Deep learning models could be
generalized well and provide increased classification accuracy with the use of multi-modal
neuro-imaging inputs. The alterations in brain structure can be seen in structural MRI
scans of Alzheimer’s patients. PET is a type of functional imaging that can capture the
functioning aspects of the brain to improve the ability to detect lesions. The combination of
MRI and PET is a useful multi-modal neuro-imaging input that can provide more precise
data for clinical diagnosis and treatment.

1.2. Deep Learning Methods for AD Recognition and Classification

Most common models in deep learning that have been tested to have good perfor-
mance in biomedical image segmentation [24,25], medical diagnosis, and image classifi-
cation [26–28] tasks are convolution neural network (CNNs). CNN has greatly been used
in the classification of AD [29,30]. For example, Venugopalan et al. [31] presented multi-
modality intermediate feature level combinations by extracting intermediate features using
a deep learning model, and the resulting features are concatenated and passed through a
classification layer. However, the direct feature concatenation was not trained end-to-end,
thereby not being integrated with the classification step. Sarraf and Tofighi [32]) fused sMRI
and fMRI data to classify AD using LeNet-5 architecture and GoogleNet architecture. Their
method was able to achieve a higher accuracy, but not on MCI stages. Abdelaziz et al. [33]
utilized three stacked CNN models to extract meaningful features from PET, MRI, and
genetic data. Extracted high-level features were sequentially concatenated together for
AD multiclass classification. The proposed method provided missing features for each
incomplete sample using linear interpolation to make the most of the dataset’s available
samples and alleviated data heterogeneity from multimodal data. However, the classifica-
tion accuracy for MCI stages was low. Jin et al. [34] proposed a hybrid three-stage deep
learning framework to classify EMCI and LMCI with incomplete multimodal datasets in
which the classification network was pre-trained via MRI and PET images. The multimodal
data were fused, and the difference between fused data and those of real MRI and PET
data were compared to help the classifier focus on regions for classification for better
classification accuracy.

Although CNN has proven itself well in the above methods, it has always faced
several challenges in AD classification. The CNN model has generalisation and overfitting
problems in binary and multiclass classification [35]. The model can only achieve good
diagnostic results under large and sufficient data, and the model must be deep enough to
extract meaningful information. Forouzannezhad et al. [36] utilized a deep learning model
to detect AD in its early stage using multimodal imaging, combining magnetic resonance
imaging (MRI), positron emission tomography (PET), and standard neuropsychological
test scores with a classification accuracy of 90.3% for binary classification of AD/EMCI.
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Forouzannezhad et al. [37] further utilized a probabilistic approach to fuse relevant features
from MRI and PET for early detection of AD with 81.4% in EMCI/AD binary classification.
Aqeel et al. [38] used long short-term memory (LSTM) to predict biomarkers (feature
vectors) of AD patients after 6, 12, 21, 18, 24, and 36 months of MRI biomarkers from MRI
and neuropsychological measurements (NM). These anticipated biomarkers are passed
through layers of a fully coupled neural network (NN). The NN layers then determine
whether these biomarkers generated by the LSTM belong to AD patients or MCI patients.
The methodology was tested in the ADNI dataset, and an accuracy of 88.24% was achieved.

Several studies used vision transformer (ViT) for the classification of AD, and it has
offered a lot of advantages in terms of robustness, efficiency, generalization, and transfer
learning compared to CNN. ViTs are more data-efficient than CNNs, which means they
can perform well even in relatively small amounts of data. A key advantage of ViTs is their
ability to perform well on tasks where there is limited data available for training. This is
because ViTs use self-attention mechanisms instead of convolutions, which allows them to
process the entire image at once, rather than in smaller patches. To verify the effectiveness
of ViT on multimodal data of neuroimaging data, several studies attempted and experi-
mentally showed that ViT can achieve the same or even better performance than CNN.
Sarraf et al. [39] utilised an optimised end-to-end pipeline vision transformer to classify AD
stages using rs-fMRI and sMRI data. The proposed model classified AD stages with less
complex architectures with relatively small amounts of data. Fused PET images, consisting
of PET-AV45 and PET-FDG, were trained on ViT for the classification of AD stages [40].
The proposed model achieved a result comparable to CNN models. Kushol et al. [41] took
advantage of the information from both the spatial and frequency domain of MRI images
and proposed a fusion transformer model to fuse the function and structural information
of MRI images. Experimental results showed that the fused information improved the
classification accuracy of AD. Pan and Wang [42] proposed a cross-modal transformer to
achieve a deep fusion of structural and functional information from fMRI and DTI images.
The authors concluded that the proposed model could extract complementary information
from fMRI and DTI, resulting in a higher precision of multimodal connectivity in the
classification of AD than other multimodal fusion techniques [43].

1.3. Contribution, Novelty, and Research Questions

Although the fusion technique in the aforementioned studies is limited to DWT with
ViT, transfer learning can easily be applied to the DWT neuroimaging fusion technique
to provide optimisation that allows improved performance of fused images. To this end,
this study proposed the AD diagnosis method using a pre-trained ViT model to extract
and classify features from fused images from MRI and PET for early detection of AD.
The fused image is achieved by harnessing wavelet decomposition and transfer learning
using VGG16.

The proposed model consists of the following four modules:

1. Discrete wavelet decomposition module to generate one approximate coefficient and
three detail coefficients of MRI and PET image;

2. VGG16 module to generate approximate image and three detail coefficients, which
represent low frequency sub-band and high frequency, respectively;

3. Inverse wavelet transform module to generate fused images on the four bands generated;
4. Pre-trained ViT module that is used to extract and classify features (structural and

functional) from fused image.

To guide our research, we formulate the following research questions:

1. How can MRI and PET data be effectively combined for the early detection of
Alzheimer’s disease?

2. Can a ViT model be trained on the fused data for improved accuracy in the classifica-
tion of Alzheimer’s disease stages (AD/EMCI and AD/LMCI)?

3. How does the proposed multimodal fusion approach compare with existing methods
for the classification of Alzheimer’s disease stages?
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4. Can the proposed ViT model generalise to new unseen data from the ADNI database
for the classification of Alzheimer’s disease stages?

5. What are the limitations and potential improvements of the proposed multimodal
fusion approach and the use of ViT for medical imaging data analysis?

The novelty of the paper lies in the proposed multimodal fusion approach based on
fine-tuned vision transformer (ViT) for binary classification of AD stages using MRI and
PET data. The approach involves fusing MRI and PET images with adequate preprocessing
and image registration, as well as training a ViT model with the fused data to achieve high
accuracy rates in identifying AD. This model outperforms existing multimodal models in
generalizing well on PET data. The use of a ViT model to analyze medical imaging data is
a novel approach in the field of AD research.

The main contributions of this study include:

• An image fusion technique has been proposed to fuse multimodal images for AD
diagnosis, providing accurate diagnosis of AD to health professionals.

• Complementary information from MRI and PET images is incorporated using wavelet
transform and transfer learning.

• Frequency and location information from MRI and PET images were captured.
• The proposed model is optimised using transfer learning, which improves the perfor-

mance of the proposed model.

The rest of the study is sectioned as follows: The methodology is given in Section 2.
Section 3 gives the experimental analysis, results, and discussion. Section 4 compares
the performance of our proposed model with some CNN models. Finally, we give our
conclusion and recommendation in Section 5.

2. Methods

The proposed architecture for pixel level fusion multimodal vision transformer with
transfer learning is represented in Figure 1.

2.1. Dataset

For experimental analysis, the image datasets of sMRI and FDG-PET images are used,
and this is publicly available in the Alzheimer’s Disease Neuroimaging (ADNI) database.
The sMRI and FDG-PET are both in grayscale and NIFTI format. Participants are selected
from the ADNI2 baseline cohort for our experimental requirement. The age of the subjects
ranges from 60 to 70 years old, including both males and females. Approximately 50 early
EMCI and 50 LMCI participants were selected. T1-weighted volumes and 18F-FDG-PET
images are taken for each participant for the study. The mini-mental state examination
score(MMSE) of 16 and 26 with a Clinical Dement Rating (CDR) of 0.5 was set for selecting
AD, and MMSE of 25 and 28 with a CDR of 0 was set for selecting EMCI participants.

2.2. Preprocessing

Before MRI and PET images can be successfully analyzed, they need to typically
undergo some preprocessing steps to correct for various distortions and artifacts that can
affect the quality of the images. Noise reduction and image registration of images are some
of the preprocessing steps considered in this study. Noise reduction is applied to reduce
the impact of noise on the images. MRI and PET consist of different information, therefore
coregistration of both MRI and PET images is very important for optimal fusion.

2.3. Image Registration

Image registration can be used to align the functional information provided by PET
with structural information provided by MRI. In this study, procrustes analysis [44], which
is a statistical method, is used to align MRI and PET. This is achieved by scaling, rotating,
and translating the images until they are optimally aligned. The procrustes analysis on
MRI and PET is performed by initially indentifying the corresponding points in the two
images. The identified points could be landmarks or features that are present in MRI and
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PET images. The transformation that aligns the two sets of points is done using singular
value decomposition (SVD). The transformation is applied on a MRI image to align with a
PET image, then the two images are aligned in a common coordinate system. The following
is the mathematical formula for procrustes analysis for MRI and PET utilizing SVD:

X = UXSXV′X (1)

Y = UYSYV′Y (2)

where X and Y is the matrix representing MRI data, and PET data respectively, UX and UY
are the singular vectors of the left for the MRI data and PET data, respectively. SX is the
singular value matrix for MRI data, and SY is the singular value matrix for PET data. V′X
and V′Y are the right singular vectors for MRI and PET data, respectively.

Figure 1. Block Diagram Integrating Wavelet Decomposition and Transfer Learning for Enhanced
Multimodal Image Fusion for the Proposed Model.

The procrustes analysis is performed by finding the optimal rotation and scaling
factors to align matrix X and matrix Y using equations

R = U′YUX (3)
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[P, , Q] = svd(R) (4)

T = PQ′ (5)

where R is the rotation matrix, P and Q are the scaling matrix, and T is the overall transfor-
mation matrix. The transformation matrix is finally applied to the MRI data to align it with
the PET data using Equation (6).

Xaligned = T × X (6)

2.4. Noise Reduction

Noise is introduced into MRI and PET images during the imaging process, resulting in
a blurry appearance of the images. The presence of noise in the images can lead to inaccurate
interpretation of the images, which could lead to incorrect diagnoses or treatment decisions.
Reduction of noise from the images makes the images clearer and more detailed, thereby
allowing for more accurate interpretation. Anisotropic diffusion filtering is used to reduce
the noise fluctuations of the image [45], but it causes blurring of edges, and this could lead
to loss of fine detail and accuracy in the image.

Therefore, we use the wavelet transform that overcomes this challenge by decompos-
ing the image into different frequency bands. Wavelet transform has enabled a new field
that utilizes a DWT equation to eliminate noise from an input image [46]. DWT highlights
important features and eliminates noise. It works by decomposing an image into a series
of small wavelets with localized functions that are used to represent different frequency
components of the image. DWT divides the picture into four subbands (subimages), namely,
LL, LH, LV, and LD, as follows: in its low frequency subband, LL is the approximate image
of the input image; the LH subband extracts the horizontal features of the original image;
the LV subband delivers vertical features; and the LD subband gives diagonal information.

The result of the wavelet decomposition is a series of approximate coefficients for
MRI and PET, known as LL1 and LL2, respectively, as depicted in Figure 1, three detail
coefficients for MRI, known as LH1 (horizontal), LV1 (vertical), and LD1 (diagonal), as
shown in Figure 1, and three detail coefficients for PET, known as LH2 (horizontal), LV2
(vertical), and LD2 (diagonal), as depicted in Figure 1. The horizontal, vertical, and diagonal
detail coefficients represent the image features in different directions. In Figure 1, LL1
and LL2 are the approximation coefficients, which represent the low-frequency, coarse
features of MRI and PET image, respectively, and provide a rough approximation of the
original image. The three detail coefficients represent the high-frequency, fine features,
which provide important information about the image, such as the presence of sharp edges
or sudden changes. Thresholding is used to identify and eliminate coefficients that are due
to noise [47], where coefficients below a certain threshold are set to zero, thereby effectively
removing the noise from the image. Figure 2 showed the low-frequency and the three detail
coefficients for EMCI class from MRI image.

Figure 2. Wavelet transform of the sample EMCI participant MRI image.
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The mathematical equation DWT(X[n] = ∑ h[k]× X[n− k] + ∑ [k]× X[n− k]) is
replaced by the following :

DWT( f ) = ∑ c(a, b)ψ(a, b)× f (x, y) (7)

where DWT( f ) represents the discrete wavelet transform of the image, f (x, y), c(a, b)
represents the coefficients of the wavelet transform, and ψ(a, b) represents the wavelet
basis function.

Equation (1) decomposed the images into various frequency subbands. Using a
thresholding technique, the estimated noise is then eliminated from the subband; values
below a given threshold are regarded as noise and eliminated. The following equation is
used to achieve this:

F′(x, y) = f (x, y)− λ× ψ(a, b)× c(a, b) (8)

where f ′(x, y) is the denoised image, λ is the threshold value, and ψ(a, b) and c(a, b) are
the same as in Equation (7).

2.5. Multimodal Fusion

The goal of this image fusion is to combine data from PET and MRI scans. Fusion-
based transfer learning is used because it allows for the transfer of knowledge from one
frequency band to another. Transfer learning can learn from multiple sources (different
frequency bands) and adapt to new situations. In this study, the VGG16 network is utilised
to extract features from the four pairs of images from MRI and PET ( LL1 and LL2), (LH1
and LH2), (LV1 and LV2), and ( LD1 and LD2), as shown in Figure 1. For each pair
of features, the VGG16 network is used to interpolate the features and generate a new
band. For instance, for the pair of LL1 and LL2 using the layers of the VGG16 network to
interpolate the features, the resulting output is the LL band. Similarly, for the pair of LH1
and LH2, LV1 and LV2, and LD1 and LD2, using the layers of VGG16 to interpolate their
characteristics, the resulting output is LH, LV, and LD, respectively. LL, LH, LV, and LD
represent the fused features of MRI and PET. To obtain the final fused image, an inverse
discrete wavelet transform ( IDWT) is applied to each of the merged coefficients ( LL, LH,
LV, and LD) and combines the results to form the final fused image. The IDWT uses a set
of wavelet coefficients to reconstruct the final fused image that combines the strength of
both modalities.

Mathematically, the IDWT equation IDWT(c) = IDWT(e1, e2, . . . . . . .en) = ∑n
i=1 ci ∗

φ(2i− 1) is replaced by the following:

f usedImage = IDWT(Merged_Coe f f icients) = IDWT(e1, e2, .., en) =
n

∑
i=1

ei × φ(2i− 1) (9)

where e1, e2, ..., en are the wavelet coefficients obtained through the DWT. φ(2i− 1) is the
inverse wavelet function corresponding to the level i of the DWT. Merged_Coe f f icients are
the wavelet coefficients obtained by merging the coefficients of the MRI and PET images.
f usedImage is the final fused image obtained through the IDWT.

Figure 3a,b shows original image MRI of EMCI participants and PET of EMCI partici-
pants respectively. Figure 3c shows PET registered image (left) and MRI registered image
(right), while Figure 3d shows the fused image. Eventclick was used to identify the point of
alignments for PET and MRI images. After identifying the points at which the two images
will be aligned, the images are transformed. The approximation and details are shown
in Figure 2. Methods of siaseme are called on LL, LH, LD, and LV images. The trained
network (VGG16) fuses two new input images by passing them through the network and
concatenating their feature representations as the final fused image.
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(a) (b)

(c) (d)

Figure 3. (a) Original MRI image (EMCI), (b) Original PET image (EMCI), (c) MRI and PET Image
Registration Points for Alignment, (d) Fused Image (EMCI).

2.6. ViT Architecture

The vision transformer architecture consists of a series of self-attention layers, similar
to those found in the transformer architecture. Each self-attention layer processes the input
data in parallel, allowing the network to learn long-range dependencies in the data without
the need for recurrence. The self-attention layers are followed by a series of feed-forward
layers that perform further processing on the output of the self-attention layers. One
of the key innovations of the vision transformer architecture is the use of multi-headed
self-attention, which allows the network to attend to multiple different parts of the input
data simultaneously [48]. This helps the network to learn more complex relationships in
the data and improve its performance on tasks, such as image classification. In addition to
the self-attention layers and feed-forward layers, the vision transformer architecture also
includes several other components, such as a spatial transformer module, which allows the
network to learn spatial relationships in the data, and a learnable pooling module, which
helps to reduce the dimensionality of the input data [49]. We expect that from the fused
images, the ViT models would be able to extract discriminative features related to AD and
thereby make a classification decision. ViT_base_patch16_224 is a medium-sized vision
transformer that processes input images by dividing them into a grid of 16 × 16 patches
used in this study, with each patch being 16 × 16 pixels in size. The model is designed to
take square images with a height and width of 224 pixels as input.

In the proposed approach, we utilized the Timm [50] repository to fine-tune a pre-
trained ViT model. Timm is a library for efficient image classification with PyTorch, which
allows for the fine-tuning of pre-trained models with minimal code. By training a ViT
from scratch, two problems arise: high computational requirements and the need for large
amounts of data. High computational requirements problems occur when there is absence
of access to high performance computing infrastructure. Lack of access to a large dataset
may lead to overfitting and inaccurate results. Fine-tuning a pre-trained ViT model on
a specific task can be used to counter these problems, thereby significantly improving
the performance of the ViT model [51]. Fine-tuned ViT classifies features by using a
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combination of self-attention and convolutional layers. Fine-tuning a ViT model involves
adjusting the model’s weights and biases to better fit the specific features and characteristics
of the dataset being used. This can be done through a process called back propagation,
which involves adjusting the weights and biases to minimize the error between the model’s
predictions and the true labels of the data [49]. By fine-tuning the model in this way, it can
learn to better classify the features that are relevant to the specific task it is being used for.

The mathematical equation for the back propagation process is as follows:

∆W = α× δ× x (10)

here; ∆W: the update to the weight, α: the learning rate, δ: the error gradient at the output
layer, x: the input to the weight.

The decision function of the pre-trained ViT model on fused image of MRI and PET
images can be expressed mathematically as:

y(i) = ViT(I(i), F, C) (11)

where F = set of fused images, C = Target classes, y(i) = Predicted class for fused image,
ViT = Trained Model, I(i) = Specific fused image in the set F.

3. Experiments and Results
3.1. Experiments

The proposed model implementation and evaluation is performed using pytorch.
The model is trained and validated using a NVIDIA Corporation TU116 (GeForce GTX
1660) graphic processing unit machine. Experiments were performed using five-fold cross-
validation since the fused MRI and PET data are relatively small. The AdamW optimiser
with an initial learning of 0.002, as well as a regularisation technique using weight decay
of 0.01, is utilised in gradient descent. The AdamW optimizer is a modified version of
Adam that integrates weight decay into its update algorithm. By introducing a penalty
term in the loss function that encourages smaller weights, this regularization technique
aids in preventing overfitting. The initial learning rate of 0.002 is a common starting point
for training deep neural networks, as it is typically small enough to prevent the model
from diverging during the early stages of training, but large enough to allow for relatively
rapid convergence to a good solution. Through empirical experimentation and following
best practices, a weight decay value of 0.01 was selected. The batch size is set to 10 when
conducting batch training on NVIDIA GTX 1660 because smaller batch size can lead to
faster convergence and better generalization. A learning rate scheduler is introduced to
adjust the learning rate of the model during training to reduce overfitting. Optimisation of
the learning rate is done using a cyclic learning rate, where the learning rate is not fixed,
but oscillates between maximum and minimum value. The minimum rate is set to 0.002,
and the maximum rate is set to 0.01. The cyclic learning rate is implemented using the
triangular cycle learning rate schedule, where the learning rate increases linearly from a
low value (0.002) to a high value (0.01) over a certain number of iterations (1000) and then
decreases linearly back to the low value over the same number of iterations (1000). We
increase the number of epochs from 10 to 30. Early stopping was further applied to the
model during the training process, and this made the proposed model stop earlier than the
number of epochs (30). At other epochs (10, 20), early stopping did not hold. Increasing the
number of epochs to exceed 30 was shown not be of any advantage since the model did not
complete the 30 epochs because of overfitting.

The fused image from MRI and PET utilized for our proposed multimodal model
combines the high spatial resolution of MRI with the functional information provided by
PET. Original MRI image and original PET image for both classes are compared with the
fused image using structural similarity (SSIM), which incorporate luminance, contrast,
and structure components. The luminance component measures the brightness of the
images, the contrast component measures the difference in intensity between the darkest
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and lightest pixels, and the structure component measures the similarity of patterns in the
images. To calculate SSIM, we utilized the structural_similarity library, including compo-
nents of the Python library such as skimage. To ensure that the fused image accurately
represents the underlying data in detecting Alzheimer’s disease using fused images of
MRI and PET, it is crucial to consider similarity scores based on luminance, contrast, and
structural components. By selecting similarity scores based on these components, the fused
image can more accurately capture the differences and similarities between the MRI and
PET images. This can make it easier to identify any abnormalities that could indicate
Alzheimer’s disease. The precision of the similarity scores can have a significant impact on
the sensitivity and specificity of AD stages classification.

To assess how well our model performs in classifying the stages of AD using fused
images, we have two sets of experiments: AD vs EMCI, AD vs EMCI, and our set-up. To
evaluate the performance of the proposed multimodal model on the new MRI and PET
datasets of ADNI database participants, accuracy, sensitivity, specificity and confusion
matrix are used. To further assess the performance of the ViT model, we trained the
pre-trained Resnet18 using our fused images.

3.2. Result

Table 1 showed the outcome of the structural similarity measurement of the original
MRI, original PET, and fused image of AD, EMCI, and LMCI participants. As shown in
Table 2, the model proposed for the validation accuracy results and the CNN model for the
AD/EMCI classification, as well as the AD/LMCI classification, according to the validation
set, are 98.50%, 98.59%, 94.03%, and 95.00%, respectively. The training/validation loss
curve and the accuracy curve for AD/LMCI classification for our proposed model and CNN
model is shown in Figure 4 and Figure 5, respectively. The results of our proposed method
on multimodal data from MRI and PET image are obviously better than the proposed
model on single modal data for all experiments. Our proposed model was evaluated on the
dataset of new participants from the ADNI database, and the result is depicted in Table 3.
The predictive analytics of our proposed model for AD/EMCI ( MRI test data), AD/EMCI
( PET test data), AD/LMCI (MRI test data), and AD/LMCI ( PET test data) is presented
using a confusion matrix, as shown in Figure 6.

Table 1. Similarity score of original MRI and PET images.

Modality Similarity Score

MRI (AD) 0.779
PET (AD) 0.812

MRI (EMCI) 0.720
PET (EMCI) 0.840
MRI (LMCI) 0.702
PET( LMCI) 0.890

Table 2. Training precision of the proposed model and pre-trained CNN using PET, MRI, and fused
data (MRI + PET).

Group MRI PET Fused (MRI+PET)

AD/EMCI
(Proposed) 98.1% 97.09% 98.50%

AD/LMCI
(Proposed) 96.11% 94.70% 99.58%

AD/EMCI
(Pre-trained CNN) 92.40% 93.56% 94.03%

AD/LMCI
(Pre-trained CNN) 93.33% 93.56% 95.00%
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Table 3. Accuracy of the proposed model on test data.

Group MRI PET

AD/EMCI 81.25% 93.75%
AD/LMCI 81.25% 93.75%

Figure 4. Training accuracy, validation accuracy, training loss, and validation loss for the proposed
ViT model for AD/LMCI classification.

Figure 5. Training accuracy, validation accuracy, training loss, and validation loss for pre-trained
ResNet18 model for AD/LMCI.

From Table 1, the structural similarity of original MRI, original PET, and fused image
gave a score of above 0.750 in all the experiments.A performance analysis of SIMM using
different imaging fusion techniques was carried out, and the result analysis shows the
lowest score of 0.69 and the highest score of 0.97 for the MRI dataset among nine different
experiments [52]. Information in visible and infrared spectra were fused, and the quality of
the fused image was evaluated using SIMM, which gave 0.748 [53]. The result from Table 1
indicates that the original MRI, original PET, and the fused images have a high level of
structural similarity. A score that is above 0.750 is relatively high and indicates that the
two images have a strong visual resemblance in terms of the overall structure and layout
of the features within the images. This suggests that the fusion process was successful in
maintaining the integrity of the original MRI image while adding additional information
from other sources.

The result of Table 2 means that the accuracy of the model when using only MRI data
is 98.14%, when using only PET data, it is 97.09%, and when using merged MRI and PET
data, it is 98.50% for the AD/EMCI classification. The use of MRI alone may result in an
accurate classification, but it may not be able to identify specific pathological changes in
the brain linked to AD/EMCI, which could be detected using PET imaging. When the two
imaging methods are combined, they can provide a more complete picture of the brain,
potentially improving the accuracy of classification. Even a slight improvement in accuracy
achieved through the fusion of both modalities may have clinical significance, leading to a
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more precise and earlier diagnosis and treatment of AD/EMCI. The result of Table 3 shows
that the precision of the multimodal fusion model, when tested with MRI data, is lower
than when tested with PET data. One major reason could be that the optimisation method
used for the fusion could not effectively combine the information from both modalities,
as in the case of MRI. The fused MRI and PET data seem to have the highest accuracy,
indicating that combining both types of data may improve the model’s performance. It is
important to note that these results are specific to the ADNI dataset and may not necessarily
apply to other datasets or scenarios for AD/LMCI classification. Figure 6a indicates that,
of the total of 16 samples, six were correctly classified as AD (true positive), two were
incorrectly classified as EMCI (false positive), seven were correctly classified as EMCI (true
negative), and one was incorrectly classified as AD (false negative) for MRI test data.

(a) (b)

(c) (d)

Figure 6. Confusion matrices. (a) Confusion matrix for AD/EMCI (MRI test data), (b) Confusion
matrix for AD/EMCI (PET test data), (c) Confusion matrix for AD/LMCI (MRI test data), and
(d) Confusion matrix for AD/LMCI (PET test data).

The confusion matrix for testing the proposed model on PET test data is shown in
Figure 6b, which is similar to the MRI test data, only that there were no false positive results,
which means that the model correctly identified eight cases of AD. The result shows that
the proposed model performed well on PET test data from ADNI than MRI test data with a
high accuracy and precision of 100%, as well as a relatively high recall of 88.89%. Figure 6c
means that all eight instances of AD were correctly identified. There were no false positive
cases where AD was incorrectly identified. However, there were three false negative
cases of LMCI on MRI test data while on PET test data, only one instance was incorrectly
classified as LMCI. Generally, the proposed model gave a high specificity of 100%, and
88.00% in identifying LMCI and EMCI from PET test data, respectively. Additionally, the
proposed model achieved specificity of 62.50% and 87.50% in identifying LMCI and EMCI
from MRI test data, respectively. In this case, LMCI and EMCI are true negatives (TNs),
and the proportion of TN results among all the patients that the model classifies as LMCI
or EMCI is the specificity. The model is tested only on 16 samples for AD vs LMCI and AD
vs EMCI because of the limited availability of data for LMCI and EMCI groups. However,
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this is sufficient to help us make informed decisions about whether further improvements
need to be made to the model before it is used in practice. The proposed model performed
better on PET test data, which could be an indication that the percentage of the functional
information in the fused image is higher than the structural information. This is due to
the imaging modalities and their respective signal-to-noise ratios, image resolution, and
contrast. The fusion approach may perform better on one modality compared to the other.

3.3. Visualization

Transformer attribution is utilised to generate desired visualisation to understand the
decision-making process of the proposed model. The generated maps for the AD fused
image (the top left image) left) and the EMCI fused image (the top right image) right) are
depicted in Figure 7. The bottom left image shows the map of the region to classify AD, and,
at the bottom right, there is an image showing the map of the region for EMCI classification.
The major fact we wanted to verify is to see which regions of the images (structural and
functional) the model focused on the most to make the final diagnosis.

From Figure 7, the proposed model used more functional information for the AD/EMCI
binary classification.

3.4. Comparison with Existing Methods

The proposed multimodal fusion model is compared with some existing models to
demonstrate its effectiveness for early diagnosis of AD (Table 4). This followed binary
classification of AD/EMCI using multimodal image data from MRI and PET or any other
multimodal imaging fusion consisting of structural and functional information. Forouzan-
nezhad et al. [36] combined MRI, as well as PET for AD/EMCI classification using a
deep neural network with 83.2% precision. Forouzannezhad et al. [37] used a probabilis-
tic method to collect the most relevant features from MRI, PET, and DTI for six binary
classifications. The authors provided a distinction of the early and late stages of MCI
using the Gaussian process and integrating the Bayesian prediction. Meng et al. [54] used
DTI and fMRI to predict the diseased brain regions associated with AD, and a neural net-
work using Lasso regression was used for the extraction and classification of multimodal
image features.

Figure 7. Relevancy Maps AD and EMCI.
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Table 4. The comparison results of EMCI vs AD classification with existing techniques.

References Method Modality Accuracy

[36] Deep Neural Network MRI + PET + 83.20%
[37] Gaussian process MRI + PET + DTI 88.10%
[54] LassoNet + Neural network DTI +fMRI 85.00%

Proposed Model Pretrained ViT + pixel image fusion MRI +PET (PET test data) 93.75%
Proposed Model Pretrained ViT + pixel image fusion MRI +PET (MRI test data) 81.25%

4. Discussion
4.1. Answers to Research Questions
4.1.1. Answer to Research Question 1

The research question aimed to determine how MRI and PET data could be effectively
combined for the early detection of AD. To address this, the authors of the paper proposed
a multimodal fusion approach based on discrete wavelet transform (DWT) optimized with
transfer learning based on the VGG16 model.

The proposed approach involves preprocessing the MRI and PET images to ensure
they are properly aligned and then combining the images using DWT to create a fused
image. The purpose of the fusion is to merge the complementary information present in
the MRI and PET data to increase the precision of diagnosing AD. MRI provides structural
information about the brain, while PET data provide functional information, and the fusion
of these modalities can provide a more comprehensive picture of the brain’s health.

4.1.2. Answer to Research Question 2

The second research question in this paper aimed to evaluate the performance of the
proposed multimodal fusion approach based on a vision transformer (ViT).

To answer this question, the authors performed experiments on the AD Neuroimaging
Initiative (ADNI) dataset, which includes MRI and PET images from participants with
different stages of AD. The fused images were then fed into a pre-trained vision transformer,
which was fine-tuned to classify the images into either AD/EMCI or AD/LMCI categories.

The results showed that the ViT model achieved an accuracy of 81.25% on the MRI test
data and 93.75% on the PET test data (see Table 3). These results suggest that the proposed
multimodal fusion approach is effective in extracting important information from the MRI
and PET data and using it to classify the images into different stages of AD.

The results suggest that the ViT model is a promising approach for analyzing multi-
modal neuroimaging data for early detection of AD. The high accuracy achieved by the
model provides evidence that the proposed approach is effective in combining information
from different neuroimaging modalities and using it to accurately diagnose AD.

4.1.3. Answer to Research Question 3

The third research question in this paper aimed to compare the performance of the
proposed multimodal fusion approach based on a vision transformer (ViT) with other
existing multimodal fusion models for AD diagnosis.

To answer this question, the authors compared the performance of their proposed ViT
model with other existing multimodal fusion models on the AD Neuroimaging Initiative
(ADNI) dataset. The dataset includes MRI and PET images from participants with different
stages of AD.

The results showed that the ViT model outperformed the other existing multimodal
fusion models in terms of accuracy for the diagnosis of AD using PET data. The ViT model
achieved an accuracy of 93.75% on the PET test data, while the other existing models
achieved a lower accuracy (see Table 4).

These results suggest that the ViT model with multimodal data fusion is a promising
approach to the diagnosis of AD, especially compared to other existing multimodal fusion
models. The ability of the proposed model to effectively extract information from the fused



Electronics 2023, 12, 1218 15 of 19

MRI and PET images and use it for an accurate diagnosis sets it apart from other existing
models and makes it a valuable tool for early detection of AD.

4.1.4. Answer to Research Question 4

The fourth research question in this paper aimed to evaluate the generalisability of
the proposed multimodal fusion approach based on a vision transformer (ViT) for the
diagnosis of AD.

To answer this question, the authors evaluated the performance of their proposed ViT
model on a different test dataset of MRI and PET images from participants with different
stages of AD. This was done to test the generalization capability of the model and to see if
it can perform well on unseen data.

The results showed that the proposed multimodal fusion approach achieved a high
level of precision, 81.25%, on the MRI test data and 93.75% on the PET test data. These
results indicate that the model has the ability to generalise well to new unseen data, which
is a crucial aspect of its practical application in real-world settings.

These results suggest that the proposed multimodal fusion approach is a promising
approach for the diagnosis of AD, as it can generalize well to new unseen data. This
capability of the model is important for its practical use in real-world settings, where it may
be applied to diagnose AD in new participants who were not present in the training dataset.

4.1.5. Answer to Research Question 5

The fifth research question in this paper aimed to identify the limitations and potential
improvements of the proposed multimodal fusion approach and the use of ViT for medical
imaging data analysis.

The limitations of the proposed multimodal fusion approach include the potential loss
of unique features of each modality in the fused image and the need for further testing to
ensure the accuracy of the model. Furthermore, the fusion parameters could be optimized
in the future using weighting factors to improve the performance of the fused image.

Potential improvements of the proposed approach could include the integration of
additional imaging modalities, the optimization of fusion parameters, and the development
of more advanced deep learning models, such as attention-based models. Furthermore,
incorporating additional clinical and demographic data into the model could also improve
its performance. The use of ViT for medical imaging data analysis could also benefit
from further fine-tuning on larger and more diverse datasets, as well as the integration of
additional pre-processing techniques, such as segmentation and registration.

4.2. Limitations

The limitations of this study include:

• Limited dataset: the study was carried out on a limited dataset from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, and the results may not be gener-
alised to larger or diverse datasets.

• Fusion parameters: the fusion parameters in the study were not optimised to their full
potential, and further optimisation may be necessary to improve the performance of
the fused image.

• Single-mode performance: the performance of the model using single modalities
(MRI or PET) was not evaluated, so it is not clear how well the model would perform
without the fusion of data.

• Limitations of ViT: the use of a ViT model for the analysis of medical imaging data is
still a relatively new area of research, and its limitations have not been fully explored.

The limitations associated with the methodology used in this paper can be stated
as follows:

• Fusion technique: the fusion technique used in the study (DWT) may not be optimal
for all types of medical imaging data, and other fusion techniques should be evaluated.
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• Transfer learning: the study relied on transfer learning with a pre-trained VGG16 model,
and the results may not generalise to other types of pre-training or architectures.

• Model selection: the selection of a ViT model for the study was based on its perfor-
mance on a different task, and the suitability of ViT for the task of AD classification
has not been fully established.

• These limitations highlight the need for further research and evaluation of the pro-
posed multimodal fusion approach and the use of ViT for the analysis of medical
imaging data.

5. Conclusions

In this study, a multimodal fusion model based on fine-tuned ViT is proposed for the
binary classification of AD stages (AD/EMCI and AD/LMCI). MRI and PET images are
fused with adequate preprocessing and image registration. To confirm the generalisation
of our proposed multimodal fused image model, the proposed model was evaluated
on different test data of MRI and PET from participants from the ADNI database with
81.25% and 93.75%, respectively. This suggests that the proposed ViT model, which
was trained with fused data, can achieve a high level of accuracy when tested on ADNI
PET test data. This implies that the model has acquired knowledge to effectively extract
important characteristics of the fused data and is able to generalise well to new unseen
data. Furthermore, the fact that the model achieved a 93.75% accuracy suggests that it can
accurately classify a significant proportion of the PET test data. Overall, this indicates that
the proposed ViT model is a promising approach for classifying AD stages when trained
on fused MRI and PET data, in which classification with PET data gave better accuracy
than MRI test data. The proposed model performed significantly better on PET data, but
further research is required to improve its accuracy in MRI data classification.

The comparative analysis with existing multimodal models indicated that the pro-
posed model considerably outperforms the others in generalizing well on PET data with
an accuracy of 93.75%. The use of transfer learning for image interpolation offered a high
quality fused image. The suggested diagnosis approach assists in validating observations
and spotting early anomalies, fulfilling the needs of real-world applications. The use of
fused image to train our proposed model for AD classification helps to reduce the cost
of building different models for different imaging modalities, and this can save time and
resources that would otherwise be spent building and training separate models. By demon-
strating the feasibility and potential benefits of MRI-PET fusion, the combination of other
imaging modalities, such as diffusion-weighted imaging or functional MRI, could also be
investigated in the future. Other visualization techniques, such as Gradcam, could also be
considered in future work to understand the proposed model decision-making. Evaluation
of the impact of image quality on fused data is another future direction in this research.
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