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Abstract: Energy consumption has become one of the most challenging problems in future wireless
communication networks. One of the promising methods in fifth generation (5G) cellular networks to
meet the ever-increasing demand for high data traffic is wireless heterogeneous networks (HetNets).
Adding more base stations may improve network coverage, but leads to the consumption of a
significant amount of power. The scheme of two-tier networks contains small cell base stations
(SCBs) that cooperate with macro cell base stations (MCBs) to provide wider coverage. Some small
cell base station SCBs are experiencing light traffic loads due to the movement of user equipment
(UEs), but these SCBs still consume a considerable amount of energy. Therefore, to reduce SCBs’
power consumption and maximize the overall energy efficiency (EE) of a two-tier network, some
SCBs need to be switched off. In this paper, we extend the operation modes for BSs and present a
novel mechanism to select an appropriate operation mode for each SCB that is based on bio-inspired
behavior. We employ a bias function to manage the power consumption of each operation mode. Each
SCB has four power mode selections: On, Standby, Sleep, and Off. We formulate the EE maximization
problem under a set of constraints and present a Grasshopper Optimization Algorithm-based Variant
Power Mode Selection (GOA-VPMS) to solve it. The proposed algorithm scheme outperforms
previous work and provides a higher EE, according to the simulation results.

Keywords: two-tier network; energy efficiency (EE); bias function; Grasshopper Optimization
Algorithm (GOA)

1. Introduction

Up to 8.9 billion mobile subscriptions and 136 Exabytes (EB) of monthly mobile data
traffic are anticipated, with 25 percent of that traffic being delivered by fifth-generation
(5G) cellular networks, where the peak download data rates for both WiFi and cellular
systems have been increasing exponentially over the past 25 years [1–4]. Future wireless
networks will need to carry much more data. Fifth generation (5G) networks are expected
to transmit 1000 times more mobile data than fourth generation (4G) networks [5]. Conse-
quently, the quality of service, coverage, and capacity of cellular access networks require
further study [6,7]. In recent years, a collection of enabling technologies for 5G, such as
heterogeneous networks (HetNets), which are composed of various types of base stations
(BSs) overlaid by MCBs that may be installed for indoor or outdoor regions, have been
developed and deployed in practice to handle the high data traffic demand [8]. The high
transmission power of MCBs makes them ideal for covering wide areas for mobile users.
The area covered by SCBs, on the other hand, is much smaller, but they consume much
less power and offer a higher rate of data and better quality of service (QoS) as well [9].
The ultra-dense deployment of SCBs will increase their energy consumption despite their
low power consumption. According to [10], about 60% to 80% of the energy consumed by
wireless mobile networks comes from BSs. Mobile network operators’ estimated energy
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consumption costs account for around 30% of their operation expenditure (OPEX). BSs are
also powered by the national power grid, which is the most reliable source of energy but
also powers technologies that emit carbon dioxide (CO2). 60 TWh of electricity is consumed
by the global cellular network, which is equivalent to three to four 2000 MW power plants.
The energy expenditure of BSs contributes nearly half of a cellular network’s operational
and maintenance costs [11]. The source of global warming has been recognized to be
greenhouse gas (GHG) emissions, with CO2 being the major contributor. The information
and communication technology (ICT) industry currently produces 4% of worldwide CO2
emissions, with estimations indicting this will reach 5% by 2025 and up to 14% by 2040 [10].
The wireless mobile network sector contributes between 15% and 20% of CO2 emissions
in the ICT industry. As a result of the large energy usage and the significant contribution
of CO2 to the world’s carbon footprint from BSs, based on the aforementioned, the con-
sideration of energy efficiency (EE) has become a hot topic in wireless communication
systems in recent years [12–14], which has led to increased interest among researchers
in maximizing the network’s EE [15]. Therefore, an integrated research strategy will be
required to combine multiple cross-layer strategies and use their benefits to build a more
energy-efficient network. Several effective energy-efficient strategies, including on-off
BS operation, network planning, resource allocation, and cell zooming, have been devel-
oped. The results show that shutting off some underused BSs can boost EE considerably.
Figure 1 demonstrates the various methods that are applied to improve the EE, where each
technique has its own advantages and disadvantages.

Energy Efficiency
Techniques

Network
Planning and
Deployment

Base station
Density
Optimization

Heterogeneous
Network
Deployment

• Ultra-Dense HetNet
• Massive MIMO Deployment
• Mobile Edge Computing

Optimization
of Radio
Transmission
Process Beamforming

Design

Resource Allocation

Base Station
Sleeping
Strategy

• User Association
• Traffic Variation
• Cell Load
• Cell Zooming
• ON-OFF Switching Control

Hardware
Solution

• RF chain design
• Cloud-Based Approach

Energy Harvesting
Transfer

• Energy Harvesting from Natural Environment
• Energy harvesting from RF

Figure 1. Illustration of Energy Efficiency techniques. Note: adapted from [10].

Furthermore, many hybrid strategies have been proposed which combine one or more
techniques to further optimize the EE of the two-tier network. According to [16], SCBs
such as micro, femto, macro, and pico are all classified by their coverage area, with each
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cell having its own size, power output, and data rate. They typically consume less energy
due to their short coverage ranges and low radiation power requirements. Table 1. Discuss
the benefits and drawbacks of various recent studies on energy-optimization strategies
for SCBs.

Table 1. List of EE Techniques at the Base Station Level.

Citation of the Study Advantages of the Scheme Disadvantages of the Scheme

[17]
The centralized algorithm used to obtain the

optimal solution is based on Dinkelbach’s method.
In order to enhance EE and simplify calculations

The update of the global variables could fail and
information sharing across BSs could be imprecise

due to noise

[18]
The energy efficiency of the wireless network is
increased by the strategic placement “rational

manner” of SCBs

Only the power transmitted by BSs in the tier is
taken into account for EE research

[19]

The plan demonstrated that embracing
heterogeneous architecture for wireless cellular

networks can result in considerable gains in
throughput and energy efficiency

The provided numerical and simulation results,
presuming real urban environments, provide a

strong foundation for future work in identifying
the best HetNet topologies

[20]

For densely deployed femto cells,
an incentive-based sleeping mechanism, different

sleep modes, and hybrid access schemes that
enhance performance and EE

Throughput gains are based on user reallocation

[21]

The various patterns that only activate one of the
three sectors are especially useful when using the

sector-based switching technique. Making sure that
interferer cells are as far away as feasible, enabling

realistic interference modeling, minimizing
coverage gaps, and improving user uplink

transmission EE

The scheme does not consider the downlink
transmission EE

[22]
UE energy usage can be reduced by 18% for the

entire device, including the display, and by 50% for
the modem alone

The reduction in power consumption is limited to
UE modems only

[23]

The proposed clustering approach surpasses the
scheme in which the most popular files are cached

in all SCBs in terms of the impact of the various
system parameters on the cache hit probability

and EE

It is necessary to conduct further research on the
ideal cache placement approach for diverse
popularity profiles and mobility patterns

[24]

The multi-objective optimization methodologies
are used in the optimization framework created for
both EE and SE maximization in a network where
radio resources are shared among several operators

Systems that are limited by interference as well as
noise can use this method

[25]
Closed-form sub-optimal SE equilibria are reached

by the solution method for the Nash-product EE
maximization issue

Maximize EE performance at the expense of
SE performance

[26]

When compared to non-cooperative or
non-harvesting systems, the optimization

technique of joint BS-Sw and power allocation
yields about 15–20% higher EE. The proposed

distance-based BS-Sw method

There is a coverage hole, therefore methods such as
cell zooming must be used; this is left for

future work

In comparing the various schemes, each of them has its own advantages and disad-
vantages, as well as our scheme. More comparisons related to our proposed algorithm
are provided in Section 5. As part of our work, we focus on BS sleeping strategies and
consider four power consumption modes for each SCB instead of only an On-Off switching
strategy, i.e., On, Standby, Sleep, and Off, which aims to reduce the power consumption and
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maximize the EE of two-tier network systems. These four power consumption operation
modes are described in [27] as follows:

• On: Power is being consumed at maximum levels by the SCB.
• Standby: The SCB sleeps in a “light” state and is able to wake up quickly. There is no

power to the RF or the TCXO heater.
• Sleep: The SCB sleeps in a “deep” state and it will take more time to wake up. The only

components operating in this mode are the power supply, the backend connection,
and the generic CPU core.

• Off: The consumption power in this offline state is negligible and nearly zero.

To ensure the network’s basic operations, a minimum number of BSs need to be
active; therefore, we use an average inactive ratio and a repulsive scheme as described in
Section 3.6. To this end, the Control Data Separation Architecture (CDSA) is assumed in
this paper, as shown in Figure 2.

Figure 2. CDSA architecture.

The architecture was first introduced in the literature by [28]. The key benefit is that
it supports controlling network activities, especially when sending SCBs either into sleep
mode, off mode, or even just leaving them on, and thus promises a significant improvement
in EE. Additionally, the signaling network keeps users connected while consuming a
negligible amount of overall energy. This is one of the reasons why this architecture was
chosen for this research. A logical separation of the control and data planes is viewed as
a promising method that could address some of the issues raised by the architecture of
traditional cellular systems [29]. CDSA’s basic concept is based on the assumption that
only a small quantity of signaling and low data traffic may be needed for a wide coverage
area that can be provided by its MCBs, while SCBs offer a constant and reliable coverage
layer at low frequencies, where their large footprint also allows for robust connectivity
and mobility. In other words, the MCB in CDSA is responsible for the entire network,
including the SCBs that are under its coverage, and depending on UEs’ service demands,
MCBs and SCBs provide their data traffic. It may also maintain dual connections with
both MCBs and SCBs. Another advantage of the CDSA design is that it is also effective
for avoiding coverage gaps that may occur when numerous SCBs in a specific area are
turned off. Further, it provides highly available systems that can continue to serve UEs
even when elements of the system struggle [30]. When compared to legacy systems,
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the flexibility of the SCB operation mode allows them to achieve up to four times higher
EE [31]. Designers, on the other hand, need to be able to articulate challenges through
meta-heuristics. Furthermore, when dealing with nonlinear programming (NP)-hard
problems such as the one dealt with in the current study, search procedures or deterministic
optimization are inefficient. Near-optimal solutions to NP-complex problems can be found
quickly using stochastic optimization methods [32]. According to [33], optimization refers
to the process of minimizing or maximizing an objective function (i.e., EE in our case) by
selecting the best values for its variables. Nature-inspired computing has been the subject
of various research efforts in recent years, and population-based algorithms are the most
common stochastic optimization approach. In addition, optimization algorithms are a
novel way of developing new techniques that are based on the concepts and inspiration
of natural biological evolution. Consequently, we employ optimization techniques in
our work to select the appropriate mode of operation for each SCB to maximize the EE
across the whole two-tier network. One of these new meta-heuristic algorithms is the
Grasshopper Optimization Algorithm (GOA) presented in [34] by Mirjalili et al. It is based
on swarm populations in nature to find the best global solution to a problem. In addition,
it demonstrated a high rate of convergence through high exploration levels, which leads to
an adaptive mechanism that smoothly balances exploration and exploitation. Therefore,
due to these qualities, the GOA algorithm is able to overcome the challenges of single and
multi-objective problems and outperform other techniques. As a consequence, the GOA
algorithm is employed to optimize the EE in this study. In fact, we present a cooperative
GOA-based Variant Power Mode Selection (VPMS) algorithm to select the appropriate
power mode for each SCB and calculate the EE for the two-tier networks. The main
contributions of this paper are as follows:

• Our paper proposes a bio-inspired mechanism to choose a suitable operation mode—
on, standby, sleep, or off—for each SCB to maximize the EE of two-tier wireless
networks. A bias function is introduced to manage the power consumption of each
operation mode and apply the minimization algorithm accordingly.

• The GOA algorithm is applied to determine the optimal bias function values for a two-
tier network that maximizes the EE, which cooperates with our proposed algorithm
VPMS to select the appropriate operating mode for each SCB, such as On, Standby,
Sleep, and Off. The proposed GOA-VPMS algorithm computes the EE using the
ranking mechanism to classify UEs, while under several limitations, the bias function
regulates the power consumption of SCBs.

• An average inactive ratio threshold is used to guarantee the coverage and avoid
coverage gaps that may occur when several SCBs in a given area switch to off opera-
tion mode.

• For the proposed two-tier network architecture, the following metrics are derived:
Signal-to-interference-plus-noise Ratio (SINR), Received Signal Strength (RSS), index
of user association, power consumption for each BS, and EE.

The rest of this work is organized as follows. Section 2 discusses related works.
Section 3 contains the system model with subsections of Mechanism of Classification
(Section 3.1), Channel Model (Section 3.2), the expression of Signal-to-interference-plus-
noise Ratio (SINR) (Section 3.3), Achievable Data Rate (Section 3.4), Calculation of Power
Consumption (Section 3.5), and Calculation of Energy Efficiency (Section 3.6). Section 4
explains the problem formulation and solution with subsections: The proposed GOA-
based Variant Power Mode Selection Algorithm (GOA-VPMS) (Section 4.1), Algorithm
GOA (Section 4.2), and Algorithm VPMS (Section 4.3). Section 5 includes the results and
discussion. Finally, we conclude our paper and suggest future work in Section 6. To make
it easier for the reader, we have listed the key notations and descriptions used in this paper
in Table 2.
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Table 2. List of abbreviations and description.

Abbreviations Description

U Set of UE’s
η Calculated Energy Efficiency
S Set of SCBs
h Small scale fading (SSF) coefficients of the channel

CO2 Carbon dioxide
Rtotal Total Data Rate of all SCBs
Ps Transmission Power of SCB
Pm Transmission Power of MCB
Ψ Average Sleeping Ratio
rin Inactive radius
dsu Distance between u UE’s to the associated s SCB
α Path loss exponent

Pt
m Total power consumption of the MCBs

Pt
s Total power consumption of the SCBs

W Frequency bandwidth of each s SCB and u UE’s link
D Coverage of MCB
N0 Additive white Gaussian noise (AWGN)
P s

m Static Power Consumption of MCB
P s

s Static Power Consumption of SCB
ξ∗ Optimum Bias function Value
ξm

on Bias for Macro BS On
ξs

on Bias for Small Cell BS On
ξs

sby Bias for Small Cell BS Standby
ξs

sl Bias for Small Cell BS Sleep
ξs

o f Bias for Small Cell BS Off
Pt

m,s Total Power Consumption of Two-tier Network
5G Fifth Generation Cellular Networks
EE Energy Efficiency

HetNet Heterogeneous Network
HO Handover
BS Base Station
RF Radio Frequency

MIMO Multiple Input Multiple Output
OPEX Operational Expenditure
GHG Greenhouse Gas
ICT Information and Communication Technology
PPP Poisson Point Process

SINR Signa-to-interference-plus-noise Ratio
QoS Quality of Service
MCB Macro Cell Base Station
PCS Power Control Strategies
SCB Small Cell Base Station

CDSA Control Data Separation Architecture
TCXO Temperature Compensated Crystal Oscillators
CPU Central Processing Unit
GOA Grasshopper Optimization Algorithm
PSO Particle Swarm Optimization

VPMS Variant Power Mode Selection

2. Related Works

Previous research [9] discussed the improvement of both EE and coverage for multi-
tier HetNets, which are comprised of MCBs and other types of SCBs, such as pico cells and
femto cells. They formulated an EE optimization problem with consideration of throughput
performance and fairness of resource allocation. The simulation, which employed stochastic
geometry tools and the PPP distribution, demonstrated that the deployment density of SCBs
has a significant impact on EE and coverage performance.Patra et al. [35] and Mao et al. [36]
compared the performance of downlink transmissions in a vehicle network that has a
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scenario with only one MCB and another scenario that has MCB with SCBs. Throughput,
EE, and average end-to-end delays were all shown to be improved by this technique. In in
the work by Peng et al. [37], a small cell network was modeled as a homogeneous Poisson
point process, in which the average feasible cell rate was determined using the all-on and
all-off power control strategies. Another study [38] proposed switching small cells on and
off, zooming in, and zooming out to meet UE QoS requirements based on location, speed,
and traffic load variation. Ahmed et al. [39] improved an energy usage optimization scheme
in HetNet that was centralized by MCB and included several micro-cell BSs equipped with
solar panels and wind turbines (renewable energy sources). The optimization problem was
formulated as a mixed integer non-linear programming problem and solved by an interior
point method. It was found that different sizes of HetNet provided significant energy
saving. Furthermore, a cooperative switching off mechanism was proposed [40] for HetNet
that considers low-traffic hours for both MCBs and SCBs, thus exploiting roaming-based
infrastructure sharing to guarantee UE QoS. The scheme achieved notable energy savings.
New distributed game theory was employed [41] to save energy. Mobile network operators
will have their respective BSs switched off if their users are covered by another mobile
network provider in this scenario. The EE maximizing problem was investigated [26],
where the cooperative HetNet was fed by hybrid sources of energy via combined BS
switching and power allocation using combinatorial optimization. The power allocation
problem was solved using Lagrange dual decomposition in a suboptimal distance-based BS
switching scheme and due to its two dynamic thresholds, the proposed algorithm is tune-
free, and performs better than non-harvesting and non-cooperative algorithms by 15% to
20%. Despite the significant energy savings from turning off BSs, it introduces a significant
delay in responding to UE traffic demand, as BSs need to activate from the off state before
serving them. To eliminate the long delay problem of a deactivated BS, it switches off most
of its elements to save energy and enters sleep mode to respond quickly to user requests
rather than entering off mode. The introduction of sleep modes for BSs constitutes one of
several efforts to save power in cellular networks [42–44]. Rather than the traditional on-off
mode, IEEE 802.11b introduced sleep mode as one of the most effective techniques for
reducing energy consumption in small cells. According to [45], sleep mode consumes 10%
of the power, whereas switched-off mode consumes almost no power. Two saving strategies,
low duty operation mode for femto-cell BSs and sleep mode for UEs, were proposed in IEEE
802.16m [46]. Three different sleep strategies were discussed [47,48], which were controlled
by SCB, UEs and core networks, respectively, and the contribution led to 13–56% energy
savings in the network. Further multi-sleep levels were considered in [49], where four sleep
modes were suggested for improving power consumption and wake-up time in a femto-cell
network. The active-aware sleeping strategies for MCB and femtocell access points in a two-
tier network were adapted to investigate the impact of EE in [50] using stochastic geometry
to develop energy saving with the consideration of coverage extension. The numerical
results demonstrated that sleeping schemes have an effect on EE and coverage probability.
El Amine et al. [51] presented a multi-level sleep mode for SCBs in a heterogeneous network
architecture to save energy and reduce drop rates. A reinforcement learning algorithm
was proposed for SCBs that adapts their activities subject to service delay constraints.
The numerical results demonstrated that significant energy savings are achievable with a
respectable drop rate. Zhang et al. [52] proposed a novel access scheme with a separation
of the control and user planes that takes into account user-demanded service and fairness,
in which SCBs can enter a semi-sleep mode. The network EE improved by 54% under
certain constraints. A new CDSA architecture concept was proposed in HetNet to further
reduce the energy consumption of BSs [53,54]. It was employed by Ansari et al. [29],
and showed benefits, offering a re-configurable method of network adaptation, avoiding
the always-on paradigm and contributing to significant energy savings. The numerical
results showed that the separation architecture can usually reduce energy consumption by
50% or more compared with a conventional cellular network that contains only MCBs. It
is envisioned to become a strong candidate in 5G networks [55,56]. Research [31] shows
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that improving analytical models that evaluate the signaling generated in CDSA networks
and conventionally deployed networks during different handover (HO) scenarios can be
beneficial in terms of HO signaling overhead savings, and enables the MCBs to act as
centralized coordinators for the SCBs under their control to determine the operation mode
for each SCB. In addition, modified separation architecture was considered [57], where an
MCB managed low-rate data traffic and control signals while an SCB controlled high-rate
data traffic. Afterward, the study presented a mechanism for saving energy for BSs by
determining the state of each BS based on how many UEs request high-speed data traffic
and how many UEs are located in areas where the regarded BSs and its neighbors’ coverage
overlap. A modified separated network architecture was optimized using a PSO algorithm,
and the numerical results showed that the suggested energy-saving plan provides a higher
EE than traditional energy-saving schemes. Lu et al. [58] found that CDSA is a more
efficient architecture for overcoming overhead issues than traditional cellular networks,
particularly for large bursty traffic such as the Internet of Things. The study presented a
modified power consumption model, and the Lagrangian dual decomposition method was
used to solve the optimization problem under the overall capacity constraint of a wireless
system. The simulation results demonstrated that the CDSA network could achieve up to
14% EE gain over the conventional network. The goal of Sun et al. [59] was to improve
network EE by considering three important factors: cell range expansion bias, the power
of an almost blank subframe, and the density of SCBs. A linear search algorithm was
used to obtain a near optimal power reduction factor and the bias of cell range expansion.
The simulation showed a significant enhancement in the network EE while the proposed
heuristic algorithm incurred low computational complexity. Furthermore, as it has been
widely used in the literature, we employ the bias function in the process of determining the
operation modes of the SCBs. For example, in Lee et al. [60], each BS in HetNet learned
bias values for optimal network performance, while in Kudo et al. [61], each UE learned
the direct bias value through Q-learning. In Chou et al. [62], a load-based cell association
scheme was introduced in which a bias factor was used to decide the time and quantity of
offloading based on individual traffic load of MCB. Kudo et al. [61] aimed to extend the
pico-cell range in HetNet by presenting a method for determining each UE’s bias value
using the Q-learning algorithm. Additionally, the adoption of a bias function [63] led to the
effective use of small cell resources by redirecting users from overloaded macro cells to
underloaded small cells, thus balancing the two-tier network load. On the other hand,
the GOA algorithm was used in the literature to solve several optimization problems; for
example, it was employed [64] to reduce the amount of energy used in cloud computing.
The results demonstrated that the algorithm performed much better than other algorithms.
In Wenhan et al. [65], the new updated version of the GOA algorithm was used to find the
best solution for the optimal chiller loading problem with the goal of minimizing electricity
consumption. According to the simulation results in Ullah et al. [66], the GOA algorithm
is able to reduce the consumer electricity bills by more than 34.69%. Therefore, the GOA
algorithm is appropriate for solving problems with various parameters to find an optimal
solution, and using it in this work would contribute to obtaining optimal bias function
values for controlling the power consumption of each operation mode. Although Baidowi
et al. [67] used the GA algorithm to maximize EE in their study, no previous work has
used the GOA algorithm to maximize the EE of two-tier networks to our knowledge. Sing
et al. [68] provided a new optimization routing method based on the nature-inspired GOA
algorithm that improves sensor network power consumption while still delivering higher
QoS support. The suggested routing scheme’s performance is evaluated using residual
energy as well as several QoS criteria such as packet loss, delay time, and throughput.
The results reveal that the technique performed better by delivering an energy-efficient
network with less time delay, less packet loss, and higher throughput.
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3. System Model

Table 2 contains a list of the symbols used in the paper. A two-tier network with single
MCB and numerous SCBs is considered in the proposed system model, where the MCB is
located at the origin, whereas the group of SCBs, S, and user equipment (UE’s) U follow an
independent Poisson point processes distribution (PPP). The MCB contains all necessary
information of the UEs and SCBs, such as the RSS at each UE, SINR of each communication
link, and respective locations. It will manage and associate each UE based on its value of
RSS with the appropriate SCB.

3.1. Channel Model

The SCBs have different transmission powers, and for that reason, we partitioned
them using Voronoi tessellation [69] as illustrated in Figure 3.

Figure 3. Voronoi tessellation • indicates the location of SCB.

We assume that at the start of the simulation, the transmission power of the MCB, Pm,
and SCBs, Ps, are set to their maximum value, which will subsequently be modified by the
proposed algorithm. We suppose that a Rayleigh fading channel exists between u UE’s
and its s associated SCB, i.e., h ∼ exp(1), hsu is the small scale fading (SSF) coefficient of
the channel. The path loss exponent parameter α is assumed to be greater than 2, and the
distance between u UE and its associated s SCB donated as dsu, thus the received signal
strength indicator (RSSI) is calculated as follows:

RSSI =
Ps

hsud−α
su

(1)

3.2. Signal-to-Interference-Plus-Noise Ratio (SINR)

In this scenario the communication link of UEs, u served by a particular SCB, s only
experiences an interference, i from other SCBs since they have a different bandwidth than
MCB in the CDSA scheme [70]. The received power at a particular user can be described as
Pshsud−α

su and the SINR can be calculated as

SINRsu =
Pshsud−α

su

∑
i∈S

Pihiud−α
iu + N0

(2)
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where N0 is additive white Gaussian noise (AWGN) with a normalized value of 1.

3.3. Achievable Data Rate

The achievable data rate for each communication link between u UEs that are served
by s SCB is defined as

Rsu = Wsu log2(1 + (Φsu.SINRsu)), ∀s ∈ S, u ∈ U (3)

where Wsu represents the frequency bandwidth of each s SCB and u UE’s link, while Φsu is
the Index variable of user association. We presume that each mobile user on the network
receives an equal share of the network’s bandwidth [71,72]. As a result, each communi-
cation’s bandwidth Wsu can be expressed as B/U, where B is the system’s bandwidth. In
contrast to [67], we assume that there is no data rate between UEs and sets of SCBs (Ssby,
Sslp and So f ) in Standby, Sleep, and Off operation modes. Therefore, the total data rate
achieved by UEs that are active and associated with SCBs that are only in (On) operating
mode (e.i. Son) is described as follows:

Rtotal =

[
ξs

on × ∑
s∈Son

∑
u∈U

Rsu

]
(4)

3.4. Calculation of Power Consumption

As will be explained in Section 3.6, SCBs are classified into four groups depending on
their operation modes: On, Standby, Sleep, and Off, with each group consuming a different
amount of energy based on the number of SCBs and their operating mode. As a result,
SCBs are estimated to consume the power illustrated by Equation (6).

Pt
s =

[
∑

s∈Son

(P s
s + Ps)×Φsu

]
+

 ∑
s∈Ssby

(P s
s + Ps)× 0.5×Φsu


+

 ∑
s∈Sslp

(P s
s + Ps)× 0.15×Φsu

+

 ∑
s∈So f

(P s
s + Ps)× 0×Φsu

 (5)

The following demonstrates how we calculate the power consumption of the SCBs’
four operation modes after applying a bias function value:

Pt∗
s =

[
ξs

on × ∑
s∈Son

(P s
s + Ps)×Φsu

]
+

ξs
sby × ∑

s∈Ssby

(P s
s + Ps)× 0.5×Φsu


+

ξs
slp × ∑

s∈Sslp

(P s
s + Ps)× 0.15×Φsu

+

ξs
o f × ∑

s∈So f

(P s
s + Ps)× 0×Φsu

 (6)

Note: As can be seen from Equation (7), the inactive SCBs in off operation mode
consume nearly zero power; therefore, we will ignore their related bias function value ξs

o f
in the rest of this paper. On the other hand, MCB is always in active operation mode. As a
consequence, the MCB’s total power consumption is expressed as follows:

Pt
m = (P s

m + Pm) (7)

where P s
m and Pm donate the static power consumption and transmission power of MCB,

respectively. Then, the reduced power consumed by MCB after applying the bias function
value can be calculated as follows:

Pt∗
m = ξm

on × (P s
m + Pm) (8)



Electronics 2023, 12, 1216 11 of 23

Note: Son, Ssby,Sslp and So f indicate groups of SCBs for On, Standby, Sleep, and Off,
respectively. Each operation mode’s power consumption is adjusted by the bias function
of the MCB and each set of SCBs (ξm

on, ξs
on, ξs

sby, and ξs
slp) separately. An overall two-tier

network’s power consumption is shown as follows:

Pt
m,s = Pt∗

m + Pt∗
s (9)

3.5. Calculation of Energy Efficiency

Our work focuses on energy-efficient communication. Therefore, the two-tier net-
work’s Energy Efficiency (ηEE) can be formulated as the ratio of the total achievable data
rate of active SCBs to the total power consumption of the MCB and SCBs; therefore,
from (4) and (9), the equation can be presented as

ηEE =
Rtotal
Pt

m,s
(10)

The overall two-tier EE is measured in bits per joule.

3.6. The Mechanism of Classification

MCB determines which operation mode is appropriate for each SCB in this study based
on the ranking method. For the association with users, we first categorize the received
signal depending on its strength, from strongest to weakest. The rank is then labeled as 1
(On mode), 2 (Standby mode), and 3 (Sleep mode) for the first, second, and third strongest
RSS, respectively, and 4 (Off mode) for the rest. Thus, in this scenario, four different
operation modes are considered for the SCBs, and their power consumption is assumed to
be as in [27]. That is, SCBs in on, standby, sleep, and off operation modes consume power at
rates of 100%, 50%, 15%, and nearly zero, respectively; their related bias function values are
ξs

on, ξs
sby, ξs

slp, ξs
o f , respectively. Since the MCB serves and controls all SCBs, it is assumed to

be active and always in (On) mode consuming 100% of power, and assigned to the bias
function as ξm

on. When the MCB or any SCB is in (On) operation mode, it is represented as
(active status), while standby, sleep and off operation modes are considered to be (inactive
status). Furthermore, we employ a repulsive scheme in which SCBs can only be placed
into inactive mode if they are inside the inactive radius, rin, which is under the coverage
of MCB, referred to as D. Then, according to Zhang et al. [30,73], we calculate the metric
average inactive ratio Ψ as follows:

Ψ =
πr2

in
πD2 (11)

4. Problem Statement and Solution

In this section, we will describe the formulation of the problem and constraints for the
proposed GOA-VPMS algorithm, as well as additional details in the next subsections on
how the GOA and VPMS algorithm is used to address the problem. First, we formulate the
problem as follows:

max
ξm

on ,ξs
on ,ξs

sby ,ξs
slp

= ηEE (12)

subject to

0 ≤ ξm
on + ξs

on ≤ 0.9 (13)

0 ≤ ξs
sby + ξs

sl ≤ 0.1 (14)

ξm
on + ξs

on + ξs
sby + ξs

sl ≤ 1 (15)

∑
s∈S

Φsu ≤ 1; ∀u ∈ U (16)
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Φsu ∈ {0, 1}; ∀s ∈ S; ∀u ∈ U (17)

count

(
∑

u∈U
Φsu 6= 1

)
≤ Ψ; ∀s /∈ S (18)

where constraint (13) indicates that for both operation modes of an active MCB and an active
set of SCBs, the bias function value cannot be greater than 90% of the overall bias function
value; this is to guarantee the stability of the two-tier network by not greatly reducing the
power consumption of the MCB and the active SCBs. According to constraint (14), the bias
function of inactive SCBs must not account for more than 10% of the total bias function
value; this reflects our main goal, to reduce the power consumption of inactive SCBs as
much as possible. Constraint (15) stipulates that the sum of the bias function values for
the MCB and both active and inactive SCBs must be less than or equal to 1. Constraint (16)
guarantees that only one UE can be connected to a single SCB at a time. Constraint (17),
Φsu is a binary digit variable (0 or 1) that represents the user association indication; in
other words “1” indicates that the particular UE is connected to one of the SCBs, whereas
“0” means the UE is not connected to any SCB. Finally, constraint (18) guarantees that the
number of SCBs that can be in inactive operation mode does not exceed the average inactive
ratio Ψ, to prevent the occurrence of coverage holes.

4.1. The Proposed GOA-Based Variant Power Mode Selection Algorithm (GOA-VPMS)

In the next subsections, we will discuss how the two algorithms, GOA and VPMS,
cooperate to maximize EE in our scenario, as well as additional details on how the GOA-
VPMS algorithm can be used to address the problem. This algorithm’s overall goal is to
find the optimum bias function values to maximize the EE of a two-tier network. Using
the ranking approach described in Section 3.6, the GOA-based VPMS adaptively selects
the appropriate operation mode for each SCB. Further details are provided on how the
bias function values (ξm

on, ξs
on, ξs

sby, and ξs
slp) for each BS are used to adjust its network

power consumption.

4.2. Algorithm GOA

The grasshopper is an insect. Due to the harm they cause to agriculture and crop
production, they are regarded as a pest [74]. There are two main stages in the grasshopper’s
life cycle: larva and adult. Grasshopper swarming can be seen at both stages, but with
different behaviors. Grasshopper larvae move slowly along the ground with very small
steps since they have no wings. Adult grasshoppers, on the other hand, form a swarm in
the air and travel quickly with greater steps [75]. The following equations describe the
mathematical model used to simulate grasshopper movement:

Xi = Si + Gi + Ai (19)

Si =
N

∑
j=1
j 6=i

s
(
dij
)

d̂ij (20)

s(r) = f e−r/l − e−r (21)

Gi = −gêg (22)

Ai = uêw (23)

where Xi, Si, Gi and Ai are the grasshopper position, social interaction forces, gravitational
force, and wind advection, respectively. dij and d̂ij in Equation (18) are the distance
and unit vector from the ith to the jth grasshopper, respectively, s(r) describes the social
force between two grasshoppers, where f indicates the intensity of attraction and l is the
attractive length scale. In Equation (22), g is the gravitational constant and êg denotes the
unity vector toward the center of the earth, u is a constant drift and êw is a unity vector
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in the direction of the wind. A modified version of the equation to solve optimization
problems is presented as follows

Xd
i = c

 N

∑
j=1
j 6=1

c
ubd − lbd

2
s
(∣∣∣xd

j − xd
i

∣∣∣) xj − xi

dij

+ T̂d (24)

where lbd and ubd are the lower and upper bounds in the dth dimension, respectively, T̂d
is the value of the dth dimension in the target (best solution discovered so far), and c is a
decreasing coefficient to shrink the comfort, repulsion and attraction area. The following
formula is used to update the parameter c.

c = cmax − i
cmax − cmin

L
(25)

where cmax is the maximum value, cmin is the minimum value, i is the index for the current
iteration, and L is the maximum number of iterations.

Initially, the GOA algorithm generates a random population of various sets of solutions,
each of which consists of a set of bias function values (Algorithm 1 summarizes the steps in
GOA algorithm). Next, in order to compute the solution’s fitness and obtain the EE value,
the VPMS algorithm (Algorithm 2) is called, which is subsequently passed back to the GOA
algorithm again. Figure 4 shows the proposed logic flow diagram.

START

Initialize a set of solutions (bias
function values) at the beginning.

GOA Algorithm VPMS Algorithm 

provides sets of bias function values Calculate the EE

Get the set of bias
function values

Create random coordinates   
(xi, yi)(xj, yj)

& find all possible distance dsu

Calculate EE

Evaluate EE by searching best fitness of
search agent (T)

current iteration (i)

<
maximum iterations

Get the best bias
function value set

Update c = cmax- i (cmax-cmin / L)

for each search agent normalize the distance
between grasshoppers

Update the position of the current search
agent Bring the current search agent back if it

goes outside the boundaries

Update T if there is better solution
NO

Yes

Yes

NO

Set the transmit power signal Ps
, Pm at max value

Generate the channel
randomly

Calculate all possible received signal
strength RSS for each UE and sort

in ascending order;

If any SCB has no UEs, assign them to one of the
inactive modes 2, 3, or 4 (e.g. Standby, Sleep, and

Off) based on their highest rank

Calculate each mode’s power
consumption

Calculate total power consumption
by Eq. 9

Calculate SINRsu 
& total data rate 

END

Initialize all parameters:
Xi, Si, Gi, Ai, etc.

i=i+1

Figure 4. The GOA-VPMS logic flowchart.
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4.3. Algorithm VPMS

The GOA algorithm (Algorithm 1) feeds bias function values into the proposed
VPMS algorithm (Algorithm 2). The VPMS algorithm performs the various duties here.
For example, based on its classification, each SCB should be assigned the appropriate
operation mode.

Algorithm 1: Grasshopper optimization algorithm
START
Initialize swarm Xi(i = 1, 2, ..., n)
Initialize Cmax, Cmin, and maximum number of iterations
Calculate the fitness using Algorithm 2;
The best search agent is T
while i < Max number of iterations do

Update c using Equation (25)
for each search agent do

In [76,77], normalize the distance between grasshoppers
Apply Equation (24) to update the current position of the search agent
Restore the current search agent if it crosses the boundaries

end for
If there is a better solution, update T
i = i + 1
Evaluate the fitness of each search agent using Algorithm 2;

end while
Return T

Algorithm 2: Variant Power Mode Selection
START
1. Obtain ξm

on, ξs
on, ξs

sby, ξs
slp) from Algorithm 1;

2. Create random coordinates (xi, yi)(xj, yj);
3. Find all the possible distances dsu using Euclidean distance;
4. Set the transmission power signal Ps, Pm at max value for MCB and each SCB;
5. Generate the channel randomly, hsud−α

su , for all possible connections between the
UEs and SCBs

6. Calculate all possible received signal strength RSS for each UE;
7. Sort the RSS values in ascending order;
8. Link the users u to the SCB s that has the highest RSS;
9. Count the number of users for each SCB;
10. If any SCB has no UEs, assign them to one of the inactive modes 2, 3, or 4 (e.g.,

Standby, Sleep, and Off) based on their highest rank;
11. Calculate each mode’s power consumption;
12. Calculate total power consumption Pt∗

m,s. Equation (9);
13. Calculate each SINRsu using Equation (2) then the total data rate Rtotal by

Equation (4), and energy efficiency ηEE by Equation (10);
END

5. Simulation Results and Discussion

The simulation and analysis for the proposed VPMS based on the GOA algorithm
are carried out in this research paper using the MATLAB program version 2021a on the
Windows 11 operating system. In this simulation, within the specified area, the entire
network contains 50 SCBs S and the number of UE U is assumed to be 200, which are
both randomly deployed and follow the Poisson point process (PPP) distribution. Since
LTE-Advance can attain this bandwidth through channel aggregation and since 100 MHz
SCBs are expected to provide ultra-high-speed communications in 5G networks, a 100 MHz



Electronics 2023, 12, 1216 15 of 23

network bandwidth was chosen. The schemes described can be applied in both low and
high SINR locations. Additionally, it should be noted that the instantaneous SINR values for
users indicated by Equation (2) may change depending on the dynamic channel conditions
and the location of the UE [5]. We show the simulation results to demonstrate the proposed
approach for determining SCB operating patterns. The simulation network parameters are
presented in Table 3.

Table 3. Simulation network parameters.

Simulation Parameter Value Unit

Number of MCB 1 -
Number of SCBs S 50 -
Number of UEs U 200 -

SCB radius <100 m
P s

m 130 Watt
Pm 20 Watt
P s

s 4.8 Watt
Ps 0.75 Watt
B 100 MHz

rin 500 m
D 30 km

Number of Iterations 100 -
Upper bound ubd 100 -
Lower bound lbd −100 -

Our primary goal is to maximize EE across the entire two-tier network by optimizing
all BSs’ power consumption. Initially, the transmission power of the MCB and all SCBs in
the network is set to their maximum values. After running the GOA and VPMS algorithms,
the optimum bias function values obtained from the simulation, such as ξm∗

on , ξs∗
on, ξs∗

sby,

and ξs∗
slp, refer to MCB (on) and SCB (on, standby and sleep) operation modes, respectively.

Table 4 shows our results with different values, which will be investigated in this section to
evaluate the performance of the VPMS-GOA algorithms.

Table 4. Simulation results and values.

Operation Mode MCB/SCBs Sets Optimal Bias Function Value

ON MCB ξm∗
on 0.490

ON Son ξs∗
on 0.401

STANDBY Ssby ξs∗
sby 0.061

SLEEP Sslp ξs∗
slp 0.035

OFF So f ξs∗
o f -

The results show that the bias function values ξm∗
on and ξs∗

on only reduced to 0.490
and 0.401, respectively, which are larger than the bias function values of SCBs that are in
inactive operation mode (e.g., ξs∗

sby, and ξs∗
slp). This returns to the fact that the MCB and a

set of SCBs are in active operation mode to control all the duties of the network and to
serve UEs, respectively. In other words, when a set of SCBs is active and in (on) operation
mode, they consume more power than sets of SCBs in inactive operation modes, such as
standby, sleep, or off, to serve the users. However, the bias function values of both MCB
and SCBs that are in (on) operation mode do not exceed 90% of the total bias function value
as constrained by (13). We can see also from Table 4 that the lowest values of the optimum
bias function obtained by the GOA-VPMS algorithm were for ξs∗

sby, and ξs∗
slp related to

the sets of SCBs, Ssby, and Sslp, which are most reduced at 0.061 and 0.035, respectively.
This reflects the aim of the study, which is to reduce the power consumption of these
operation modes as much as possible. However, their total related bias function values
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do not exceed 10% of the overall bias function value, as it is constrained by (14). Figure 5
compares our scheme (referred to as GOA-VPMS for simplicity) to the following schemes:
conventional sleep control, without sleep control, random sleep 20%, and random sleep
30%, where the simulation uses the parameters and environment adopted from [78] in
terms of the difference in power consumption in all schemes as the number of SCBs varies.
The figure shows a proportional relationship between the number of SCBs and their power
consumption; in other words, as the number of SCBs increases, the amount of power
consumed also increases for all the schemes.

Figure 5. Power consumption as the number of SCBs changes.

As expected, the scheme with no sleep control has a significant increase in power con-
sumption because all of the SCBs are active at all times. On the other hand, the considered
system model shows there is a relatively lower power consumption associated with the
conventional sleep control scheme, whereas the scheme of random sleep 20% consumes
slightly more power than the scheme of random sleep 30% and the conventional sleep
method. However, the simulation demonstrates that all the previous schemes, such as
those without sleep control, conventional sleep control, random sleep 20%, and random
sleep 30%, are outperformed by the proposed GOA-VPMS by 66.04%, 54.72%, 49.06%,
and 44.65%, respectively. This refers to the fact that our scheme does not take into account
load or traffic variation, which we may include in our future work. Further to evaluating
the performance of the GOA-VPMS algorithm, we compare it with both the Switching
Off Decision and User Association (SODUA) and Power Mode Variant Selection (PMVS)
algorithms [67,73], from an EE and spectral efficiency (SE) point of view, as shown in
Figures 6 and 7, respectively.

In line with expectations, the proposed algorithm outperforms both the SODUA
and PMVS algorithms in terms of maximizing EE by 67.23% and 9.38%, respectively,
and enhancing SE by 20.9% and 15.23%, respectively, for the entire two-tier network. This
is because the SODUA algorithm only uses the switched-off mode, whereas our GOA-
VPMS algorithm has more flexibility and considers four different operation modes (e.g.,
on, standby, sleep, and off). Furthermore, GOA is able to outperform other algorithms in
the literature, as mentioned in [74], e.g., the GA (Genetic Algorithm). More comparisons
and discussion about the convergence between GOA and GA are provided at the end
of this section. In addition, we fixed one bias function value and relaxed the others for
more comparison and evaluation of the performance of our proposed scheme, as shown in
Figures 8 and 9.
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Figure 6. EE for GOA-VPMS vs. SODUA and PMVS algorithms.

Figure 7. Spectral efficiency for GOA-VPMS vs. SODUA and PMVS algorithms.

We can see that even though the bias function values vary from 0 to 0.9 and from 0 to
0.1, respectively, the EE is still optimized. In Figure 8, we can see a trade-off between the
values of the bias function and maximizing the EE, where the curve related to MCB in (on)
operation mode is slightly decreased, meaning that the reduction in power consumption
is minimal, while the curve related to (on) SCBs gradually decreases, meaning more
power consumption can be reduced and therefore more EE. On the other hand, Figure 9
explains the most significant reduction in power consumption for inactive SCBs that are in
(standby) and (sleep) operation modes. It is noted that the SCBs in sleep operation mode
consume less power than in standby operation mode. Furthermore, Figure 10 represents the
convergence curves of GOA and GA in multiple time runs, indicating how many iterations
each algorithm requires for a solution to be obtained. In addition, we can identify the
most optimal solution for each algorithm by studying the curves. In Figure 10a,b, it can
be seen that in the first case, the GOA algorithm reaches the best solution before GA. It is
also shown that in the second-time run in Figure 10c,d, GOA outperforms GA in terms of
requiring a smaller number of iterations to reach the optimum value of the bias function.
On the other hand, in Figure 10e,f, there is a minimal difference between both GOA and
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GA in terms of reaching the best solution. Taking into account the results of this study,
we conclude that both GOA and GA are capable of efficiently solving this problem. Both
of them work very similarly, so we can use either of them to achieve our goals. As the
no-free-lunch (NFL) theorem [79] states, no single optimization can solve all problems; any
other optimization is not guaranteed to produce the same results. However, because this is
a small scenario with only one MCB and 50 SCBs, the reduced power consumption and EE
may not be significant when compared to the reality scenario with more MCBs and several
SCBs that we may apply in our future work.

Figure 8. Bias function values of MCB and SCBs.

Figure 9. Bias function values of SCBs for Standby, and Sleep operation mode.



Electronics 2023, 12, 1216 19 of 23

(a) GOA first-time run (b) GA first-time run

(c) GOA second-time run (d) GA second-time run

(e) GOA third-time run (f) GA third-time run

Figure 10. Convergence of the GOA and GA algorithms.

6. Conclusions and Future Work

As one of the critical issues related to global warming, mobile communication net-
works’ energy consumption has recently received much attention. It accounts for a signif-
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icant proportion of overall ICT energy consumption. Our paper outlines a bio-inspired
behavior-based mechanism to choose a suitable SCB operation mode: on, standby, sleep,
and off. We employ a bias function to manage the power consumption of each operation
mode. Each SCB has four different power modes. Calculations were made for the two-tier
networks’ signal-to-interference noise ratio (SINR), user-SCB association index, power
consumption, and maximizing the EE for the proposed system by applying the VPMS-
GOA algorithm. According to the simulation results, the proposed algorithm scheme
outperforms state-of-the-art algorithms, such as those without sleep control, conventional
sleep control, random sleep 20%, and random sleep 30%, in terms of power consumption
by 66.04%, 54.72%, 49.06%, and 44.65%, respectively. This is due to our algorithm not
considering any traffic or load variation. Additionally, the proposed algorithm outperforms
both the SODUA and PMVS algorithms in terms of maximizing EE by 67.23% and 9.38%,
respectively, and in terms of enhancing SE by 20.91% and 15.23%, respectively. In future
work, we will investigate the energy consumption of UEs in a multi-macrocell environ-
ment, since communicating with an MCB requires more energy and because the distance
between a UE and an MCB is typically much greater than the distance between a UE and a
nearby SCB.
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