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Abstract: Super-Resolution (SR) is a fundamental computer vision task, which reconstructs high-
resolution images from low-resolution ones. Existing SR methods mainly recover images from clear
low-resolution images, leading to unsatisfactory results when processing compressed low-resolution
images. In the paper, we propose a two-stage SR method for compressed images, which consists
of the Compression Artifact Removal Module (CARM) and Super-Resolution Module (SRM). The
compressed low-resolution image is used to reconstruct the clear low-resolution image by CARM,
and the high-resolution image is obtained by SRM. In addition, we propose a residual information
distillation block to learn the texture details which are lost during the compression process. The
proposed method has been validated and compared with the state of the art, and experimental results
show that the proposed method outperforms other super-resolution methods in terms of visual
effects and objective evaluation metrics.

Keywords: image super-resolution; compressed images; information distillation

1. Introduction

Images are generally down-sampled and compressed so as to reduce space consump-
tion and accelerate image transmission. The process of down-sampling causes loss of
details in high-resolution images, and the subsequent compression also brings undesir-
able artifacts such as block effects. Reconstruction of images from down-sampled and
compressed ones is therefore important for reducing storage consumption while retaining
image details when viewing.

Deep learning (DL) has achieved encouraging results in various tasks, including image
classification [1–5], object detection [6–10], and image segmentation [11–17]. Among them,
super-resolution technology is currently a great topic, which refers to the generation of
high-resolution (HR) images given the corresponding low-resolution (LR) ones. SR is
now in urgent demand in many applications, such as intelligent surveillance [18], medical
imaging [19,20], remote sensing [21,22], etc.

The key problem of compressed image super-resolution is to eliminate compression
artifacts and preserve image details while increasing image resolution. The currently
proposed deep learning-based super-resolution algorithms target uncompressed images,
i.e., processed low-resolution images with only down-sampling or blurring degradation
process, which leads to the fact that these super-resolution reconstruction algorithms
for uncompressed images cannot effectively handle with compressed images. If super-
resolution is performed directly on JPEG images it will aggravate the block effect and
ringing effect, leading to poor visual effect [23]. Some algorithms have been proposed for
compressed image reconstruction, but most of them are trained by decomposing this task
into two independent subtasks and then using a joint level. Experimental results often
show more pronounced compression artifacts and severe loss of details.

To address these issues, we propose a novel super-resolution algorithm to reconstruct
compressed images. The model input uses three kinds of data: compressed low resolution
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(C-LR) images as input, and LR and HR images as labels. We propose two modules:
compression artifact removal module (CARM) and super-resolution module (SRM). To
remove the compression artifacts in C-LR images, a two-stage joint loss function is used.
The first of these stages use the LR image as supervised information, which greatly reduces
the probability of image scaling errors in the super-resolution stage. To further make
the generated images clearer, we propose a residual information-distillation module to
learn more about the image features lost in the compression process. Finally, we use peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) to evaluate the image quality,
and the experimental results verify the effectiveness of the method. The main contributions
of this paper are as follows:

Firstly, we design a compressed image super-resolution network consisting of two
modules: Compression Artifact Removal Module (CARM) and Super-Resolution Module
(SRM), using a joint loss function to train the network.

Secondly, we propose a novel residual information distillation block so as to efficiently
learn the image features lost in the compression process.

Finally, experimental results show that the proposed model performs well and obtains
better results on common evaluation metrics including peak signal-to-noise ratio (PSNR)
than state-of-the-art.

2. Related Work
2.1. Problem Formulation

The traditional SR problem can be formulated as

Y = HX + n, (1)

where X represents the HR image, H denotes the down-sampling and blur kernel, and n
represents the additive noise. For super-resolution task for JPEG image, the downscaling
process is shown in Figure 1. Compared with the traditional super-resolution problem, the
JPEG compression low-resolution image degradation process adds JPEG compression. So
(1) can be converted into (2):

Z = CY, (2)

where Y is the low-resolution image defined by (1), C represents compression kernel, and
Z denotes the compressed low-resolution image. This work mainly studies compression
artifacts, so we ignore the additional noise. The degradation process of its low-resolution
images as shown in Figure 1. Our goal is to generate the high-resolution image X from Z.
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Figure 1. Degradation process for compressed LR images.

2.2. Image Super-Resolution

More SISR methods based deep learning have been proposed by researchers and
achieved excellent results in image quality assessment metrics and visual effects.
Dong et al. [24] originally proposed a three-layer convolutional super-resolution network
SRCNN, which implemented feature block extraction and representation, nonlinear map-
ping, and image reconstruction. Subsequently, Kim et al. [25] alleviated the difficulty of
network training by introducing residual learning, and the proposed 20-layer-deep model
VDSR learns residual images instead of directly learning high-resolution images. To further
fuse the shallow and deep features of the image, RDN [26] used dense connectivity to
obtain richer reconstruction information and details. To address the situation that most
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algorithms do not apply to mobile devices, Hui et al. [27] also proposed a lightweight infor-
mation distillation network IMDN based on IDNs [28]. Overall, deep neural network-based
super-resolution methods have good performance, but these algorithms only undergo a
single down-sampling degradation process and are not applicable to directly solve the
super-segmentation variability problem of compressed images. Therefore, the effectiveness
is greatly reduced when applied to compressed images.

Several algorithms have been dedicated to addressing compression artifacts. AR-
CNN [29] is based on a deep learning algorithm to address JPEG compression artifacts with
four convolutional layers for feature extraction, feature enhancement, nonlinear mapping,
and reconstruction in sequence. After that, the CISRDCNN [30] algorithm is invoked for the
first time to solve the end-to-end super-resolution for compression image. It can effectively
improve the image quality and reduce the compression artifacts. To preserve the function-
ality of each module and the relevance of the two subproblems, each module is first trained
end-to-end individually, and finally, the whole network is trained by joint optimization.

However, compression artifacts removal and up-sampling in the existing SR method
are considered two independent stages, which may result in more artifacts or excessive
smoothing. Overall, the SR of compression images still needs to be improved.

3. Proposed Method

A novel super-resolution reconstruction network is proposed for compressed images
in this work, and Figure 2 shows the detailed network framework.
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Figure 2. The overall pipeline of the proposed super-resolution reconstruction network.

3.1. General Framework

This paper aims to leverage compressed LR images to reconstruct HR images. During
the training process, each sample includes three types of data: the C-LR image, the HR
image, and the LR image. The C-LR image is processed by JPEG compression based on the
LR image. Down-sampling is employed to generate the LR image. It is used as the ground
truth in the first stage. In the second stage, the HR image is taken as the label image. The
two stages of our method are presented separately as follows.

The method consists of two steps: Compression Artifact Removal Module (CARM)
and Super-Resolution Module (SRM). Since the compression operation makes the low-
resolution image lose more image details, reconstructing more image details based on the
LR image is the key of the first stage. In Figure 2, the C-LR image is firstly reconstructed
details lost during image compression by a compression artifact removal module, which
consists of feature extraction, residual information distillation blocks, feature fusion layer,
and reconstruction block. The main part of this stage is composed of multiple residual
information distillation blocks (RIDBs), which are stacked to progressively refine the
extracted features. The RIDBs will be described in Section 3.2. Finally, the part uses feature
fusion layers as well as reconstruction blocks to reconstruct a clear low-resolution image.
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The image super-resolution stage uses essentially the same network configuration as
the first stage except for the final sub-pixel layer. Specifically, the second sub-module takes
the clear LR image predicted by the first stage as input and outputs the HR image. This
stage uses the same RIDB module as the first stage, the main reason is that each layer of
the network in this module is good at learning the pixel-level feature representation. The
process of low to high resolution image enlargement is achieved by sub-pixel layers, which
will significantly reduce the training time since the sub-pixel layer only changes the image
size at the last layer. The final model will output high-resolution images.

3.2. Residual Information Distillation Block

The proposed model is comprised of residual information distillation blocks, which
are stacked to gradually refine the extracted features, where the RIDB structure is depicted
in Figure 3.
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Figure 3. The architecture of RIDB.

The RIDB is composed of a residual block (RB) layer, a convolutional layer, and a
contrast-aware channel attention (CCA) layer. The input features are split into two parts
after a channel distillation operation: one part of the features is retained when the other
part is sent to the next RIDB. The distillation operation compresses the feature channels in
a fixed proportion, so 30% of the features are retained in this paper. The left-side retained
features use a 1 × 1 convolution instead of a 3 × 3 convolution to decrease the number of
parameters while remaining efficient. The split features on the right side enter the RB for
deeper residual learning, where the RB consists of two 3 × 3 convolutions and an excitation
module. Since RB is the body part of RIDB, 3 × 3 convolution can be used to capture the
background information effectively and further refine the features. RB can learn deeper
features from the residual learning without introducing any additional parameters.

3.3. Loss Functions

As illustrated in 3.1, the network is comprised of two stages: the CARM and the
SRM. The stage 1 aims to reconstruct the C-LR image to the LR image by recovering the
corresponding location pixel point in the C-LR and LR image. The objective of this stage
can be expressed as making the C-LR image recover to the LR pixel value. Therefore, the L1
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loss function is chosen in this stage which is prevalent in pixel-level tasks (image denoising,
super-resolution, and image deblurring). The loss can be presented as (3):

LCAR =
1

WH

W

∑
w=1

H

∑
h=1
‖ ILR

wh − FCAR

(
IC−LR
wh

)
‖, (3)

where H and W respectively denote the height and the width of the C-LR image. FCAR
corresponds to the network of the first stage in (3).

The intermediate result of the previous stage is reconstructed by super-resolution in
the second stage to change the resolution size of the image, such that a clear high-resolution
image is obtained. To make the SRM generate more accurate SR, the loss function of
stage II inherits the same loss of the previous excellent SRM, so the loss can be presented
as Equation (4):

LSR =
1

s2WH

sW

∑
w=1

sH

∑
h=1
‖ IHR

sw×sh − FSR

(
IL R ′
wh

)
‖, (4)

where s is the scaling factor. For the sake of generalizing most cases, the loss weights
of both stages are set equal in proportion in the text, so the general loss function of this
algorithm is shown as (5):

Ltotal = LCAR + LSR. (5)

4. Experimental Results and Analysis
4.1. Dataset and Implementation Settings

The widely used dataset DIV2K in the image super-resolution field is employed in
this work. The 1000 high-quality RGB images in DIV2K are divided into 800, 100, and
100 three parts for training, validation, and testing, respectively. In order to obtain the
compressed LR image, the HR image is firstly down-sampled by bicubic to generate the
uncompressed LR image, and the scale factor in the down-sampling process is set to 2 and
4. After that, the clear LR image is compressed by the JPEG encoder in MATLAB to obtain
the compressed low-resolution image. The standard JPEG compression method is used
in this experiment, and the compression quality factor QF is set to 20. The image dataset
contains HR images, LR images, and C-LR images. The test data were selected from the
widely used Set5 [31] and Set14 [32].

During training, the LR image is randomly cropped to 64 × 64 size as the model
input, the training epochs is 1500 and the batch size is 32. The input image is randomly
flipped horizontally or rotated by 90 degrees to enhance the data. This paper uses ADAM
optimizer for optimization training, where β1 = 0.9 and β2 = 0.999, the learning rate is
2 × 10−4 initially and decreased half every 2 × 105 training rounds.

4.2. Evaluation Metrics

PSNR [33] and SSIM [34] are utilized to measure the effectiveness of the SR methods,
where all values are calculated after converting the image of the RGB channel to the color
space of the YCrCb channel for the Y channel is calculated. The full-reference image
evaluation metric PSNR is widely leveraged in image restoration tasks such as SR and
deblurring, which calculates the magnitude of the global pixel error between the original
and reconstructed image to measure the image quality. The image similarity is evaluated
by SSIM, which combines brightness, structure, and contrast. SSIM takes 0 to 1, where the
high value represents the significant similarity.

4.3. Experimental Results

To verify the performance of the proposed method, this paper compares with the
state-of-the-art works including Bicubic, ARCNN [29], VDSR [25], RCAN [26], IMDN [32],
and CISRDCNN [31]. These algorithms are tested on Set5 and Set14 datasets using PSNR
and SSIM as evaluation metrics. To ensure the fairness of the comparison experiments, the
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models and codes for the comparison experiments are obtained from the URLs provided in
the relevant papers, and the test datasets are compressed.

The experimental results of each algorithm when the down-sampling factors are 2 and 4
are presented in Table 1. In particular, the bold font indicates the optimal results for each item.

Table 1. The comparative results on PSNR and SSIM.

Model Scale Set5
PSNR (dB)/SSIM

Set14
PSNR (dB)/SSIM

Bicubic ×2 27.434/0.786 24.131/0.642
ARCNN ×2 27.678/0.790 25.121/0.608

VDSR ×2 28.856/0.815 25.514/0.688
IMDN ×2 30.002/0.835 25.955/0.669
Ours ×2 30.953/0.872 26.269/0.704

Bicubic ×4 24.116/0.606 23.156/0.552
ARCNN ×4 24.548/0.641 23.534/0.537

VDSR ×4 24.802/0.624 23.825/0.586
IMDN ×4 25.474/0.701 24.202/0.603
Ours ×4 26.430/0.766 24.562/0.631

Obviously, the CNN delivers the best results on both PSNR and SSIM when the
down-sampling factor is 2 and 4, with some improvement compared to Bicubic. VDSR and
IMDN use the residual blocks to learn high-frequency information from the image and
obtain better visual results while improving the network efficiency. In terms of PSNR and
SSIM, the proposed method surpasses other methods on down-sampling factors of 2 and 4,
meaning that our strategy is able to reduce noise well and recover more high-frequency
details in more complex environments. In comparison with the second-best approach, our
method can improve up to about 0.9 and 0.1 dB in PSNR and SSIM, with the largest gain
coming from the set5 dataset, which is arguably the most frequently used set of data in
these experiments.

In addition, many noise and block artifacts occurred in the images, which may contain
clues to recover their textures and details. It also shows that methods with high performance
can successfully remove noise and can distinguish between noise and artifacts, which can
be used to retain some complex textures and high-frequency details.

In this paper, two images from the dataset Set5 are selected for comparison of the
experimental results with a down-sampling factor of 2 and a QF of 20. Figure 4 represents
the visual reconstruction effect of each algorithm on the same image. For better observation
of comparative effects, a local area of the image is given in the figure for the comparison
demonstration of various algorithms. Table 2 represents the PSNR and SSIM for each
algorithm on these two images. It is clear from the figure and the table that Bicubic has a
more noticeable compression micro-shadow and serious loss of image details than other
deep learning-based algorithms, and the image lash details are difficult to observe. The
reconstructed images of ARCNN and VDSR also have compression artifacts, the IMDN
algorithm is capable of removing the majority of the compression artifacts, but the image
becomes smooth. In contrast, the reconstructed images of the proposed method have
the least compression macrophages and more details are preserved, which has the most
effective visual effect.

Table 2. Comparison of the results on PSNR and SSIM in Baby and Bird.

Model PSNR (dB)/SSIM Bicubic ARCNN VDSR Ours

baby 30.030/0.801 30.532/0.853 31.224/0.841 32.133/0.899
bird 30.379/0.782 31.004/0.806 31.675/0.813 31.998/0.806
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4.4. Ablation Study

The performance of the first stage CARM is tested here to demonstrate the effectiveness
of our strategy.

In this section, the paper removes the CAR module from the model to verify its
effectiveness. The C-LR image distortion is super-resolved directly, the network architecture
of the SRM remains unchanged, and L1 loss is still employed for training. From Table 3, it
can be seen that both PSNR and SSIM metrics are significantly improved after using the
CARM. The reason is that, when the experiment is performed directly on the compressed
image for super-resolution reconstruction, it leads to the micro-shadow and noise generated
by the compression process is amplified in the super-resolution process, which results in
undesirable visual effects. A single model cannot combine the recovery task and the SR
task, so the CARM can perform supervised learning using LR to learn the mapping from
C-LR to LR, thus tabulating better results in the reconstruction stage.

Table 3. Comparison of results for modules with and without CAR.

Model Scale Set5
PSNR (dB)/SSIM

Set14
PSNR (dB)/SSIM

Model without CAR ×2 30.100/0.841 25.988/0.654
Model ×2 30.953/0.872 26.269/0.704

Model without CAR ×4 25.474/0.701 24.202/0.603
Model ×4 26.430/0.766 24.562/0.631

5. Conclusions

This paper proposes a two-stage SR reconstruction approach to address the recon-
struction of HR images from compressed LR images. The network consists of CARM
and SRM and incorporates residual information distillation blocks to extract hierarchical
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features. Extensive experiments are conducted on real low-quality images and the results
have shown that our method obtains better high-resolution images and better performance
on objective evaluation metrics in comparison with the state-of-the-art. We demonstrate
the application of the method in this paper to compressed images, allowing users to view
clear images as well as facilitating post-visualization tasks of the images. The application of
the algorithm can be extended to images and videos of other compression standards, such
as jpeg2000 and HEVC. However, this task is still challenging because our method and
the algorithms proposed so far still cannot accurately reconstruct the full texture of com-
pressed images, which points to a direction for future research, which is to use generative
adversarial networks to solve this problem.
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