
Citation: Jabłoński, G.; Amrozik, P.;

Hałagan, K. A Model of Thermally

Activated Molecular Transport:

Implementation in a Massive FPGA

Cluster. Electronics 2023, 12, 1198.

https://doi.org/10.3390/

electronics12051198

Academic Editors: Juan M. Corchado

and Stefano Ricci

Received: 18 January 2023

Revised: 8 February 2023

Accepted: 28 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Model of Thermally Activated Molecular Transport:
Implementation in a Massive FPGA Cluster
Grzegorz Jabłoński 1,* , Piotr Amrozik 1 and Krzysztof Hałagan 2

1 Department of Microelectronics and Computer Science, Lodz University of Technology, 93-005 Łódź, Poland
2 Department of Molecular Physics, Lodz University of Technology, 90-924 Łódź, Poland
* Correspondence: grzegorz.jablonski@p.lodz.pl

Abstract: In this paper, a massively parallel implementation of Boltzmann’s thermally activated
molecular transport model is presented. This models allows taking into account potential energy
barriers in molecular simulations and thus modeling thermally activated diffusion processes in
liquids. The model is implemented as an extension to the basic Dynamic Lattice Liquid (DLL)
algorithm on ARUZ, a massively parallel FPGA-based simulator located at BioNanoPark Lodz. The
advantage of this approach is that it does not use any exponentiation operations, minimizing resource
usage and allowing one to perform simulations containing up to 4,608,000 nodes.

Keywords: distributed system; reconfigurable system; FPGA; ARUZ; Boltzmann statistics; molecular
simulation

1. Introduction

Computer simulations have become one of the most important research methods for
non-equilibrium processes in chemistry and physics. The applied simulation techniques,
however, have encountered difficulties with different types of problems, related to spatial
and time scales, which are necessary to bring the system to a state of full equilibrium. Such
phenomena are particularly interesting wherever the enthalpy factor (non-covalent interac-
tions between molecules and atoms) is important (e.g., in soft matter, simple and complex
liquids, and polymer solutions), as well as when temperature is one of the parameters of the
studied phenomenon. The commonly used computational methods for non-equilibrium
problems, such as phase separation, include nonlinear diffusion equation solvers [1,2],
molecular dynamics methods [3], and stochastic Monte Carlo (MC) methods [4,5].

A particularly interesting method belonging to the stochastic category is the Dynamic
Lattice Liquid (DLL) model [6–8], as it allows observing not only steady state static behavior
but also the process of reaching equilibrium. It is based on the concept of cooperative
motion of objects (elements). The positions of the elements are limited to the nodes of
a face-centered cubic (FCC) lattice (coordination number Z = 12) for simplicity. The FCC
lattice is commonly chosen in 3D as it has the highest coordination number among regular
ones. The algorithm works on a completely occupied lattice, where the elements cannot
easily move over a long distance due to the occupation of all neighboring lattice sites. In this
case, the only way to move the elements with the excluded volume preserved is cooperative
motion. In DLL, cooperative rearrangements take the form of closed loops of displacements
that involve at least three elements (see Figure 1). Loops are formed spontaneously in
a random way. The DLL model fulfills the continuity equation and provides the correlated
movements of molecules as a model of real liquids. A discussion of the detailed balance
and ergodicity in the DLL model was presented in [9].

This basic version of the DLL algorithm (also called the LOOPS mechanism here)
models Brownian diffusion in a long time limit for simple liquids. However, to model
more complex phenomena, the DLL model can be extended with additional functionalities,
namely the so-called “mechanisms”:

Electronics 2023, 12, 1198. https://doi.org/10.3390/electronics12051198 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051198
https://doi.org/10.3390/electronics12051198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0376-3583
https://orcid.org/0000-0001-7721-4240
https://orcid.org/0000-0001-6412-2910
https://doi.org/10.3390/electronics12051198
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051198?type=check_update&version=1

Electronics 2023, 12, 1198 2 of 11

• The introduction of molecular bonds with excluded volume between elements must
involve the BONDS mechanism, which is responsible for movement restriction related
to the length-constant unbreakable bonds.

• The mechanisms BOND_BINDS and BOND_BREAKS are used when one wants to
simulate the macromolecular polymerization and degradation processes, respectively.

• A growing macromolecule (in the case of polymerization, where new elements are
joined to the molecule with some probability) can be terminated randomly using the
TERMINATION mechanism.

• Chemical reactions of different orders can also be modeled with the REACTION
mechanism, where elements can change their type with a given probability.

• Local trapping can be modeled with the MOBILITY mechanism, where movement of
a given element can be restricted (e.g., due to its spatial position in the simulation box).

• Vector fields can be modeled using the VECTOR and REORIENTATION mechanisms.
• In the case where vacancies are present, the WAYS mechanism is used to model coop-

erative motion involving empty lattice nodes, forming a cooperative set of elements
(chain-like and not necessarily a loop).

• The APERIODIC mechanism is used to build immobile obstacles such as walls.
• Thermal noise can be reduced in simulations by lowering the temperature with the

ENERGY mechanism (introducing potential energy barriers).

Figure 1. Attempts of movement in the DLL algorithm. Successful ones are marked as empty arrows
in blue. A 2D case with Z = 6 is shown for clarity.

All the above mechanisms can be defined for a given type of element or spatial position
in the simulation box, enabling modeling of various external fields.

The DLL model can be implemented efficiently with good scalability on a parallel
machine equipped with low-latency communication interfaces to the nearest neighbors. A
specialized field-programmable gate array (FPGA)-based simulator—ARUZ—was built for
DLL simulations and has achieved performance orders of magnitude better than imple-
mentations on a sequential computer (see Table 4 in [10]).

In this paper, the details of Boltzmann’s thermally activated molecular transport
model [11] implemented as a DLL extension on ARUZ (ENERGY mechanism) are presented.
The model allows taking into account potential energy barriers in molecular simulations
and thus allows modeling of thermally activated diffusion processes in liquids. This
approach does not use any exponentiation operations, allowing one to perform simulations
containing 4,608,000 nodes, reaching 69 percent of the maximum simulation size achievable
using only the LOOPS mechanism.

The performed simulations confirm that the implementation gives exact results com-
pared with the values calculated theoretically.

Although the presented implementation works as an extension of the DLL algorithm,
it is also applicable to other molecular movement models, especially those based on the

Electronics 2023, 12, 1198 3 of 11

lattice approach with high occupancy, such as direct exchange dynamics [12] or vacancy
transport [13].

2. The ARUZ Simulator

The ARUZ [10], commissioned at the end of 2015 at Lodz Technopark (currently
BioNanoPark), came as a result of close cooperation between the Department of Molecular
Physics and the Department of Microelectronics and Computer Science, both from the
Lodz University of Technology, complemented by the professional management expertise
of the Ericpol (currently Ericsson) company. It is the first instance of a simulator built
using TAUR technology [14]. This machine was designed to reflect the DLL algorithm in
its hardware [15].

The ARUZ simulator consists of 2880 simulation boards called daughter boards
(DBoards), interconnected by ca. 75,000 cables (see Figure 2). Each of them carries nine
FPGAs: eight of them being called DSlaves (Artix XC7A200T), which constitute the re-
sources for the nodes of the simulation algorithm, and the remaining one called DMaster
(Zynq XC7Z015), which manages the operation of the DSlaves. The entire ARUZ thus
contains 23,040 DSlaves. Each of the DSlaves can host up to a few hundred simulation
nodes, depending on which features of the computational model are selected, and has
communication interfaces to the eight closest neighboring FPGAs in a 3D simulation space.

Figure 2. Inside ARUZ. DBoards on interconnected panels.

Internally, each FPGA implements a grid of specialized processing cells dedicated
to performing consecutive steps and complex calculations of the Dynamic Lattice Liquid
algorithm. Assuming that every FPGA can host ca. 300 DLL cells [10], the entire simulation
space consists of about 6.9 million nodes in the case of the basic DLL version.

3. Thermally Activated Diffusion Model

In the DLL algorithm, the individual molecules try to move in random directions,
and the movement is possible only if the set of molecules is able to form a cooperative
loop, where excluded volume interactions are naturally accounted for. The thermally
activated diffusion model introduces an additional temperature-dependent restriction on
molecule movement due to their interaction with neighbors. Such simulations have been
performed previously only on a sequential computer [16–18], and no high-performance
parallel implementation of this model is known. Different models can be considered in
this case, including the kinetic MC test [16] based on the present state, forward-testing
based on the next state, Metropolis sampling [4], or Glauber dynamics [19]. The first one
was selected for the sake of simplicity and high performance. Additionally, the rest of

Electronics 2023, 12, 1198 4 of 11

the models take into account the forward system configuration, which would require a
reversing phase of the simulation (going back to the starting point if the test fails), which
complicates the parallel architecture a lot. Only the nearest neighbors were taken into
account to simplify the interconnection topology and limit the number of transmission
phases, but this simplification is not really significant in dense systems where long-distance
interactions are mostly shielded by the rest of the system.

The ENERGY algorithm computes the probability of molecule movement in the
following simulation phase (cooperative loops). Based on this probability, a pseudo-
random number generator determines if the given molecule is immobilized in the current
DLL cycle.

The involvement of nearest-neighbor interactions (or, in other words, temperature-
dependent attraction or repulsion) must take into account the probability test related to
the system energy. The system Hamiltonian for the ith lattice site populated by the X-type
element is defined as follows:

Ei
kBT

=
1

kBT
(

1
2 ∑

j
εXYj + HXi) (1)

where the sum extends over all nearest neighbors and j can take any type Y. The following
definitions apply:

• T is the absolute temperature, and kB is the Boltzmann constant.
• HX/kBT is the interaction energy of the type X with the external field and can depend

on the spatial position to model, for example, the temperature gradient.
• εXY/kBT is the interaction energy of the i, j pair and is position-independent. In the

presented model, εXY always equals εYX .

Both εXY/kBT and HX/kBT are input data. For example, if four interactions εXY
between elements are defined, with X = A placed in the currently analyzed ith lattice node
and Y = A, B, C, D, then

Ei
kBT

=
1

2kBT
(εAAnAA + εABnAB +

+εACnAC + εADnAD) +
HAi

kBT
(2)

with multiplicities of i, j pairs nAA = 2, nAB = 2, nAC = 1, and nAD = 1, as illustrated in
Figure 3.

Figure 3. Example local configuration of interacting types shown in 2D.

A kinetic Monte Carlo test, representing the Boltzmann statistics, is applied (i.e., an
effective attempt of motion is performed with a probability proportional to the energy of
the current local state) [16,20]:

Pi = e−
Ei

kBT (3)

The test is executed for all elements in a given loop of possible cooperative move-
ment, and all elements must pass it; otherwise, the whole loop is immobilized (when
exp(−Ei/kBT) < random[0, 1)).

As a result, if εXY > 0, then an attractive interaction is present for the i, j pair. Interac-
tions become effective at a finite temperature by reducing the probability of motion. Here,

Electronics 2023, 12, 1198 5 of 11

εXY describes the barrier which has to be overcome in order to release contact between X
and Y during the thermally activated diffusion process.

The average interaction energy per element is equal to < E >= 1/N ∑N
i=1 Ei, with N

being the total number of elements in the lattice.
Note that the commonly known Metropolis sampling algorithm is not used because the

loops have a spatial extent (over large distances, sometimes even 50 lattice constants [10]),
and the test defined above involves the nearest neighbors only [21].

4. Implementation Requirements

To implement the kinetic MC test, the types of all the neighbors must be known.
These are obtained using the local communication, described in detail in [10] (see Figure 11
therein for details about latency). After this information is acquired, the computations
are performed independently in all nodes. The DLL algorithm’s performance is mainly
determined by the performance of the loop detection phase [22]. The time of a single cycle
of the LOOPS algorithm amounts to ca. 100 microseconds. Therefore, in implementation
of the ENERGY mechanism, the minimization of resource utilization and not the lowest
latency is the main objective.

Implementing the test in a digital circuit requires choosing the number storage format
and the required precision. Equation (3) contains the exponentiation, which is a quite
complex operation that is difficult to implement in hardware.

By substituting (1) into (3), we obtain

Pi = e−(1
2 ∑Z

k=1
εXY
kBT (k)+HX(x,y,z)) (4)

where Z is the number of neighbors, which is assumed to be 12. If we define

εw(X, Y) = e(−
1
2

εXY
kBT) and εe(X) = e(−HX(x,y,z)) (5)

then we obtain

Pi =
Z

∏
k=1

εw(X, Yk) · εe(X) (6)

As εw(X, Yk) and εe(X) are constant, no exponentiation operation is needed in the
FPGA fabric, as they can be precomputed in the software.

For
y = ex (7)

we have
dy = exdx (8)

Thus, we have
dy
y

=
ex

y
dx (9)

and
dy
y

= dx (10)

Therefore, the absolute precision of x is equal to the relative precision of y. Therefore,
to store εw and εe and perform operations on them, we need to apply a floating-point
format, as it ensures a constant relative precision for the full range of stored values.

Because the assumed precision of the expression in the exponent in Equation (4) is
10−5, and log2(10−5) is −16.7, to store εw and εe, we need a 17 bit mantissa.

Assuming that 1
2

εXY
kBT (k) in HX(x, y, z) has a range −10–10, from Equation (4), we can

infer that Pi can vary in the range e−10·(Z+1)–e10·(Z+1), which is thus e−10·13–e10·13, 2−187.55–
2187.55, and 2−27.55

–227.55
. This implies 9 bits for the floating point number exponent (8 for

Electronics 2023, 12, 1198 6 of 11

numbers greater than 1 and 8 for numbers smaller than 1) to encompass the entire range
presented above.

In the vast majority of cases, the maximum number of simulation time steps is assumed
to be 109. The mean probability of element movement is close to 6% for the FCC lattice [23]
in the case of a basic version of DLL (additional mechanisms can only decrease it). Therefore,
the number of steps in which the energy test will be used is approximately 0.06 × 109 =
6 × 107 per element, so it will be necessary to perform the operation with probabilities
in the order of 1/(6 × 107). Log2(6 × 107) = 25.8, and therefore we need at least a 26 bit
pseudo-random number generator. Please note that we do not need to compute a logarithm
of the pseudo-random number as opposed to, for example, the solution presented in [24].

5. Implementation on FPGA

As the number of simulation nodes in DSlave (Artix XC7A200T) is limited to ca. 300,
the optimization of the amount of hardware resources used by each node becomes a crucial
factor. As can be seen in Figure 16 in [10], the most limiting resources are look-up tables
(LUTs). Therefore, implementation using other available FPGA resources is desirable.
The kinetic Monte Carlo test requires Z + 1 multiplications of εw and εe, as presented
in Equation (6). This can be performed effectively by employing specialized hardware
resources available in DSlave instead of configurable logic blocks (CLBs) [25], such as
block random access memory (BRAM) [26] to store coefficients εw and εe and digital signal
processing (DSP) slices [27] to perform multiplications.

Artix XC7A200T has 13,140 kb of BRAM [28] and 740 DSP slices, each containing
a 25 × 18 multiplier. To implement multiplications in Equation (6), a single Xilinx Floating-
Point Operator IP core [29] was used. This multiplier needs two DSP slices, limiting the
number of nodes that can be implemented in one DSlave to 370. The block diagram of
a module implementing the kinetic Monte Carlo test is presented in Figure 4.

Figure 4. Block diagram of a module that implements the kinetic Monte Carlo test.

To reduce the number of CLBs, a special method for addressing BRAM is used which
allows the concatenation of address vectors instead of employing more complicated calcu-
lations. The memory address is a concatenation of the following (see Table 1):

• An “e_offset” bit indicating parts of the memory storing εw and εe;
• A vector representing the type of a neighbor element “other_type”;
• A vector representing the type of the considered element “my_type” (occupying the

right-most bits).

The coefficient memory is divided into two sections. The first section of the memory
stores εw coefficients and requires M2 memory locations (assuming that εw occupies one
location), where M is the number of types rounded up to the nearest power of two. The
second section of the memory stores εe coefficients and requires M memory locations
(assuming that εe occupies one location). Therefore, the total number of memory locations
is M2 + M.

Electronics 2023, 12, 1198 7 of 11

Table 1. Example of BRAM utilization. White background denotes entries that are unused when only
three element types are present.

Address Data
(e_offset & other_type & my_type)

0 & 00 & 00 εw(A, A)
0 & 00 & 01 εw(A, B)
0 & 00 & 10 εw(A, C)
0 & 00 & 11 εw(A, D)
0 & 01 & 00 εw(B, A)
0 & 01 & 01 εw(B, B)
0 & 01 & 10 εw(B, C)
0 & 01 & 11 εw(B, D)
0 & 10 & 00 εw(C, A)
0 & 10 & 01 εw(C, B)
0 & 10 & 10 εw(C, C)
0 & 10 & 11 εw(C, D)
0 & 11 & 00 εw(D, A)
0 & 11 & 01 εw(D, B)
0 & 11 & 10 εw(D, C)
0 & 11 & 11 εw(D, D)
1 & 00 & 00 εe(A)
1 & 00 & 01 εe(B)
1 & 00 & 10 εe(C)
1 & 00 & 11 εe(D)

In Table 1 an example of memory addressing is presented:

• Example 1: Four element types are used (types A, B, C, and D coded by a two-bit
vector: A = 00, B = 01, C = 10, and D = 11). The address of an appropriate εw is
a concatenation of the ”e_offset” bit set to 0, and two two-bit vectors (representing
the type of the considered element and a neighbor, respectively). The address of
εe is the concatenation of a constant M2 coded by a three-bit vector (taking bits of
”e_offset” and ”other_type” vectors) and a two-bit vector representing the type of
element considered. In this example, all memory locations are used, and 16 of them
are needed for εw and 4 for εe, leading to a total of 20.

• Example 2: Three element types are used (types A, B, and C coded by a two-bit vector:
A = 00, B = 01, and C = 10). The addresses of the appropriate coefficients εw and εe are
determined in the same way as in the previous example. Only gray-colored memory
locations are used, but the required number of memory locations is still 20.

As the presented example shows, some parts of the memory are unused in some
scenarios, and the memory utilization is higher than would be expected based on the
number of types, but calculation of the memory address is kept very simple, and its
implementation costs less CLBs for one node.

The FPN MULT block (see Figure 4) is 27 × 27 (1 bit for the sign, 10 bits for the
exponent, and 16 bits for the mantissa) floating-point multiplier. The BRAM data are fed to
the mult_A input of the multiplier. The data on the mult_B input are multiplexed. During
the first cycle of calculations, the value of one represented in the floating-point format, and
during the following cycles, the current product is fed. In this way, the result accumulates,
giving Equation (6) after Z + 1 = 13 multiplication cycles.

Figure 5 presents the results of an example simulation that shows the module’s opera-
tion. Its settings are as follows: a single type A surrounded by a homogeneous mixture

of types B and C, εAB/kBT = 0.2, and εAC/kBT = 0.01. Thus, e(−
1
2 ·∑

Z
2

k=1 0.2− 1
2 ·∑

Z
2

k=1 0.01) =

∏
Z
2
k=1 e(−

1
2 ·0.2) · ∏

Z
2
k=1 e(−

1
2 ·0.01) = ∏

Z
2
k=1 0.90483 . . . · ∏

Z
2
k=1 0.99501 . . . = 0.53255 . . .

Electronics 2023, 12, 1198 8 of 11

Figure 5. Result of the simulation.

In this simulation, one floating-point multiplication takes 4 clock cycles, so the whole
operation takes 12 · 4 = 48 clock cycles. The clock period is 8 ns.

In the example, the neighbor nodes are placed evenly (homogeneous mixture). Thus,
the BRAM address takes two values: four (0100), where εw(B, A) is stored, and eight (1000),
where εw(C, A) is stored. The values read from BRAM are 0.90483 . . . and 0.99501 . . . ,
respectively. The result is 0.5325469 . . . , which is correct.

The output of “FPN MULT” is compared with a random number. This random number
is a 32 bit vector generated by a dedicated linear feedback shift register (LSFR). To make
this comparison possible, the product is converted to a 32 bit fixed-point number. Both
numbers being compared are treated as numbers in the range [0, 1). The flag “move” is set
to one when the “product” is greater than the generated random number.

There are two parameters of the floating-point multiplier core affecting the resource
utilization and timing closure that can be adjusted: latency and DSP usage. Latency can be
configured to between 0 and 8 clock cycles. The multiplier can use zero (“no DSP”), one
(“full DSP” setting), or two (“max DSP”) DSP48 blocks per instance.

Table 2 summarizes the results of exploration of a design space and shows the overhead
of adding the ENERGY mechanism to the simulation. The results for the maximum number
of nodes that can be placed in a single FPGA that can be successfully implemented without
timing issues are presented in the table.

Table 2. Exploration of a design space.

Nodes
per Chip Mechanisms Multiplier

Parameters LUTs (%) FFs (%) BRAMs (%) DSPs (%)

200 LOOPS N/A 58.01 29.21 0.00 0.00
288 LOOPS N/A 81.52 40.98 0.00 0.00

128 LOOPS,
ENERGY

latency 3,
no DSP 80.09 34.93 0.00 35.07

200 LOOPS,
ENERGY

latency 3,
full DSP 79.17 47.90 27.03 54.79

200 LOOPS,
ENERGY

latency 3,
max DSP 76.56 48.05 54.05 54.79

200 LOOPS,
ENERGY

latency 4,
max DSP 77.58 48.95 54.05 54.79

200 LOOPS,
ENERGY

latency 8,
max DSP 78.24 50.87 54.05 54.79

The maximum number of simulation nodes that can be placed in a DSlave is limited
by the number of LUTs. It is typically not possible to route a design with more than 80%
LUT utilization. Increasing the latency of the multiplier improves the timing closure but
also slightly increases resource utilization. The timing closure is not possible with the
multiplier latency set to one. Setting it to two results in successful implementation only
for three out of all eight DSlaves on the board. It is possible to obtain consistently positive
results for the synthesis with the latency set to at least three. At the “max DSP” setting,
over half of the DSPs are used. As the only other mechanism that is able to use DSPs is the
WAYS mechanism [22], and it uses only one DSP48 block per node, this is not a limiting
factor. However, halving DSP usage by applying the “full DSP” setting does not cause
a significant increase in LUTs. On the other hand, using the “no DSP” setting increases the
LUT usage, enormously reducing the maximum number of nodes per chip to 128.

Electronics 2023, 12, 1198 9 of 11

The inclusion of the ENERGY mechanism consumes ca. 20% of the LUTs in fully
utilized FPGA. As a result, it decreases the maximum number of nodes per chip to 200
(4,608,000 in the entire machine) compared with 288 for the simulation using only LOOPS.

6. Example Simulation

The Hamiltonian in Equation (1) can model a kind of system called the conserved-
order parameter [30] Ising model [31], or model B in the Hohenberg–Halperin classifi-
cation [32]. The model assumes that the diffusion can be suppressed in X(Y)-type-rich
regions (εXX(YY)/kBT > 0) or at the X-Y interfaces [33] (εXY/kBT > 0) as a result of nearest-
neighbor interactions.

As the probability of any state in equilibrium is given by the Boltzmann distribution,
the interaction εXY causes configurations where particles are clustered together to be low
in energy and therefore more likely at low temperatures. The critical interaction value for
the FCC lattice (defined with a critical temperature TC) after which the systems undergo
the order-disorder transition (second-order phase transition) is ε/2kBTC = 0.204. . . [34,35].

This kind of system was used to study many physical problems for which the kinetics
of mixing or demixing matters (i.e., where diffusivity of elements is highly related to their
neighborhood), such as for binary alloys [36,37], liquid mixtures [38,39], and polymer
blends [40,41]. Obviously, if more than two types with many more pairs of interactions are
defined, then the modeled system possesses much higher complexity than the simple Ising
model, and its properties strictly depend on the defined conditions.

Figure 6 presents simulation snapshots for a box initially filled with two interacting
types: X = A and Y = B (50%:50%). The system consisted of 3,538,944 nodes with periodic
boundary conditions. In the first simulation step, the types were fully separated (see
Figure 6a in all cases). Figure 6b presents the box configuration after t = 105 cycles of the
algorithm and εAB/2kBT = 0 (no interaction). The box was mixed by diffusive motion of the
elements (by the LOOPS mechanism [10,22]), ending with the totally random configuration.
When the interaction was set to εAB/2kBT = 0.1 (Figure 6c), the mixing process was slowed
because diffusive motion was limited in the areas where A and B were in contact. However,
after t = 106, in this case, the system was again random. The application of εAB/2kBT = 0.5
(Figure 6d) resulted in a stable separation in time because the critical value of the interaction
for the FCC lattice was exceeded, and the system remained ordered. The introduction
of εAB/2kBT does not restrict movement within regions rich in A or B (εAA/2kBT and
εBB/2kBT were set to zero). In the investigated cases, ARUZ achieved a performance of
5260 cycles/s (18.6 × 109 lattice updates per second (LUPS) [10]) for εAB/2kBT = 0.01 and
up to 7300 cycles/s (25.8 × 109 LUPS) for εAB/2kBT = 0.1 with a completely random initial
configuration because the energy tests excluded 4̃6% of all elements from the diffusive
motion analysis in this case.

Figure 6. Example of simulation snapshots for (a) t = 0, (b) εAB/2kBT = 0 and t = 105,
(c) εAB/2kBT = 0.1 and t = 105, and (d) εAB/2kBT = 0.5 and t = 106. Types A and B are marked with
different colors.

7. Conclusions

An efficient approach to FPGA-based simulation of Boltzmann’s thermally activated
diffusion was developed. It avoids the expensive exponentiation operation in the FPGA
fabric by using precomputed values of the Boltzmann weights. A special method for

Electronics 2023, 12, 1198 10 of 11

BRAM addressing was used, eliminating complicated calculations thanks to address vector
concatenation. Application of the described model increased the performance of the
simulation measured in LUPS, as the energy tests excluded a large portion of all elements
from diffusive motion. The simulations performed confirmed that the implementation
gives exact results compared with the theoretically calculated values.

The presented implementation is applicable to other lattice algorithms where Boltz-
mann weights need to be used.

Author Contributions: Conceptualization, K.H.; methodology, G.J., P.A. and K.H.; software, G.J. and
P.A.; validation, P.A. and K.H.; formal analysis, G.J.; investigation, G.J., P.A. and K.H.; data curation,
K.H.; writing—original draft preparation, G.J.; writing—review and editing, G.J., P.A. and K.H.;
visualization, K.H.; supervision, G.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Polish National Science Centre grant UMO-2017/25/B/ST5/01110.

Data Availability Statement: Not avaliable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARUZ Analyzer of Real Complex Systems
(in Polish: Analizator Rzeczywistych Układów Złożonych)

BRAM Block random access memory
DLL Dynamic Lattice Liquid
FCC Face-centered cubic
FPGA Field-programmable gate array
LUPS Latice updates per second
TAUR Technology of Real Word Analyzers

(in Polish: Technologia Analizatorów Układów Rzeczywistych)

References
1. Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958, 28, 258–267. [CrossRef]
2. Cahn, J.W. On Spinodal Decomposition. Acta Metall. 1961, 9, 795–801. [CrossRef]
3. Binder, K.; Ciccotti, G. Monte Carlo and Molecular Dynamics of Condensed Matter; Società Italiana di Fisica: Bologna, Italy, 1996.
4. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
5. Binder, K.; Heerman, D.W. Monte Carlo Simulation in Statistical Physics. An Introduction, 4th ed.; Springer: Berlin, Germany, 2002.
6. Pakuła, T.; Teichmann, J. Model for Relaxation in Supercooled Liquids and Polymer Melts; MRS Online Proceedings Library:

Berlin/Heidelberg, Germany, 1996; Volume 455, p. 211. [CrossRef]
7. Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Polymer brushes in pores by ATRP: Monte Carlo simulations. Polymer 2020, 211,

123124. [CrossRef]
8. Kozanecki, M.; Halagan, K.; Saramak, J.; Matyjaszewski, K. Diffusive properties of solvent molecules in the neighborhood of a

polymer chain as seen by Monte-Carlo simulations. Soft Matter 2016, 12, 5519–5528. [CrossRef]
9. Pakula, T. Simulation on the completely occupied lattices. In Simulation Methods for Polymers; Marcel Dekker: New York, NY,

USA; Basel, Switzerland, 2004.
10. Kiełbik, R.; Hałagan, K.; Zatorski, W.; Jung, J.; Ulański, J.; Napieralski, A.; Rudnicki, K.; Amrozik, P.; Jabłoński, G.; Stożek, D.; et al.

ARUZ—Large-scale, massively parallel FPGA-based analyzer of real complex systems. Comput. Phys. Commun. 2018, 232, 22–34.
[CrossRef]

11. Jabłoński, G.; Amrozik, P.; Hałagan, K. Molecular Simulations Using Boltzmann’s Thermally Activated Diffusion—
Implementation on ARUZ—Massively-parallel FPGA-based Machine. In Proceedings of the 2021 28th International
Conference on Mixed Design of Integrated Circuits and System, Lodz, Poland, 24–26 June 2021; pp. 128–131. [CrossRef]

12. Kawasaki, K.; Ohta, T. Theory of Early Stage Spinodal Decomposition in Fluids near the Critical Point. II. Prog. Theor. Phys. 1978,
59, 362–374. [CrossRef]

13. Yaldram, K.; Binder, K. Spinodal decomposition of a two-dimensional model alloy with mobile vacancies. Acta Metall. Mater.
1991, 39, 707–717. [CrossRef]

http://doi.org/10.1063/1.1744102
http://dx.doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1557/PROC-455-211
http://dx.doi.org/10.1016/j.polymer.2020.123124
http://dx.doi.org/10.1039/C6SM00569A
http://dx.doi.org/10.1016/j.cpc.2018.06.010
http://dx.doi.org/10.23919/MIXDES52406.2021.9497628
http://dx.doi.org/10.1143/PTP.59.362
http://dx.doi.org/10.1016/0956-7151(91)90139-R

Electronics 2023, 12, 1198 11 of 11

14. Jung, J.; Kiełbik, R.; Hałagan, K.; Polanowski, P.; Sikorski, A. Technology of Real-World Analyzers (TAUR) and its practical
application. Comput. Methods Sci. Technol. 2020, 26, 69–75.

15. Polanowski, P.; Jung, J.; Kielbik, R. Special Purpose Parallel Computer for Modelling Supramolecular Systems based on the
Dynamic Lattice Liquid Model. Comput. Methods Sci. Technol. 2010, 16, 147–153. [CrossRef]

16. Pakula, T.; Cervinka, L. Modeling of medium-range order in glasses. J. Non-Cryst. Solids 1998, 232–234, 619–626. [CrossRef]
17. Halagan, K.; Polanowski, P. Kinetics of spinodal decomposition in the Ising model with Dynamic Lattice Liquid (DLL) dynamics.

J. Non-Cryst. Solids 2009, 355, 1318–1324. [CrossRef]
18. Halagan, K.; Polanowski, P. Order-disorder transition in 2D conserved spin system with cooperative dynamics. J. Non-Cryst.

Solids 2015, 127, 585–587. [CrossRef]
19. Glauber, R.J. Time-Dependent Statistics of the Ising Model. J. Math. Phys. 1963, 4, 294–307. [CrossRef]
20. Pakula, T. Collective dynamics in simple supercooled and polymer liquids. J. Mol. Liq. 2000, 86, 109–121. [CrossRef]
21. Hałagan, K. Investigation of Phase Separation and Spinodal Decomposition Phenomena with Cooperative Dynamics. Ph.D.

Thesis, Lodz University of Technology, Łódź, Poland, 2013.
22. Kiełbik, R.; Hałagan, K.; Rudnicki, K.; Jabłoński, G.; Polanowski, P.; Jung, J. Simulation of diffusion in dense molecular systems

on ARUZ—Massively-parallel FPGA-based machine. Comput. Phys. Commun. 2023, 283, 108591. [CrossRef]
23. Polanowski, P.; Pakula, T. Studies of mobility, interdiffusion, and self-diffusion in two-component mixtures using the dynamic

lattice liquid model. J. Chem. Phys. 2003, 118, 11139–11146. [CrossRef]
24. Migacz, S.; Dutka, K.; Gumienny, P.; Marchwiany, M.; Gront, D.; Rudnicki, W.R. Parallel Implementation of a Sequential Markov

Chain in Monte Carlo Simulations of Physical Systems with Pairwise Interactions. J. Chem. Theory Comput. 2019, 15, 2797–2806.
25. 7 Series FPGAs Configurable Logic Block. Available online: https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB (accessed

on 17 January 2023).
26. 7 Series FPGA Memory Resources User Guide. Available online: https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_

Resources (accessed on 17 January 2023).
27. 7 Series DSP48E1 Slice User Guide. Available online: https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1 (accessed on

17 January 2023).
28. 7 Series Product Selection Guide. Available online: https://www.xilinx.com/content/dam/xilinx/support/documents/

selection-guides/7-series-product-selection-guide.pdf (accessed on 17 January 2023).
29. Floating–Point Operator v7.1 LogiCore IP Product Guide. Availiable online: https://www.xilinx.com/content/dam/xilinx/

support/documents/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf (accessed on 17 January 2023).
30. Newman, M.E.J.; Barkema, G.T. Monte Carlo Methods in Statistical Physics; Clarendon Press: Oxford, UK, 1999.
31. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Physik 1924, 31, 253. [CrossRef]
32. Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1877, 49, 435. [CrossRef]
33. Marko, J.F.; Barkema, G.T. Phase ordering in the Ising model with conserved spin. Phys. Rev. E 1995, 52, 2522. [CrossRef]

[PubMed]
34. Liu, A.J.; Fisher, M.E. The three-dimensional Ising model revisited numerically. Physica A 1989, 156, 35–76. [CrossRef]
35. Yu, U. Critical temperature of the Ising ferromagnet on the FCC, HCP, and DHCP lattices. Physica A 2015, 419, 75–79. [CrossRef]
36. Gaulin, B.; Spooner, S.; Morii, Y. Kinetics of phase separation in Mn0.67Cu0.33. Phys. Rev. Lett. 1987, 59, 668. [CrossRef]
37. Wagner, R. Chapter 5 in Phase Transformations in Materials; Wiley-VCH: Weinheimd, Germany, 2001.
38. Wong, N.; Knobler, C. Light-Scattering Studies of Phase Separation in Isobutyric Acid + Water Mixtures. 2. Test of Scaling. J.

Phys. Chem. 1981, 85, 1972–1976.
39. Mauri, R.; Shinnar, R.; Triantafyllou, G. Spinodal decomposition in binary mixtures. Phys. Rev. E 1996, 53, 2613. [CrossRef]
40. Bates, F.; Wiltzius, P. Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer. J. Chem.

Phys. 1989, 91, 3258–3274. [CrossRef]
41. Demyanchuk, I.; Wieczorek, A.; Hołyst, R. Percolation-to-droplets transition during spinodal decomposition in polymer blends,

morphology analysis. J. Chem. Phys. 2004, 121, 1141–1147. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.12921/cmst.2010.16.02.147-153
http://dx.doi.org/10.1016/S0022-3093(98)00481-5
http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.019
http://dx.doi.org/10.12693/APhysPolA.127.585
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1016/S0167-7322(99)00132-4
http://dx.doi.org/10.1016/j.cpc.2022.108591
http://dx.doi.org/10.1063/1.1576214
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/PhysRevE.52.2522
http://www.ncbi.nlm.nih.gov/pubmed/9963695
http://dx.doi.org/10.1016/0378-4371(89)90109-X
http://dx.doi.org/10.1016/j.physa.2014.10.001
http://dx.doi.org/10.1103/PhysRevLett.59.668
http://dx.doi.org/10.1103/PhysRevE.53.2613
http://dx.doi.org/10.1063/1.456901
http://dx.doi.org/10.1063/1.1760513

	Introduction
	The ARUZ Simulator
	Thermally Activated Diffusion Model
	Implementation Requirements
	Implementation on FPGA
	Example Simulation
	Conclusions
	References

