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Abstract: Federated learning techniques accomplish federated modeling and share global models
without sharing data. Federated learning offers a good answer to complex data and privacy security
issues. Although there are many ways to target federated learning, Byzantine attacks are the ones
we concentrate on. Byzantine attacks primarily impede learning by tampering with the local model
parameters provided by a client to the master node throughout the federation learning process,
leading to a final global model that diverges from the optimal solution. To address this problem, we
combine aggregation rules with Byzantine robustness using a gradient descent optimization algorithm
based on variance reduction. We propose a WGM-dSAGA method with Byzantine robustness, called
weighted geometric median-based distributed SAGA. We replace the original mean aggregation
strategy in the distributed SAGA with a robust aggregation rule based on weighted geometric
median. When less than half of the clients experience Byzantine attacks, the experimental results
demonstrate that our proposed WGM-dSAGA approach is highly robust to different Byzantine
attacks. Our proposed WGM-dSAGA algorithm provides the optimal gap and variance under a
Byzantine attack scenario.

Keywords: federated learning; Byzantine attack; gradient descent optimization; parameter aggregation

1. Introduction

The rapid advancement of big data and artificial intelligence has created new opportu-
nities for established sectors to modernize and adapt. Still, it has also raised new concerns
about network and data security. Both companies and individuals have more stringent
privacy protection needs, and there is an urgent need for technologies that can provide
privacy protection to compensate for the deficiencies of distributed learning in joint data
and privacy security training. More institutions and people may be encouraged to supply
data, which will aid in the growth of linked sectors if privacy-preserving technologies can
be developed to ensure that neither party using data for federated training is aware of each
other’s data. Federated learning was developed under this framework. A decentralized,
privacy-preserving approach to data processing is offered by federated learning.

The components of federated learning are a master node server and a number of
clients. The clients’ data are kept private, and dispersed devices are used to execute local
computations. Each client’s private data generate local model updates (such as stochastic
gradients, corrected stochastic gradients, and model parameters). At the same time, the
master node server aggregates the local model variables for global model updates and
propagates the aggregated results to the clients [1].

Even though federated learning protects privacy, its dispersed nature makes it prone to
errors and adversarial assaults, and devices may become unreliable in terms of computation
or communication and may even be hacked by adversaries. A hijacked device may send
malicious messages to the master node server when one or more nodes of the individual
clients of federated learning experience a problem. This will confuse the learning process
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and may cause the global model parameters to fail or converge [2]. Therefore, our attention
is directed at the harmful assault known as the Byzantine attack [3].

The formulations of parameter estimates cannot be properly derived in machine
learning since some target models’ loss functions are extremely complex. Gradient descent
is typically employed in practical applications to train models, with the goal having the
trend of its training results being decreased to the minimal value. However, the training
process of gradient descent is incredibly sluggish and sensitive to hyperparameters, such
as learning rate and weight decay. To solve this issue, variance reduction techniques have
been found to be an effective application, demonstrating linear convergence speed, whereas
other stochastic methods yield sublinear speed [4].

Defensively, geometric median (GM) is extensively employed for gradient aggregation
in the research literature on robust distributed learning [5], as it can withstand up to half
of the Byzantine clients and estimate the true underlying parameters [6]. In particular,
GM exhibits convergence qualities when employed as an aggregation rule in gradient
descent algorithms [7]. In more recent investigations, GM has also been used to aggregate
parameters to obtain reliable federated learning solutions [8].

Even though current stochastic gradient descent optimization algorithms can guar-
antee that a model converges to the optimal solution domain in the absence of attacks,
this domain will grow when Byzantine attacks are present, and the model’s learning will
become subpar. On the other hand, existing distributed learning models often use basic
aggregation rules, and there is no practical method for dealing with parameters that are
uploaded by hostile nodes in the event of Byzantine attacks during the learning process.

The weighted geometric median-based distributed SAGA (WGM-dSAGA) method,
which combines variance reduction-based distributed SAGA with robust aggregation rules
to improve the Byzantine robustness of federated learning, is suggested in this research
based on the issues that currently exist. While conventional distributed SAGA aggregates
parameters using mean values, the WGM-dSAGA does this at the master node server using
weighted geometric medians. To calculate the distance (Euclidean and cosine) between
local parameter changes made by various clients and discover outliers in the distance space,
the WGM-dSAGA employs a state-of-the-art parameter-free outlier detection technique
called COPOD [9]. After that, it maps the outlier scores to client-specific weights and uses
the client-weighted geometric median for global model updates. Experimental evidence is
provided to support the robustness of the WGM-dSAGA against various Byzantine attacks.
In conclusion, we highlight the following contributions of this paper:

To counter Byzantine attacks, we suggest a novel WGM-dSAGA federated learning
technique with Byzantine robustness.

By calculating the Euclidean distance matrix and the cosine distance matrix of client pa-
rameters and utilizing the most recent parameter-free outlier detection technique COPOD,
the proposed WGM-dSAGA algorithm assesses the maliciousness of client parameters.

The WGM-dSAGA approach also assigns the weight of each client in each iteration
based on the maliciousness of the client parameters, reducing the contribution of malicious
nodes to global model updates and improving federated learning robustness.

We also thoroughly assess the WGM-dSAGA’s performance under three Byzantine
attack scenarios, and the results demonstrate that the proposed WGM-dSAGA algorithm
performs better than current Byzantine protection methods that are in use.

The remainder of this paper is structured as follows: Section 2 describes the current
research progress on gradient descent optimization algorithms and Byzantine-robust aggre-
gation rules. Section 3 details the development of the proposed WGM-dSAGA algorithm.
Section 4 provides our experimental results and performance evaluation. Section 5 presents
the conclusions and a discussion of future work.
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2. Related Works
2.1. Gradient Descent Algorithms

Researchers have consistently improved gradient descent algorithms, which can be
thought of as the basic beginning point, compared to the most recent deep learning op-
timization algorithms, to tackle the optimization problem of loss function in machine
learning and deep learning. The goal of applying a gradient descent algorithm is to keep
iterating until the loss function value is smaller than the hyperparameter threshold, at
which point the algorithm is terminated.

Two primary divisions of gradient descent optimization algorithms are methods based
on momentum and variance reduction and algorithms based on adaptive learning rates [10].
Although stochastic gradient descent approaches significantly lower the computational cost
by updating the gradient by picking random samples each time, the noise in the gradient
estimation at the end of training prevents it from converging further. The stochastic variance
reduction gradient method (SVRG) [11] and other algorithms are examples of solutions
for this purpose. Without using any reduction techniques, the variance-reduced stochastic
gradient descent algorithm (VR-SGD) [12] can handle non-smooth or non-strongly convex
problems directly and has linear convergence with a much quicker convergence rate. The
new optimization method SAGA [13] has also been proposed. The SAGA enhances the
theory underlying the SAG and SVRG with better theoretical convergence speed and
enables composite objectives by employing proximal operators on the regulator.

Representative approaches for solving the problem of a non-convex objective function
falling into local suboptimality and improving an algorithm’s convergence speed include
AdaGrad [14], Adadetla [15], RMSprop, Adam [16], and others. Optimization approaches
based on adaptive learning rates have higher convergence when training increasingly
complicated neural networks. AdaDGS [17] is a straightforward, clever, and effective
adaptive technique that optimizes the use of DGS gradients, eliminating the necessity of
fine-tuning the hyperparameters. The AdaTerm [18] method derives the first momentum
and all the involved statistics based on the t-distribution, thereby possessing adaptive noise
capability and improved learning performance.

The variance reduction-based gradient descent optimization technique SAGA is used
in this paper through dSAGA, a distributed implementation. For distributed learning
application scenarios such as federated learning, where each device analyzes a constrained
number of data samples, dSAGA is ideally suitable.

2.2. Byzantine-Robust Aggregation Rules

Based on the goal of the assaults, adversarial attacks in federated learning applications
can be broadly divided into two types, namely undirected attacks and directed attacks [19].
The adversary’s goal in directed attacks (also known as backdoor attacks) is to cause a
model to maintain good overall performance in its primary job while performing poorly in
some specified subtasks. An undirected attack aims to confuse a model and prevent it from
performing at its best in the main task. Non-directed attacks are easier to spot because they
reduce the primary task’s overall performance. Since the adversary’s objective is frequently
unknown in advance, backdoor-directed attacks are more difficult to identify.

Based on the attacker’s capabilities, undirected and directed attacks can be further
categorized into model attacks and data attacks. A model attack occurs when an attacked
client modifies the update parameters of the local model, thereby altering the overall model
(e.g., client 1 in Figure 1). A data assault occurs when an attacker can alter a portion of all
training samples in a way that the model learner is unaware of (e.g., client 2 in Figure 1).
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Figure 1. Overview of the federated learning approach, which uses local datasets to train machine
learning models across numerous clients. The master node server aggregates the local model param-
eters provided by the clients and updates the global model. It then broadcasts the updated global
model parameters to the clients throughout each training round for coordinated training. Some
clients experiencing Byzantine assaults send malicious messages to the master node to obstruct the
federation learning process due to the model attacks (such as client 1) and data attacks (such as client
2) on those clients.

Several robust aggregation rules have been developed in recent years, primarily for
enhancing distributed stochastic gradient descent (SGD) solvers for the underlying opti-
mization task to deal with Byzantine attacks in federated learning. Stochastic algorithms
can withstand a limited number of clients under attack from Byzantine adversaries by ag-
gregating stochastic gradients using aggregation techniques, such as geometric median [5],
median [20], trimmed mean [6], or iterative filtering [21]. Other aggregation algorithms
include Krum [22], which chooses a random gradient that is closest to the provided number
of nearest random gradients with the least cumulative squared distance. RSA [23] combines
models besides random gradients by penalizing local and global parameter variations.

Shenghui Li et al. proposed an automatic weighted geometric median (AutoGM) [24]
aggregation method that is flexible and robust. To achieve the value of the AutoGM, an
algorithm based on an alternating optimization strategy was designed to improve the
robustness against model poisoning and data poisoning attacks. To make the method
differentially private by utilizing a tree-based mechanism, Ali Jadbabaie et al. suggested a
resilient aggregation rule that employs a geometric median resistant to Byzantine assaults
with fewer than half of the number of clients [25]. Local malicious factor (LoMar), developed
by Naif Xingyu Li et al. [26], is a two-stage defense algorithm that scores model updates for
each remote client by determining the relative distribution of its neighbors using a kernel
density estimation method and aggregates the local models based on the scores.

When aggregating the local model parameters uploaded by a client on the server
side, the weighted geometric median aggregation method described in this research can
tolerate Byzantine assaults better than current geometric median-based methods because
the weighted parameters are derived from outlier detection and contribute to the solution
process of the geometric median, which can significantly lessen the impact of the malicious
parameters uploaded by clients that are vulnerable to Byzantine attacks.

3. Proposed Methodology

This section begins by introducing the distributed SAGA with averaging. After
that, we suggest a way to obtain client weights using the parameter-free outlier detection
algorithm COPOD. Finally, the Weiszfeld algorithm calculates the weighted geometric
median in linear time [27]. Our proposed distributed SAGA based on a weighted geometric
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median, abbreviated as WGM-dSAGA, substitutes robust aggregation based on a weighted
geometric median for the mean aggregation method, as detailed in Algorithm 1.

Algorithm 1: Robust aggregation rules based on weighted geometric medians

Require: learning rate γ; number of clients K; number of data samples N on every client k;
number of iterations t;
Master node and honest client initializeW0

for all honest client k do
for n ∈ {1, 2, · · · , N} do

Initializes gradient storage Zk,n
(
φk,n

)
= Zk,n

(
W0)

end for
Initializes average gradient G1

k = 1
N ∑N

n=1 Zk,n
(
W0)

Sends G1
k to master node

end for
Mater node updatesW1 =W0 − γ · geomedk∈K

{
G1

k

}
for all t = 1, 2, · · · do

Master node broadcastsW t to all clients
for all honest client node k do

Samples it
k from {1, · · · , N} uniformly at random

UpdatesMt
k = Zk,it

k

(
W t)−Zk,it

k

(
φk,it

k

)
+ G1

k

SendsMt
k to master node

Updates G t+1
k = G t

k +
1
N

(
Zk,it

k

(
W t)−Zk,it

k

(
φk,it

k

))
Stores gradient Zk,it

k

(
φk,it

k

)
= Zk,it

k

(
W t)

end for
for k, l = 1, 2, · · · , K do

Master node updates D E
k,l = ‖M

t
k −M

t
l‖2 , D C

k,l = 1− Mt
kMt

l
‖Mt

k‖2‖Mt
l‖2

Master node updates DE =
[
D E

k,l

]
, DC =

[
D C

k,l

]
Master node updates SE

k = COPOD(DE) , SC
k = COPOD(DC)

Master node updates S t
k =

(
SE

k + SC
k
)
/2

Master node updates αt
k =

exp(−S t
k)

∑K
l=1 exp(−S t

l )
end for
Master node updatesW t+1 =W t − γ · argmin

M
∑k∈K αt

k‖M−M
t
k‖2

end for

3.1. Distributed SAGA with Mean Aggregation

We assume a federated learning network with K clients and a single master node (data
center). Each client in a distributed SAGA keeps a random gradient table of its local data
samples N. The master node transmits to the client k an initialized global model parameter
W t at iteration t. Each client chooses a local data sample with an index it

k at random,
after which each client calculates the stochastic gradient Zk,itk

(
W t) for that particular data

sample. In the distributed SAGA, a client must also take into account the historical gradient
stored in the local data sample during the gradient update process, rather than sending
the random gradient Zk,itk

(
W t) directly to the master node at this period. The client then

saves Zk,itk

(
W t) as the random gradient of the data sample, which is indexed as it

k, and
delivers the rectified random gradient to the master node. The master node updates the
global model parametersW t+1 once all clients have sent the random gradients to it.
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When performing iteration t, client k sets φt+1
k,n =W t and stores the random gradient

Zk,n

(
φt+1

k,n

)
while client k randomly selects the data samples with index n. It is assumed

that the φ of the remaining data samples is constant, i.e., φt+1
k,n = φt

k,n, when n 6= it
k.

G := Zk,itk

(
W t)−Zk,itk

(
φt

k,itk

)
+

1
N

N

∑
n=1
Zk,n

(
φt

k,n

)
(1)

is the adjusted random gradient of client k at iteration t. The following formula is used to
update the parameters of the global model:

W t+1 =W t − γ · 1
K

K

∑
k=1
G t

k (2)

where γ stands for the learning rate.

3.2. Client Weights Based on the COPOD Outlier Detection

A brand-new approach for finding outliers, called COPOD, is based on an empirical
copula estimation of the tail probability [9]. One of the best outlier identification methods
is COPOD, which is deterministic and free of hyperparameters. No random training or
learning is used in this algorithm; instead, it is based on empirical cumulative distribution
functions (ECDFs). The above features prevent model performance from being harmed by
inappropriate hyperparameter selection or other potential biases, while obtaining client-
side weights. Additionally, COPOD is an extremely effective outlier identification approach
with little computing overhead based on fast execution, making it the perfect choice when
working with high-dimensional big datasets.

We suppose that there are B clients in the federation learning network exposed to
Byzantine attacks and that these risky clients are unknown to the master node. According to
our presumption, K is the set of all clients, B is the set of all clients exposed to the Byzantine
assault, and the two sets fulfil |K| = K and |B| = B. We assume that the following criterion
B < K

2 is always satisfied based on existing mainstream research findings. Instead of
sending the correct local model parameters to the master node during federated learning,
a client under a Byzantine attack will send malicious messages to the master node. As a
result, we modify the algorithm for client k by providing harmful local model parameters
to the master node at iterations t:

Mt
k =

{
G t

k, k /∈ B
∗, k ∈ B

(3)

where ∗ represents the client that is the target of the Byzantine assault.
The Euclidean distance is calculated as follows:

D E
k,l = ‖M

t
k −M

t
l‖2 (4)

The cosine distance is calculated as follows:

D C
k,l = 1−

Mt
kM

t
l

‖Mt
k‖2‖Mt

l‖2
(5)

Between all local models, the parameters are calculated at iteration t, where k, l =
1, 2, · · · , K, after all clients have uploaded their local model parameters to the master node.
The COPOD model is used to compute the (n× n) shape matrices DE =

[
D E

k,l

]
and

DC =
[
D C

k,l

]
, and outlier detection is carried out. We calculate and average the outlier

scores SE
k = COPOD(DE) and SC

k = COPOD(DC) to arrive at the final outlier score
S t

k =
(
SE

k + SC
k
)
/2 for client k at iteration t. To obtain each client’s weight at iteration T,
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we need to normalize the computed outlier scores using the Softmax function. We need to
suppress the influence of clients with higher outlier scores on the global model parameter
updates and enhance the contribution of clients with lower outlier scores on the global
model parameter updates [28]. As a result,

αt
k =

exp
(
−S t

k
)

∑K
l=1 exp

(
−S t

l
) (6)

is used to determine the clients’ weight parameters.

3.3. Robust Aggregation Rules Based on Weighted Geometric Medians

A geometric median is a generalization of the resilient aggregation rule that we suggest.
The geometric median M̂ of a vector set V = {Mk}k∈K is the point from which the total of
the Euclidean distances to all of the points in V is reduced to the minimum. The formula

M̂ := argmin
M

∑
k∈K
‖M−Mk‖2 (7)

is satisfied by the geometric median point M̂. In the Byzantine-robust federated learning
research, geometric medians are frequently employed as gradient aggregation rules and ex-
hibit convergence qualities [20]. A geometric median’s robustness, however, is constrained
since its constant factor is still affected by the presence of outliers [5], meaning that the
bound rises as the number of outliers does. We further develop a weighted geometric me-
dian (WGM) as a more adaptable, robust aggregation rule based on geometric median. The
weighted geometric median of the set of vectors V is denoted by the letter M̃ = WGM(V).
The formula

M̃ := argmin
M

∑
k∈K

αk‖M−Mk‖2 (8)

can be used to compute the weighted geometric median. We may use the (1 + ε)-approximate
geometric median to provide an approximately linear time solution to classical optimization
problems, which often require sublinear time because finding the precise geometric median
is extremely costly [29]. We compute the weighted geometric median in the Byzantine-
robust aggregation rule based on weighted geometric medians using the Weiszfeld smooth-
ing algorithm.

4. Numerical Experiments

We set up 50 trustworthy clients and B = 20 clients experiencing Byzantine attacks
during the federated learning process for the experiments. Using three common Byzantine
attacks—the Gaussian assault, the sign-flipping attack, and the zero-gradient attack—we
evaluated the performance of the proposed WGM-dSAGA scheme [30].

Gaussian attack: A Byzantine client k ∈ B that is subjected to a Gaussian attack mod-
ifies itsMt

k using a Gaussian distribution with a mean of 1
K−B ∑k′/∈BMt

k′ and a variance
of 30.

Sign-flipping attack: A Byzantine client k ∈ B, which suffers from a sign-flipping
attack, falsifies its uploaded message to Mt

k = u · 1
K−B ∑k′/∈BMt

k′ and sets u = −3 in
the experiment.

Zero-gradient attack: A zero-gradient attack on a Byzantine client k ∈ B causes it to
uploadMt

k = − 1
B ∑k′/∈BMt

k′ as the parameter information to the master node, and as a
result, the master node’s total received parameter information is zero.

In our experiments, we used the ε-approximate geometric median and set ε = 1× 10−5.
We used two dichotomous datasets, IJCNN1 and COVTYPE, for our experiments. The
IJCNN1 dataset has 49,990 training data samples with a dimension p = 22, while the
COVTYPE dataset has 581,012 training data samples with a dimension p = 54.

We compared the SGD, the mini-batch (B)SGD, and the SAGA in the first set of
experiments, where the batch size of the BSGD algorithm was 50. The geometric median
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and weighted geometric median aggregation rules were combined with these gradient
descent optimization algorithms. Compared to the SGD technique, the BSGD has a higher
computing overhead but is more effective at reducing the effect of stochastic gradient
noise on the overall model. Contrarily, the SAGA is an ideal stochastic gradient descent
optimization technique because it keeps the computing overhead comparable to the SGD
while reducing the noise of the stochastic gradient.

The performance of the above algorithms on the IJCNN1 and COVTYPE datasets is
shown in Figures 2 and 3. In each algorithm, we used a constant step size, modified the step
size, and, in the absence of a Byzantine attack, obtained the ideal optimal gap Z

(
W t)−

Z(W∗). For all three classical Byzantine attacks, the weighted geometric median exhibits a
smaller optimal performance gap Z

(
W t)−Z(W∗). The WGM-dSAGA outperforms the

SGD and the BSGD among the three weighted geometric median aggregation methods,
whereas the BSGD outperforms the SGD. It is demonstrated through this experimentation
that variance reduction strategies significantly impact the Byzantine robustness of federated
learning. As can be seen in Figure 2, the distributed SAGA algorithm using the median
of ordinary geometry has the smallest optimal gap and variance on the IJCNN1 data set
when it is not being attacked. The distributed SAGA using weighted geometric medians
all exhibit minimal optimal gaps and variances under the three main Byzantine attack
scenarios. On the COVTYPE dataset, it is important to note that the weighted, aggregated
median-based BSGD and SAGA methods exhibit comparable optimal gaps, but the SAGA
approach converges more quickly.
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variation are shown from top to bottom. No attack, a Gaussian attack, a sign-flipping attack, and a
zero-gradient attack are represented from left to right.

The SAGA method was then used along with various robust aggregation rules, such as
Krum, median, mean, weighted mean, geometric median, and weighted geometric median.
The weights using their respective weighted mean and weighted geometric median rules
were similarly derived. Figure 4 displays the different techniques’ performance on the
IJCNN1 and COVTYPE datasets [1]. When there is no Byzantine attack, the distributed
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SAGA using weighted mean aggregation has the best optimal gap performance. However,
the WGM-dSAGA algorithm, which employs a weighted geometric median, performs
admirably in all three Byzantine assault scenarios, including the Gaussian attack, the
sign-flipping attack, and the zero-gradient attack, showing the smallest optimal gap.
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We conducted multi-classification experiments on the MNIST and CIFAR10 datasets [26].
The MNIST dataset has 60,000 training data samples with a dimension p = 784, while the
CIFAR10 dataset has 50,000 training data samples with a dimension p = 3072. We chose step
sizes of 0.1, 0.5, and 0.1 for the SGD, BSGD, and SAGA algorithms, respectively, with a batch
size of 50. Tables 1 and 2 display the outcomes of the algorithm runs. The techniques using
weighted mean and weighted geometric median aggregation both offer improved accuracy
and exhibit better robustness under Byzantine attacks than using weights obtained based on
outlier detection. The one with the highest accuracy is the WGM-dSAGA algorithm, which
uses a weighted geometric median. It can be seen from Tables 1 and 2, in combination with
Figures 5 and 6, that neither gradient optimization descent algorithm nor robust aggregation
rules show obvious advantages in the scenario without attacks. Under three different types
of Byzantine attack scenarios, the distributed SAGA gradient descent optimization algorithm
performs better than the SGD and BSGD algorithms, and the weighted geometric median
aggregation rule is better than the other three aggregation rules. It is further proven that the
WGM-dSAGA algorithm has better robustness under a Byzantine attack scenario.
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Table 1. The SGD, mini-batch (B)SGD, and distributed SAGA are combined with mean, weighted
mean, geometric median, and weighted geometric median, respectively, and tested for their accuracy
under different attack scenarios on the MNIST dataset. Here, wmean stands for the weighted mean,
gm stands for the geometric median, and wgm stands for the weighted geometric median.

Attack Algorithm Mean Acc (%) Wmean Acc (%) Gm Acc (%) Wgm Acc (%)

without
SGD 86.1 89.2 82.8 88.2

BSGD 85.6 83.9 86.0 89.3
SAGA 87.2 89.7 88.3 86.9

Gaussian
SGD 16.2 18.9 91.9 93.6

BSGD 27.3 29.6 92.0 93.7
SAGA 14.5 19.4 91.4 95.9

sign-flipping
SGD 0.12 10.3 0.02 10.6

BSGD 0.16 11.6 82.3 94.3
SAGA 0.12 14.8 86.4 95.7

zero-gradient
SGD 9.07 21.6 26.3 32.4

BSGD 9.83 24.5 81.5 94.1
SAGA 9.82 25.2 87.4 91.7



Electronics 2023, 12, 1190 11 of 13

Table 2. The SGD, mini-batch (B)SGD, and distributed SAGA are combined with mean, weighted
mean, geometric median, and weighted geometric median, respectively, and tested for their accuracy
under different attack scenarios on the CIFAR10 dataset. Here, wmean stands for the weighted mean,
gm stands for the geometric median, and wgm stands for the weighted geometric median.

Attack Algorithm Mean Acc (%) Wmean Acc (%) Gm Acc (%) Wgm Acc (%)

without
SGD 56.2 58.2 51.4 55.1

BSGD 55.9 57.8 54.5 53.2
SAGA 54.3 57.7 57.1 56.7

Gaussian
SGD 31.4 34.3 37.1 47.8

BSGD 30.2 33.7 42.5 54.7
SAGA 28.4 34.9 43.7 55.8

sign-flipping
SGD 0.35 4.79 1.75 21.3

BSGD 0.23 9.23 26.4 45.7
SAGA 0.12 9.71 29.5 55.4

zero-gradient
SGD 1.22 8.91 14.6 17.5

BSGD 2.37 8.94 32.3 48.5
SAGA 2.53 9.43 37.1 57.2
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5. Conclusions

In this paper, we propose a federated learning strategy with Byzantine robustness
called the WGM-SAGA. We performed an experiment with the WGM-dSAGA algorithm
under three classical Byzantine attack scenarios. Based on the Byzantine problem research
background, we assumed that no more than half of the clients would suffer from Byzantine
attacks in the experiment. The experimental results show that in the absence of Byzantine at-
tacks, the WGM-dSAGA algorithm performs similarly to existing methods. However, when
subjected to Byzantine attacks, the WGM-dSAGA algorithm exhibits excellent Byzantine
robustness, provides the optimal gap and variance among all the methods, and significantly
improves the convergence speed of the federated learning model. In the multi-classification
experiment, we used the same neural network for training and compared the mean and
geometric median clustering techniques before and after weighting. The results show that
adding our suggested weight calculation method to the local model’s parameter aggre-
gation process can effectively increase the accuracy of the model under Byzantine attack
scenarios, and the WGM-dSAGA algorithm described in this work has the highest accuracy
under Byzantine attacks, which validates its excellent theory of discrimination. The feature
extraction of gradients uploaded by clients experiencing Byzantine attacks will be the
main topic of our upcoming study in federation learning. We aim to further improve
the WGM-dSAGA algorithm’s malicious node identification and lessen the impact of bad
messages on the entire model.
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