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Abstract: Time series classification (TSC) is always a very important research topic in many real-
world application domains. MultiRocket has been shown to be an efficient approach for TSC, by
adding multiple pooling operators and a first-order difference transformation. To classify time
series with higher accuracy, this study proposes a hybrid ensemble learning algorithm combining
Complementary Ensemble Empirical Mode Decomposition (CEEMD) with improved MultiRocket,
namely CEEMD-MultiRocket. Firstly, we utilize the decomposition method CEEMD to decompose
raw time series into three sub-series: two Intrinsic Mode Functions (IMFs) and one residue. Then, the
selection of these decomposed sub-series is executed on the known training set by comparing the
classification accuracy of each IMF with that of raw time series using a given threshold. Finally, we
optimize convolution kernels and pooling operators, and apply our improved MultiRocket to the
raw time series, the selected decomposed sub-series and the first-order difference of the raw time
series to generate the final classification results. Experiments were conducted on 109 datasets from
the UCR time series repository to assess the classification performance of our CEEMD-MultiRocket.
The extensive experimental results demonstrate that our CEEMD-MultiRocket has the second-best
average rank on classification accuracy against a spread of the state-of-the-art (SOTA) TSC models.
Specifically, CEEMD-MultiRocket is significantly more accurate than MultiRocket even though it
requires a relatively long time, and is competitive with the currently most accurate model, HIVE-
COTE 2.0, only with 1.4% of the computing load of the latter.

Keywords: time series classification; complementary ensemble empirical mode decomposition
(CEEMD); MultiRocket; feature selection; hybrid model

1. Introduction

A time series is a set of data arranged in chronological order, which is widely applied
in different domains in real life. With the fast advancement of information acquisition
equipments and improvement of acquisition methods, time series have gotten more so-
phisticated, and their application involves a wide variety of fields, such as traffic [1],
energy [2,3], finance [4], medical diagnosis [5–7] and social media [8]. By classifying time
series into groups based on their underlying stochastic process, we can gain insights into the
underlying phenomenon being measured and potentially make predictions. This involves
identifying features in the time series data that are indicative of the underlying process,
such as the autocorrelation structure, the distribution of values, or the frequency spectrum.
Therefore, time series classification (TSC), as a task of characterizing a series of values
observed at a continuous time as belonging to one of two or more categories, has always
been the focus of research [9].

Several TSC algorithms have been presented over the years. These algorithms are
generally separated into traditional approaches and deep learning approaches. The main
groups of traditional TSC algorithms are introduced as follows: (1) Distance-based classi-
fiers use distance metrics to determine class membership, and their representatives include
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a combination of K-Nearest Neighbors (KNN) and Dynamic Time Warping (DTW) [10] and
Proximity Forest [11]. (2) Frequency-based classifiers are based on frequency data extracted
from time series, and their representative is Random Interval Spectral Ensemble (RISE) [12],
which is viewed as a popular Time Series Forest (TSF) [13] variation. (3) Interval-based
classifiers rely their classification on information contained in distinct series intervals, and
their representatives include TSF and Diverse representation Canonical Internal Forest
(DrCIF) [14]. DrCIF builds on RISE and TSF, and uses the catch22 [15] to expand the
original features. (4) Dictionary-based classifiers first convert discrete “words” from real-
valued time series. The distribution of the retrieved symbolic terms is used as the basis
for classification. Their representatives include Bag of Symbolic-Fourier-Approximation
Symbols (BOSS) [16] and Temporal Dictionary Ensemble (TDE) [17]. (5) Shapelets are
short subsequences of time series that are typical of their class. It is possible to utilize
them to discover the similarity between two time series belonging to the same class [18].
Their representatives include Shapelet Transformation (ST) [19] and Shapelet Transform
Classifier (STC) [20].

An ensemble classifier is a meta ensemble based on the previously described classifiers,
and the typical representatives include HIVE-COTE [21], HIVE-COTE 2.0 [22], Inception-
Time [23] and Time Series Combination of Heterogeneous and Integrated Embedding
Forest (TS-CHIEF) [24]. HIVE-COTE 2.0 is a meta ensemble consisting of four components:
STC, TDE, DrCIF and Arsenal [22]. InceptionTime is a collection of five TSC deep learning
models generated by cascading numerous inception modules [23]. Each model has the
same design but distinct random initialization weight values. TS-CHIEF builds on an en-
semble tree-structured classifier that incorporates the most efficient time series embeddings
created in the previous ten years of study [24].

On the other hand, deep learning methods for TSC are generally classified into two
types: generative models and discriminative models [25].

The most common generative models include Stacked Denoising Auto-Encoders
(SDAE) [26,27] and Echo State Networks (ESN) [28]. To model the time series, SDAE is
preceded by an unsupervised pre-training stage [26,27]. As Recurrent Neural Networks
(RNN) frequently experience the vanishing gradient problem as a result of training on
lengthy time series [29], ESNs were created to ameliorate the difficulties of RNNs [30].
Discriminative models are classifiers that can quickly figure out how to transfer a time
series’ original input to a dataset’s output, which is a probability distribution over the
class variables. These models may be further classified into two types: (1) deep learning
models using hand-engineered features and (2) end-to-end deep learning models [30].
The translation of series into images utilizing specialized imaging approaches is the most
common feature extraction algorithm for hand-engineered approaches, such as recurrence
plots [31,32] and Gramian fields [33]. In contrast, end-to-end deep learning tries to include
the feature learning procedure while optimizing the discriminative classifier [34]. Convolu-
tional Neural Networks (CNN) are the most extensively used for the TSC issue due to their
robustness and training efficiency [30].

Overall, the state-of-the-art (SOTA) TSC models in terms of classification accuracy
mainly include HIVE-COTE and its variants, TS-CHIEF, InceptionTime, Rocket, MiniRocket,
MultiRocket, etc. [35]. Among them, Rocket, MiniRocket, and MultiRocket are not only
accurate, but also ensure scalability. Rocket employs lots of randomly initialized convo-
lution kernels for feature extraction, and uses a linear classifier for classification, without
training the kernels [36]. MiniRocket is about 75 times faster than Rocket, and it employs
a limited number of kernels and just one pooling operation [37]. MultiRocket is built on
MiniRocket and uses the same set of convolution kernels that are used in MiniRocket [35].
MultiRocket differs in two ways from MiniRocket. On one hand, MultiRocket uses the
first-order difference of raw time series, along with the raw time series, as the inputs to the
classification model. On the other hand, MultiRocket includes three extra pooling operators
in addition to PPV to derive more discriminative features.
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Although Rocket and its improved versions MiniRocket and MultiRocket have achieved
satisfactory classification performance, there is certainly room for improvement in series
transform, the design of convolution kernels and feature extraction. To solve the exist-
ing defects and enhance classification performance, this study proposes a novel hybrid
ensemble leaning model incorporating Complementary Ensemble Empirical Mode Decom-
position (CEEMD) and improved MultiRocket, namely CEEMD-MultiRocket, to enhance
the classification performance of time series. Raw time series is firstly divided into three
sub-series utilizing CEEMD [38–40]. The sub-series refer to the individual Intrinsic Mode
Functions (IMFs) that make up the decomposition of the raw time series into its oscillatory
components. Since the decomposition is performed using a sifting process that extracts
the highest frequency component first and continues with lower frequency components
until the residual is obtained, these three sub-series represent high-, medium- and low-
frequency portions of the original time series, respectively. Since not every decomposed
sub-series as the input has a positive contribution to the performance of the classification
model, the selection of the more crucial sub-series and pruning the redundant and less
important ones are necessary to enhance the final classification performance and reduce
computational complexity. The selection of these decomposed sub-series is executed on
the known training set by comparing the classification accuracy of each sub-series with
that of the raw time series using a given threshold. Finally, we improve the original
MultiRocket and apply it to the raw time series and the selected decomposed sub-series
to derive features and generate the final classification results. In improved MultiRocket,
the convolution kernels are modified, and one additional pooling operator is applied to
convolution outputs. CEEMD-MultiRocket has been empirically tested with 109 datasets
from the UCR time series repository. Compared with some SOTA classification models,
the experiments demonstrate that our proposed CEEMD-MultiRocket achieves promis-
ing classification performance. Specifically, our proposed CEEMD-MultiRocket is more
accurate than MultiRocket even though it takes a relatively long time, and is competitive
with the HIVE-COTE 2.0 which ranks the best at present in terms of classification accuracy,
only with a small fraction of the training time of the latter. One of the main theoretical
and technical implications of CEEMD-MultiRocket is that it is the first time that CEEMD
has been integrated with convolution kernel transform for the feature extraction of time
series, making it outperform almost all of the previous SOTA methods. Furthermore,
CEEMD-MultiRocket improves convolution kernel and pooling operator design and is
demonstrated to be a fast, effective and scalable method for time series classification tasks,
showing that the optimization of convolution kernels and pooling operator is a promising
field worth studying for improving classification performance. The main contributions of
this research lie in five aspects:

(1) A novel hybrid TSC model that integrates CEEMD and improved MultiRocket is
proposed. Raw time series is decomposed into high-, medium- and low-frequency
portions, and convolution kernel transform is utilized to derive features from the
raw time series, the decomposed sub-series and the first-order difference of raw time
series. This kind of transformation is able to obtain more detailed and discriminative
information of time series from various aspects.

(2) A sub-series selection method is proposed based on the whole known training data.
This method selects the more crucial sub-series and prunes the redundant and less
important ones, which helps to further enhance classification performance and also
reduce computational complexity.

(3) The length and number of convolution kernels are modified, and one additional
pooling operator is applied to convolutional outputs in our improved MultiRocket.
These improvements contribute to the enhancement of classification accuracy.

(4) Extensive experiments demonstrate that the proposed classification algorithm is more
accurate than most SOTA algorithms for TSC.
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(5) We further analyze some characteristics of the proposed CEEMD-MultiRocket for TSC,
including the CEEMD parameter settings, the selection of decomposed sub-series, the
design of convolution kernel and pooling operators.

The rest of this paper is organized as follows. Section 2 briefly introduces CEEMD
and MultiRocket. Section 3 gives the description of the proposed CEEMD-MultiRocket
algorithm in detail, including CEEMD and sub-series selection, improved MultiRocket
and feature extraction. Section 4 reports experimental results and assesses the proposed
algorithm in terms of accuracy and training time. Section 5 discusses the impact of the
CEEMD parameters, the threshold setting for sub-series selection, the convolution kernel
length and an additional pooling operator on the classification performance of CEEMD-
MultiRocket, followed by conclusions in Section 6.

2. Related Works
2.1. Complementary Ensemble Empirical Mode Decomposition

CEEMD [38] is an extension built on Ensemble Empirical Mode Decomposition
(EEMD) [41] and Empirical Mode Decomposition (EMD) [42]. EMD is a time-frequency
analysis approach which is created for nonlinear and nonstationary signals or time
series [43]. EMD applies local extreme points of the raw time series to form the enve-
lope step by step, separates fluctuations or trends at diverse scales and generates a group
of relatively stable components, including IMFs and one residue. Specifically, the EMD
algorithm involves iteratively extracting local oscillations from the signal by means of a
sifting process. The extracted oscillations are called IMFs, and they represent the underly-
ing oscillatory modes that make up the signal. The remaining signal after extracting the
IMFs is called the residue, which contains the trends and other non-oscillatory components.
The main disadvantage of mode mixing in EMD is that the significantly diverse scales may
appear in the same IMF component [44]. To reduce mode mixing, EEMD was proposed [41].
In EEMD, IMFs are defined as a combination of time series and white noise with a limited
amplitude, which can significantly reduce mode mixing. Despite the fact that EEMD has
effectively handled the mode mixing problem, the residual noise in signal reconstruction
has increased. Therefore, CEEMD was proposed, where a specific type of white noise was
introduced at each stage of the decomposition [45]. It not only suppresses the mode mixing
but also reduces the reconstruction signal errors caused by residue noise. The CEEMD is
described as follows:

(1) Add two equal-amplitude, opposite-phase white noises to the signal x(t), to obtain
the following sequences. {

Pi(t) = x(t) + ni(t)
Ni(t) = x(t)− ni(t)

(1)

where ni(t) is the white noise superimposed in the ith stage, Pi(t) and Ni(t) denote
the sequence after adding noise in the ith stage .

(2) CEEMD firstly breaks down the sequence’s noise to generate the components IMF,
C1j and the trend surplus r1.

(3) In the same way, process the white noise with opposing symbols in step (1) to generate
the components C−1j and r−1.

(4) Repeat steps (1)∼(3) n times to obtain n sets.
(5) The ultimate result is chosen as the average of the components of two sets of residual

positive and negative white noise acquired by repeated decomposition, i.e.,{
Ci(t) = 1

2n ∑n
j=1(Cnj + C−nj)

rn(t) = 1
2n ∑n

j=1(rj + r−j)
(2)
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2.2. MultiRocket

Rocket employs lots of randomly initialized convolution kernels for transform, applies
pooling operators to convolutional outputs and uses a linear classifier, without training the
kernels [36]. For Rocket, a time series is convolved using 10 k random convolution kernels,
whose weights are sampled from N(−1, 1); length is selected from {7, 9, 11} with equal
probability; padding is alternating; dilation is exponentially scaled; and bias is sampled
from U(−1, 1). Additionally, the Proportion of Positive Values (PPV) and global max
pooling (Max) pooling operators are applied to each convolutional output to generate two
features, and to generate 20 K features in total for each input series. Finally, for a larger
dataset, the derived features are employed to train a logistic regression classifier, while for
a relatively small dataset, a ridge regression classifier is trained. Rocket has been proved to
be a efficient, fast and novel algorithm for the feature extraction of time series [36].

MiniRocket is built on Rocket and becomes further deterministic by pre-defining a set
of convolution kernels with fixed lengths and weights. MiniRocket retains the dilation and
PPV, while it discards the max pooling which is of no benefit for enhancing the classification
accuracy [37]. It performs a convolution operation on the input series using a fixed group
of 84 kernels with each kernel generating multi-dilation (74 by default) and using different
bias which are obtained by sampling on the convolutional output from a randomly selected
instance in the training set. Since only PPV is used in MiniRocket, the number of features
(84 × 119 = 9996 by default) generated by MiniRocket is only about half of the number of
features generated by Rocket.

The kernels used in MultiRocket are the same as MiniRocket. Unlike MiniRocket,
MultiRocket injects the diversity of features by adding the first-order difference of raw
time series and three additional pool operators to enhance the performance of MiniRocket.
Inspired by DrCIF, MultiRocket uses the first-order difference of raw time series as the
input to offer more diverse information related to the transformation of raw time series.
MultiRocket has 84 fixed convolution kernels and each convolutional kernel will produce
74 kinds of dilation. Firstly, MultiRocket performs a convolution operation on the input
series and the first-order difference of the input series using the kernels with dilations
to obtain the convolutional outputs. Next, four features (PPV and an additional three
pooling operators) are calculated for each convolutional output and then about 50 k (more
accurately, 84 × 74 × 2 × 4 = 49,728) features are generated. Finally, a linear regression
classifier is trained on the features. MultiRocket is faster than all TSC algorithms (except for
MiniRocket) and more accurate than all TSC algorithms (except for HIVE-COTE 2.0) [35].

In summary, Rocket, MiniRocket and MultiRocket are representations of the scalable
and most accurate algorithms on the UCR time series repository. As a series of algorithms,
their differences can be seen in Table 1.

Table 1. Summary of changes from Rocket to MiniRocket and then to MultiRocket.

Rocket MiniRocket MultiRocket

kernel length 7, 9, 11 9 9
weights N(0, 1) −1, 2 −1, 2
bias U(−1, 1) from convolutional output from convolutional output
dilation random fixed (range

⌊
20⌋ , · · · , b2maxc) fixed (range

⌊
20⌋ , · · · , b2maxc)

padding random fixed fixed
pooling operators PPV, MAX PPV PPV, MPV, MIPV, LSPV
num. features 20 K 10 K 50 K

3. The Proposed CEEMD-MultiRocket

This research proposes a hybrid ensemble model that combines CEEMD and improved
MultiRocket, termed CEEMD-MultiRocket, for TSC. The proposed model includes three
steps which are decomposition, sub-series selection and feature extraction and classification,
as demonstrated in Figure 1.

Step 1: Decomposition. Each time series in a dataset is decomposed into three sub-
series using CEEMD: IMFi (i = 1, 2) and one residual.
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Step 2: Sub-series selection. In order to enhance the final classification accuracy and
decrease computational load, the selection of these decomposed sub-series is executed
on the whole known training dataset by comparing the classification accuracy of each
decomposed sub-series with that of the raw time series using a pre-set threshold.

Step 3: Feature extraction and classification.The convolution kernel transform is
applied to the raw time series, the selected sub-series and the first-order difference of raw
series. Then, five pooling operators are designed to extract features from the convolutional
output. Finally, a ridge regression classifier is trained using these extracted features. In our
improved MultiRocket, the length and number of convolution kernels are modified, and
one additional pooling operator is applied to the convolutional output.

Figure 1. The flowchart of the proposed CEEMD-MultiRocket.

Firstly, the proposed CEEMD-MultiRocket applies CEEMD to decompose raw time
series into three sub-series (two IMFs and one residue), each of which contains information
about the different frequency of raw time series. In general, the first and second IMF
represent the high- and medium-frequency portions and the residue represents the low-
frequency portion of raw time series. Secondly, in order to enhance the final classification
performance and decrease computational complexity, it is necessary to select the most
crucial sub-series and discard less important ones. The selection of these sub-series is
executed on the whole known training set which is further subdivided into training and
testing sets using stratified sampling. Improved MultiRocket is used for the raw time series
and each sub-series on the newly generated training and testing sets, and the appropriate
sub-series is selected when its testing accuracy is higher than a given threshold, which is
set to a percentage of the testing accuracy of raw time series. Finally, convolution operation
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is performed on the raw time series, the selected sub-series and the first-order difference of
raw time series, respectively. It should be specially noted that the transform is only applied
to the raw time series and its first-order difference when there is a dataset without any
selected sub-series. Feature extraction is conducted on each convolutional output, and these
extracted features are eventually applied to train a ridge regression classifier. In improved
MultiRocket, the length and number of convolution kernels are modified, and five pooling
operators are used in each convolutional output to derive features. The combination of these
modifications has the potential to enhance the classification performance of MultiRocket.
Overall, this hybrid ensemble learning paradigm, CEEMD-MultiRocket, can diversify the
input series and comprehensively extract more extensive features from the raw series
and the decomposed sub-series for classification, which makes it possible to enhance
classification performance.

3.1. CEEMD and Sub-Series Selection

The CEEMD algorithm is usually applied in the field of signal processing, which
decomposes raw time series into several components to obtain better classification perfor-
mance [46]. The proposed CEEMD-MultiRocket firstly uses the CEEMD decomposition
algorithm to decompose raw time series into two IMFs and a residue. Figure 2 illustrates a
decomposition of a time series from the electricity consumption dataset ScreenType from
the UCR repository [47] using CEEMD. The length of each series in the ScreenType dataset
is 720 (24 h of readings taken every 2 min). The x-axis represents the time (every 2 min)
and the y-axis represents the electricity consumption in Figure 2.

Figure 2. A raw time series and its corresponding sub-series decomposed by CEEMD in the Screen-
Type dataset.

It is a challenging issue to select the appropriate sub-series for extracting discriminative
characteristics of the raw time series for time series analysis correctly [48]. To select the
appropriate sub-series (two IMFs or one residue) as the inputs to our classification model,
we propose a novel approach to select the appropriate sub-series generated by CEEMD
using the known training data. The main idea is to subdivide the original training dataset
into two parts including a new training dataset and a new testing dataset, then train a
classification model using improved MultiRocket and obtain the testing accuracy, and
finally select the sub-series with satisfactory testing accuracies. This kind of selection
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approach is based on the inference that the sub-series with relatively high testing accuracy
may contain more potentially useful characteristics as the input to improve MultiRocket.
The decomposition and sub-series selection are described as follows:

(1) Utilize CEEMD to decompose raw time series into two IMFs and a residue. For
convenience, we refer to three of them as IMFs.

(2) Perform stratified sampling to subdivide the original training set and its correspond-
ing three IMFs into new training sets and testing sets, respectively, and ensure that
the new training and testing sets contain all labels (the split ratio is 1:1).

(3) Apply improved MultiRocket to the newly generated training set of original training
time series, and then obtain the testing classification accuracy accoriginal on the newly
generated testing set. Perform the corresponding operations for each IMF and obtain
the testing classification accuracy acci, i = 1, 2, 3.

(4) Select the IMFs whose testing accuracies acci are more than accoriginal × threshold as the
inputs of improved MultiRocket. We refer to the selected IMFs as IMFs∗ throughout
the paper, which may contain 0–3 sub-series generated by CEEMD. The threshold is
set to 0.9 by default.

By comparing the testing accuracy of each sub-series with that of raw time series, we
can select the most crucial sub-series and discard the redundant and less important ones
as the inputs to classification model, thereby enhancing classification performance and
reducing computational cost.

3.2. Improved MultiRocket

This section provides a comprehensive explanation of improved MultiRocket which
retains the basic architecture as the original MultiRocket [35]. The main difference between
the improved MultiRocket and the original MultiRocket lies in two aspects. The first
is the modification of convolution kernel length, and the second involves an addition
pooling operator for feature extraction. We expect that these modifications are able to
significantly enhance classification ability. The comparison of original MultiRocket and
improved MultiRocket is listed in Table 2.

Table 2. Comparison of MultiRocket and improved MultiRocket.

MultiRocket Improved MultiRocket

kernel length 9 6
num. kernels 84 15
weights −1, 2 −1, 2
bias from convolutional output from convolutional output
dilation fixed (range

⌊
20⌋ , · · · , b2maxc) fixed (range

⌊
20⌋ , · · · , b2maxc)

padding fixed fixed
pooling operators PPV, MPV, MIPV, LSPV PPV, MPV, MIPV, LSPV, NSPV
num. features 50 K 50 K

3.2.1. Convolution Kernels

Improved MultiRocket employs 15 fixed convolution kernels with length 6 and has
fixed weights. Except for the length of convolution kernel, the dilation, the padding and
bias of the improved MultiRocket are the same as those of MultiRocket. The detailed kernel
design, dilation, bias and padding are described as follows.

• Kernel length and weight setting: To simplify the computation complexity as much
as possible, the number of convolution kernels ought to be as small as possible [37].
Therefore, our proposed CEEMD-MultiRocket tries to employ 15 convolution kernels
with length 6 instead of the 84 kernels with length 9 in the original MultiRocket.
The convolution kernel weights are restricted to two values, α and β, and there are
26 = 64 possible dual-valued kernels with a length of 6. Improved MultiRocket
employs the subset of convolution kernels that have two values of β, and this provides
a total of C2

6 = 15 fixed kernels, which strikes a good balance between computing
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efficiency and classification accuracy. In the improved MultiRocket, we set the weight
α = −1 and β = 2. As long as α and β increase by multiples, equivalently, that is
β = −2α, it has no effect on the results, because bias and features are extracted
from the output of convolution [37]. Since the original MultiRocket uses 84 kernels
with length 9, the number of kernels used in our improved MultiRocket is less than
a fifth of the number of kernels in the original MultiRocket, effectively decreasing
computing load.

• Dilation: The dilations used by each kernel are the same and fixed. The total number
of dilations of each kernel n depends on the number of features, where n = f /3/15
and f represent the total number of features (50 k by default). Dilations are specified in
range

{⌊
20⌋, . . . , b2maxc

}
, where the exponent obeys a uniform distribution between

0 and max = min (
linput−1
lkernel−1 , 64), where lkernel is the length of the kernel and linput is the

length of input time series.
• Bias: Bias values are determined by the convolutional outputs for each kernel/dilation

combination. For a kernel/dilation combination, we randomly select a training
example and calculate its convolutional output, then sample from the convolutional
output based on many quantiles to obtain bias, in which the quantiles are drawn from
a low-discrepancy sequence.

• Padding: Each combination of kernel and dilation alternates between using and not
using padding, with half of the combinations using padding.

We refer to the feature vector extracted by the convolution operation as Z and the
length of the input time series as l. According to [36], the result of applying a kernel to a
time series, X, from index i in X can be obtained using Equation (3):

Z = Xi × w = b + (
lkernel−1

∑
j=0

Xi+(j×d) × wj) (3)

where ω is weights, d is dilation and b is bias of the kernel.

3.2.2. Pooling Operators

MultiRocket injects diversity through two main aspects: the first-order difference of
raw time series and an additional three pooling operators. In order to enhance the diversity
of derived features, we propose an additional pooling operator, Number of Stretch of
Positive Values (NSPV), to extract more comprehensive features from the convolutional
output. Thus, we employ five pooling operators together to derive features, including the
four existing pooling operators used in the original MultiRocket [35]. Table 3 summarizes
the pooling operators in the improved MultiRocket, including Proportion of Positive Values
(PPV), Mean of Positive Values (MPV), Mean of Indices of Positive Values (MIPV), Longest
Stretch of Positive Values (LSPV) and NSPV.

Table 3. The summary of pooling operators in improved MultiRocket uses a virtual example to
illustrate that the four pooling operators in original MultiRocket cannot distinguish different sce-
narios with different convolutional outputs. Each convolutional output contains 6 zeros and 6 ones,
MPV = 1, PPV = 0.5, MIPV = 5.5, LSPV = 2.

Convolutional Outputs PPV MPV MIPV LSPV NSPV

A = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1] 0.5 1 5.5 2 3
B = [1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1] 0.5 1 5.5 2 1
C = [1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1] 0.5 1 5.5 2 2

PPV was first used in Rocket. It uses Equation (4) to compute the proportion of
positive value of Z.

PPV(Z) =
1
l ∑l

i=1[zi > 0] (4)
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MPV, MIPV and LSPV were used in MultiRocket. The MPV value is calculated using
Equation (5), where m is the number of positive values in Z.

MPV(Z) =
∑i=1

l zi[zi > 0]
m

(5)

MIPV is calculated by Equation (6), where i+ is the index of positive value and m is
the number of positive values in Z.

MIPV(Z) =

{
−1 otherwise
1
m ∑m

j=1 i+j if m > 0 (6)

LSPV is calculated using Equation (7) and represents the maximum length of any
subsequence of positive values in Z.

LSPV(Z) = max
[

j− i | ∀i≤k≤j zk > 0
]

(7)

We propose NSPV to calculate the number of continuous subsequences with positive
values in Z, as defined in Equation (8). It can offer a distinctive kind of information
compared with the other four pooling operators provided in the original MultiRocket. As
shown in Table 3, NSPV is the key to distinguishing between three time series, A to C.

NSPV(Z) = ∑n
k=1

[
j− i > 1 | ∀i≤k≤j zk > 0

]
(8)

3.3. Feature Extraction

Original MultiRocket produces 50 k features by default. For a fair comparison, the
improved MultiRocket extracts five aggregate features from each convolutional output and
also generates about 50 k (more accurately, 15 × 222 × 3 × 5 = 49,950) features for each
time series by default. Specifically, it has 15 fixed convolution kernels and each convolution
kernel produces 222 kinds of dilation, making the length of the convolution kernel from 6 to
the input time series’ length. The input data consists of three parts: (1) the raw time series;
(2) the selected IMFs∗; and (3) the first-order difference of raw time series. Firstly, the three
parts as the inputs are convolved by each combination of kernel and dilation in turn to
obtain the convolutional output. Next, a total of 49,950 features are eventually derived by
calculating five features for each convolutional output using five pooling operators. Finally,
a ridge regression classifier is trained on the extracted features.

4. Experimental Results
4.1. Datasets

To better assess the performance of the proposed CEEMD-MultiRocket, the experi-
ments were conducted on 109 univariate time series classification datasets from the UCR
time series repository [47], which includes datasets from many different fields and has been
used to evaluate various TSC models.

4.2. Experimental Settings

From the perspective of classification accuracy and runtime analysis, the proposed
CEEMD-MultiRocket was contrasted with some SOTA algorithms for classifying time
series, including MultiRocket, HIVE-COTE 2.0, InceptionTime, MiniRocket, Arsenal, STC,
TS-CHIEF, DrCIF, TDE and ProximityForest. In order to directly compare the classification
accuracy with other most accurate algorithms as mentioned above, we assessed the pro-
posed CEEMD-MultiRocket on 30 resamples of 109 datasets from the UCR univariate time
series repository used in [22,35] and adopted exactly the same resampling method as used
in MultiRocket [35]. Thus, on the basis of the same data sets and stratified split, we exam-
ined the effectiveness of our proposed CEEMD-MultiRocket in enhancing classification
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accuracy, and compared the runtime of CEEMD-MultiRocket with that of the above time
series classification algorithms.

In addition, the noise standard deviation was set to 0.4 and the number of realizations
was set to 30 in CEEMD. The threshold of sub-series selection was set to 0.9 of the testing
accuracy of raw time series. We performed CEEMD using MATLAB R2016a and improved
MultiRocket using pycharm IDE on a cluster with an Intel Xeon Gold 5218 CPU @2.30 GHz
using a single thread.

4.3. Results and Analysis
4.3.1. Classification Results

We compared CEEMD-MultiRocket with the 10 SOTA TSC algorithms mentioned
above to examine the effectiveness of our proposed method. Figure 3 illustrates the
mean rank of CEEMD-MultiRocket in comparison to the 10 TSC algorithms. According
to a two-sided Wilcoxon signed-rank test with Holm correction (as a post hoc test to
the Friedman test), algorithms connected with a black line have no pairwise statistical
difference in their accuracy [49]. The Wilcoxon signed-rank test is a nonparametric statistical
hypothesis test used to determine if two related samples have the same distribution, which
is often used to compare the significance of the differences between two related samples.
From Figure 3, we can see that CEEMD-MultiRocket is significantly more accurate than
MultiRocket and other TSC algorithms, and only marginally less accurate than HIVE-COTE
2.0. Note that the accuracy difference between CEEMD-MultiRocket and HIVE-COTE 2.0
is statistically insignificant, showing that CEEMD-MultiRocket achieves almost the same
level of classification performance as the latter.

Figure 3. Mean rank of CEEMD-MultiRocket in terms of accuracy over 30 resamples of 109 datasets
from the UCR time series repository, against 10 other SOTA algorithms.

Figure 4 shows the pairwise difference of the CEEMD-MultiRocket and 10 other SOTA
TSC algorithms in terms of statistical significance. The first row of each cell in the matrix
indicates the wins, draws and losses of the algorithm in the Y-axis versus the algorithm
in the X-axis, and the second row shows the p-value of the Holm-corrected two-sided
Wilcoxon signed-rank test between the pairwise algorithms. The bold numbers in the
cells represent that significant differences do not exist in the classification accuracy of
the pairwise algorithms after applying the Holm correction. As shown in Figure 4, our
proposed CEEMD-MultiRocket is significantly more accurate than all SOTA classification
algorithms except for HIVE-COTE 2.0, where the p-values for most of algorithms are close
to 0. CEEMD-MultiRocket outperforms MultiRocket with 70 wins and only 31 losses out
of 109 datasets. Compared with HIVE-COTE 2.0, CEEMD-MultiRocket achieves higher
accuracy on 51 datasets, lower on 50 datasets and is the only algorithm with a p-value close
to 1 after applying Holm correction.

As we can see, there are many different SOTA algorithms that can be used for time
series classification, and the suitability of a particular algorithm depends on various factors
such as the length of the time series, the sampling frequency, the number of classes and
the complexity of underlying patterns. In general, if the time series are very short, with
only a few data points, then simpler algorithms, such as nearest neighbor or decision trees,
may be more appropriate. These algorithms can be effective for small datasets and can
quickly classify time series based on their similarity to other time series in the training set.
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On the other hand, if the time series are very long and have a high sampling frequency,
then more complex algorithms, such as RNN or CNNs, may be more suitable. Through the
experiments on 109 datasets, we find that our CEEMD-MultiRocket algorithm performs
well in classification and outperforms the vast majority of existing classification algorithms.
Among these 109 datasets, the shortest time series length is 15 (SmoothSubspace), and the
longest is 2844 (Rock), indicating that our algorithm is effective for both short and long
time series.

Figure 4. Pairwise difference between CEEMD-MultiRocket and 10 other SOTA algorithms in terms
of statistical significance.

Figure 5 illustrates the pairwise accuracy of CEEMD-MultiRocket versus MultiRocket
over 30 resamples of the 109 datasets from the UCR time series repository. Overall, we can
find that most points are scattered above the dotted line, showing that CEEMD-MultiRocket
achieves significantly better classification accuracy than MultiRocket.

Figure 5. Pairwise accuracy of CEEMD-MultiRocket versus MultiRocket over 30 resamples of
109 datasets from the UCR time series repository.
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4.3.2. Runtime Analysis

Although CEEMD-MultiRocket significantly outperforms MultiRocket in terms of
accuracy, the additional decomposition operation, the sub-series selection and one extra
pooling operator increase computational complexity. Fortunately, the reduction in the
number of convolution kernels decreases the runtime of our proposed CEEMD-MultiRocket
algorithm. We evaluated the overall training time of 10 other SOTA algorithms to train a
single resample on 112 UCR datasets and compared the training time of these algorithms
with our proposed CEEMD-MultiRocket, as shown in Table 4. From Table 4, we can find
that CEEMD-MultiRocket is obviously faster than most TSC algorithms. All the SOTA
algorithms, except the Rocket family, take lots of time to train, as reported by [22]. As for
the Rocket family, MiniRocket, unsurprisingly, is the fastest, with a training time of under
4 min. After that is MultiRocket, which can be trained in under 24 min. Next is Rocket,
with a training time of over 4 h, followed by our CEEMD-MultiRocket, taking under 5 h for
training. Arsenal is an ensemble of Rocket, with a training time of about 28 h. The training
time of six non-Rocket algorithms running on a high-performance computing (HPC) cluster
with a single thread was reported in [22], which used higher-level hardware than ours.
DrCIF takes about 2 days and the ensemble algorithms, including STC, HIVE-COTE 1.0/2.0
and TS-CHIEF, take at least 4 days. By comparison, the Rocket family algorithms use
lots of randomly initialized convolution kernels for feature extraction, and only use one
linear classifier for classification, without training the kernels, while non-Rocket algorithms,
such as HIVE-COTE 2.0, TS-CHIEF, etc., integrate many classifiers with a large number of
parameters and therefore require a lot of time for training. As a result, we can find that these
non-Rocket algorithms are clearly more time-consuming than our algorithm. Specifically,
the training time of CEEMD-MultiRocket consists of three parts: CEEMD (4.11 h), the IMFs
selection (26.3 min) and model training using the improved MultiRocket (20.3 min). Due to
the decomposition cost of raw time series, the proposed CEEMD-MultiRocket is slower
than original MultiRocket, but it significantly outperforms MultiRocket in classification
accuracy. Compared with HIVE-COTE 2.0, our proposed CEEMD-MultiRocket achieves
almost the same level of classification accuracy but only costs 1.4% of the training time,
showing that our proposed CEEMD-MultiRocket is an effective algorithm in TSC.

Table 4. Runtime to train single resample of 112 UCR datasets. The runtime of Rocket family and
CEEMD-MultiRocket algorithm is calculated by running with a single thread on Intel Xeon Gold
5218 CPU. The runtime of the others is cited from [22].

TSC Algorithm Total Training Time

MiniRocket (10 k features) 3.61 min
MultiRocket (50 k features) 23.65 min
Rocket (20 k features) 4.25 h
CEEMD-MultiRocket (50 k features) 4.88 h
Arsenal 27.91 h
DrCIF 45.40 h
TDE 75.41 h
STC 115.88 h
HIVE-COTE 2.0 340.21 h
HIVE-COTE 1.0 427.18 h
TS-CHIEF 1016.87 h

5. Discussion

For a more comprehensive evaluation of CEEMD-MultiRocket, we continue to discuss
several characteristics of the proposed algorithm on 109 datasets from the UCR time series
repository in detail, including the parameter setting of CEEMD, the sub-series selection,
the convolution kernel design and pooling operators.
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5.1. CEEMD Parameter Settings

During the procedure of decomposing raw time series, CEEMD adds a specific white
noise to the time series. The addition of white noise is an important step in the CEEMD
method that can eliminate the mode mixing problem and help to improve the accuracy and
reliability of the decomposition results. The decomposition contains two main parameters:
the number of realizations R and the noise signal intensity N. Different numbers of
realizations and noise signal intensities may produce different IMFs. Experiments were
conducted on 109 datasets from the UCR time series repository to assess the impact of these
two parameters for classification performance. Figure 6 shows the mean rank of different
noise intensities (N = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) applied on CEEMD-MultiRocket with a
fixed number of realizations R = 30. Figure 7 shows the mean rank of different numbers
of realizations (R = 10, 20, 30, 40, 50, 60, 70) applied on CEEMD-MultiRocket with a fixed
noise intensity N = 0.4.

As shown in Figure 6, CEEMD-MultiRocket obtains the best mean rank in classification
accuracy on the 109 datasets when N = 0.4. This indicates that a too high or too low noise
intensity leads to a reduction in classification accuracy, though there is not a statistically
significant difference in classification accuracy. The findings of the experiment reveal that
the intensity of noise has only a marginal impact on the classification performance and an
optimum value for the intensity of added noise is somewhere around 0.4.

Figure 7 shows that CEEMD-MultiRocket achieves the best classification accuracy
when the number of realizations R = 70, but the difference of classification performance
between R = 70 and R = 30 is relatively small and statistically insignificant. As shown in
Section 4.3.2, the decomposition of raw time series takes up most of the runtime (about
84%) of CEEMD-MultiRocket, it is necessary to reduce the decomposition time as much as
possible. Since the number of realizations R = 30 takes less than half of the time of R = 70,
we adopt 30 as the number of realizations in our CEEMD-MultiRocket to achieve a balance
between the classification accuracy and time cost.

Figure 6. Mean rank of different noise intensities applied on CEEMD-MultiRocket with a fixed
number of realizations.

Figure 7. Mean rank of different numbers of realizations applied on CEEMD-MultiRocket with a
fixed noise intensity.

5.2. Sub-Series Selection

Integrating all decomposed sub-series as the input to the classification model is not
necessarily a guarantee of improvement of classification performance. Therefore, it is
necessary to select the most important sub-series and discard less important ones to en-
hance the overall classification performance and decrease the computational complexity.
The selection is executed on the whole known training set which is further divided into
training and testing sets by stratified sampling, by comparing the testing accuracy (using
improved MultiRocket) of each IMF with that of the raw time series, respectively, using
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a predetermined threshold. When the ratio of the testing accuracy of the IMF to that of
the raw time series is more than the given threshold, this IMF is selected as the input to
the classification model. We set different thresholds and the corresponding classification
results are shown in Figure 8.

From Figure 8, we can find that CEEMD-MultiRocket achieves the best classification
accuracy when the value of the threshold is 0.9, although the difference by setting different
thresholds is negligible and statistically insignificant in terms of the classification accuracy.
Table 5 shows the number of datasets with 0, 1, 2 or 3 IMFs which are selected using different
thresholds on 109 datasets. When the threshold is set to 0, all three IMFs are unconditionally
selected for each dataset, and the classification accuracy is the worst because some of these
IMFs may produce negative impacts on the performance of the classification algorithm.
When the threshold is set to 1, more than half of the datasets do not have any IMFs selected.
Although this can decrease the computational complexity, it may also lose many crucial
sub-series and reduce the classification performance. We find that when the threshold is set
to 0.9, 93 datasets out of all 109 datasets select at least one decomposed IMF, and our model
achieves the best classification accuracy due to the addition of appropriate IMFs∗.

Figure 8. Mean rank of CEEMD-MultiRocket using different threshold.

Table 5. Number of datasets of selecting different number of IMFs using different thresholds on
109 datasets from the UCR time series repository.

Threshold Number of IMFs Selected
0 1 2 3

0 0 0 0 109
0.3 0 3 3 103
0.5 0 14 7 88
0.7 0 31 13 65
0.8 1 40 22 46
0.9 16 48 17 28
1 60 31 11 7

5.3. Convolution Kernel Design

In CEEMD-MultiRocket, we decrease the length of the convolution kernel to 6. Figure 9
demonstrates the effectiveness of different kernel lengths on classification accuracy. In
Figure 9, 6_2 means the kernel length is 6, in which two weights are one value and the
remaining weights are another value. Thus, it gives C2

6 = 15 fixed kernels in total. As can be
seen from Figure 9, convolution kernels of length 5, 6 or 7 significantly outperform other
convolution kernels with a length of 8, 9 or 11 in terms of classification accuracy.

It is also worth mentioning that the entire set of kernels of length 6 produces higher ac-
curacy than the 6_2 kernel subset, but the classification accuracy is statistically insignificant.
Since the 6_2 kernel subset only has about a quarter of the number of convolution kernels
of the entire set of kernels with length 6, it is particularly suitable for the optimizations of
avoiding multiplications, which can significantly shorten training time but achieve almost
the same level of classification accuracy. Therefore, the convolution kernel of length 6_2 is
applied in the proposed CEEMD-MultiRocket.
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Figure 9. Mean rank of CEEMD-MultiRocket using different convolution kernel lengths.

5.4. Pooling Operators

In CEEMD-MultiRocket, we add an extra pooling operator NSPV (Number of Stretch
of Positive Values) to enrich the discriminatory power of derived features. Figure 10
compares the effectiveness of using all five pooling operators (PPV, MPV, MIPV, LSPV,
NSPV), four pooling operators (PPV, MPV, MIPV, LSPV), two pooling operators (PPV and
NSPV) and only PPV in CEEMD-MultiRocket with 50k features. The experimental result
shows that compared with four pooling operators, an additional NSPV pooling operator is
able to significantly increase classification accuracy, indicating that NSPV contributes to the
improvement of classification performance in CEEMD-MultiRocket. Furthermore, we also
find that using four pooling operators (PPV + MPV + MIPV + LSPV) is not significantly
better than only using two pooling operators (PPV + NSPV).

Figure 10. Mean rank of CEEMD-MultiRocket using different combinations of pooling operators.

5.5. Summary

From the above results and analysis, some findings can be summarized as follows:

(1) Decomposing raw time series into sub-series and extracting features from them can
obtain more detailed and discriminative information from various aspects, which
significantly contributes to the enhancement of classification accuracy.

(2) Selecting the more crucial sub-series and pruning the redundant and less important ones
can both enhance classification performance and reduce computational complexity.

(3) The optimization in convolution kernel design can generate more efficient transform,
which helps to improve the overall classification accuracy.

(4) The additional pooling operator NSPV enriches the discriminatory power of derived features.

6. Conclusions

To enhance the classification performance of the original MultiRocket, this study
proposes a hybrid classification model CEEMD-MultiRocket which integrates CEEMD
and improved MultiRocket. Firstly, the CEEMD algorithm is employed to decompose raw
time series into two IMFs and one residue, which represent the high-, medium- and low-
frequency portions of raw time series, respectively. Then, the selection of these decomposed
sub-series is conducted on the whole known training set which is further divided into
new training and testing sets using stratified sampling, by comparing the classification
accuracy of each sub-series with that of the raw time series using a given threshold. Finally,
we improve the convolutional kernel and pooling operators of the original MultiRocket,
apply the improved MultiRocket to the raw time series, the selected decomposed sub-
series and the first-order difference of raw time series to extract features, and build a
ridge regression classifier. The experimental results demonstrate that: (1) in comparison
to all SOTA classification algorithms except for HIVE-COTE 2.0, the proposed algorithm
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can significantly enhance the classification accuracy on 109 datasets from the UCR time
series repository; (2) CEEMD-MultiRocket achieves almost the same level of classification
accuracy as HIVE-COTE 2.0, with a fraction of the computing cost of the latter; (3) the
CEEMD algorithm has the ability to generate a variety of representations of raw time
series as the inputs of the algorithm, which contributes to the improvement of classification
accuracy; (4) the improvement of convolution kernel length and the reduction in the
number of convolution kernels can enhance classification performance while reducing
computational load; and (5) the additional pooling operator contributes to enhancing the
classification accuracy.

There are two main limitations in our work: (1) CEEMD is a relatively time-consuming
decomposition method; (2) the values of weights in the convolution kernel are pre-defined
and cannot be dynamically adjusted in line with increases in the dilation. The main
directions for future research could be extended in two aspects: (1) continuing to im-
prove MultiRocket to build the hybrid ensemble classification algorithm for time series;
(2) considering faster decomposition algorithms and sub-series selection algorithms to
improve the runtime and classification accuracy of the algorithm.
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