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Abstract: X-ray contraband detection plays an important role in the field of public safety. To solve the
multi-scale and obscuration problem in X-ray contraband detection, we propose a material-aware path
aggregation network to detect and classify contraband in X-ray baggage images. Based on YoloX, our
network integrates two new modules: multi-scale smoothed atrous convolution (SCA) and material-
aware coordinate attention modules (MCA). In SAC, an improved receptive field-enhanced network
structure is proposed by combining smoothed atrous convolution, using separate shared convolution,
with a parallel branching structure, which allows for the acquisition of multi-scale receptive fields
while reducing grid effects. In the MCA, we incorporate a spatial coordinate separation material
perception module with a coordinated attention mechanism. A material perception module can
extract the material information features in X and Y dimensions, respectively, which alleviates the
obscuring problem by focusing on the distinctive material characteristics. Finally, we design the
shape-decoupled SIoU loss function (SD-SIoU) for the shape characteristics of the X-ray contraband.
The category decoupling module and the long–short side decoupling module are integrated to the
shape loss. It can effectively balance the effect of the long–short side. We evaluate our approach on
the public X-ray contraband SIXray and OPIXray datasets, and the results show that our approach is
competitive with other X-ray baggage inspection approaches.

Keywords: X-ray images; contraband detection; atrous convolution; attention mechanism; regression
loss function

1. Introduction

With the development of the transportation industry, transportation security has
become a key area of concern, where contraband detection is an important measure to
maintain public safety and transportation security. However, the current excessive reliance
on the experience and energy of security personnel has decreased the accuracy of manual
reviews, and the accuracy rate of contraband detection by security personnel is generally
between 80% and 90% [1]. Therefore, automatically searching for prohibited items in
passenger packages from X-ray images is essential for reducing labor costs and improving
efficiency and reliability.

Through the analysis of the dual-energy X-ray scanning contraband dataset and
operation of related experiments, it is found that they compared with the photographic
(optical) object detection dataset, MS-COCO [2] (Microsoft Common Object in Context), and
the dataset PASCAL VOC [3]. In the past few years, artificial intelligence technology based
on the neural network has been applied to X-ray contraband detection [4–6]. However,
these algorithms have not yielded satisfactory achievements in contraband detection.
Contraband security screening remains an open challenge for several key reasons [7]:

1. Multi-scale detection in X-ray datasets: Due to the scanning angle of the dual-energy
X-ray scanner and the physical characteristics of the contraband, there is a seriously
uneven scale, which includes an uneven scale between the different categories, an
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uneven scale between the same categories, and an uneven scale between the long–
short sides, rendering it difficult to detect the contraband.

2. Extreme clutter and occlusion: Pieces of information obscure each other because of
the penetrating nature of the X-ray scanning equipment and the resulting overlap
between the deep and shallow high-density image. This has a negative impact on the
accuracy of X-ray contraband detection.

To solve the above problems, this paper proposes a material-aware path aggregation
network for X-ray object detection and shape-decoupled SIoU (SD-SIoU), which can not
only detect items of contraband in common but also detect difficult samples in extreme
cases, such as small objects and obscured items. Our model takes the YoloX [8] object
detection network as the baseline and modifies its neck part for the differences between the
X-ray images and the natural images in the OPIXray [9] dataset. Figure 1 shows the images
of the dataset with the above problem.
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Figure 1. Problem description in X-ray contraband dataset. The first three images show the scale
difference problem caused by different views of the same type of contraband and its uneven aspect
ratio, and the last image shows the complex occlusion and clutter problem.

Our main contributions are listed below:

1. Constructing a novel material-aware path aggregation network, which includes a
smoothed atrous convolution module (SAC) and material-aware coordinate attention
mechanism (MCA). The SAC is to handle the multi-scale problem by combining
smoothed atrous convolution using separate shared convolutions with a parallel
branching structure. The SAC effectively mitigates the grid effect caused by the
atrous convolution, while improving the model’s multi-scale detection capability. The
MCA is designed to address the clutter and occlusion problem by incorporating a
spatial coordinate separation material perception module with a coordinate attention
mechanism. The MCA mitigates contraband obstruction by focusing deeply on the
contraband material information.

2. A new shape-decoupled SIoU (SD-SIoU), based on the SIoU, is constructed for the
uneven aspect ratio problem. First, we optimize the normalized penalty factor; a cen-
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trosymmetric normalization function is constructed. Then, we decouple the predicted
bounding box long–short side length information to construct a long–short-shape
loss branch. Finally, we introduce the category long–short side coefficient, which is
determined by category prior knowledge of the contraband datasets. The category
long–short coefficient is embedded in the long–short-shape loss branch to handle the
uneven aspect ratio by utilizing the category prior knowledge.

3. We evaluate our module on the OPIXray [9] and SIXray [10] datasets, then compare
it to recent high-performing object detection networks and contraband detection
networks. The experimental results confirm the superiority of our model over other
contraband detection models.

2. Relate Work

X-ray security inspection task. Compared to the traditional photographic imagery
generated by light reflection, an X-ray image is based on X-ray properties (penetrating,
fluorescent and photographic effects). In X-ray images, the brightness and color of the
pictures represent the density and material of the detected items, respectively. Therefore,
objects scanned by X-ray lose their texture and original color information.

Traditional feature detection methods. X-ray contraband detection belongs to the category
of object detection, and the early object detection feature extractors were mostly designed
manually and purposefully. Turcsany et al. [11] used a Support Vector Machine (SVM) and
SURF features (Speeded-UP Robust Features) to build a visual bag-of-words; Zhang et al. [12]
extracted potential features of the image, such as the edges and color, by traditional image
processing methods, and obtained a good detection performance improvement.

Deep learning detection methods. Deep learning comprises multiple layers of neural
networks that outperform traditional machine learning algorithms. Akcay [13] et al. first
introduced deep learning to luggage classification detection of X-ray images using transfer
learning. Li et al. [14] combined a semantic segmentation network with Mask R-CNN [15]
into a two-stage CNN model, using the semantic segmentation network as Mask R-CNN
soft-attention coding to improve the performance degradation caused by overlapping
objects in X-ray images. Zhang et al. [16] used an XMC R-CNN model, consisting of a
material classification algorithm and an organic-inorganic separation algorithm, for object
detection to mitigate the accuracy degradation caused by the occlusion problem effectively.

Multi-scale problem in contrabands detection. Few research studies focus on X-ray
baggage threat detection in complex scenarios, including multi-scale detection. Wang
et al. [17] utilized a dense attention module to contribute to SDANet, and Cascade Mask
RCNN is used as the baseline for the extracted multi-scale features. Tao et al. [18] utilized
bidirectional propagation to filter out the impact of the noisy region in the key part by
constructing multi-scale features links. Chunjie et al. [19] proposed EAOD-Net, utilizing
the learnable Gabor convolution and deformable convolution. ResNeXt is also used to
improve the representative ability of multi-scale features. Nguyen et al. [20] used a task-
specific deep feature extractor to reduce the multi-scale X-ray images to the same aspect
ratio in the same size. This can enable a more efficient deep-detection pipeline. Chunjie
et al. [21] constructed a global context feature extraction (GCFE) module and learnable
Gabor convolution layer for the high-level and low-level features, which facilitates the
detection of bands of different sizes while suppressing background noise.

Obscuration problem in contrabands detection. The obscuration problem has also
been widely studied by many scholars. Gas et al. [22] explored the ability of the traditional
CNN model to adapt different properties of the scanner and evaluated the prohibited
items predicted result on the Dbf3 and SIXray datasets. Hassan et al. [23] obtained dual
tensors with improved contour information in X-ray baggage images by levering the
intensity transit transitions in low- and high-energy scans. Those contour features were
then put into an edge suppression model to filter the noise information to a normal level. Li
et al. [24] proposed a method based on GANs with a generator architecture with Res2Net
for the natural occurrence problem. Hassan et al. [25] proposed a tensor pooling strategy to
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decompose the scans across various scales and then fuse them via a single multi-scale tensor
to obtain more salient contour maps for boosting a framework’s capacity for handling
the overlap problem. Wei et al. [9]. proposed the de-occlusion module (DOAM), which
combines the edge and material information of the contraband to refine the feature map,
which enhances the detection performance.

However, edge information contains too many irrelevant gradients [26]. Therefore, it
has a limited improvement in the model localization and classification; this leads to poor
discrimination by the detection model in the case of occlusion and a multi-scale task. In
addition, the above model does not take into account the effect of a severely unbalanced
aspect ratio on the model predictions, which prevents the model from using the contraband
shape information distribution to improve the model’s prediction performance.

3. Method

The anchor-free detection method is able to learn multi-scale features better than the
anchor-based method [27]. Therefore, the YoloX model using the anchor free detection
method is chosen as the baseline model in this paper. A new shape-decoupled SIoU loss is
also designed for YoloX’s unique decoupling.

The block diagram of the proposed framework is depicted in Figure 2. The input
origin image is fed into the CSP-DarkNet53 [28] backbone for multi-scale feature extraction.
The extracted multi-scale features are separately fed into the material-aware coordinate
attention mechanism (MCA) for recalibration. In the MCA, the material information related
to the contraband can be extracted and integrated more accurately by utilizing a spatial
coordinate separation material perception module. Afterward, these features containing the
aggregated material information are then fed into an improved path aggregation network
(PAN) [29], which is embedded in the multi-scale smoothed atrous convolution module
(SAC), with the SAC levering the ability of the smoothed atrous convolution to increase
the field of perception for further extraction and fusion of multi-scale object information.
Finally, in the training stage, the contraband prediction results are output by the decoupling
head. SD-SIoU is used in the bounding box loss calculation, which decouples the shape
loss of the prediction box into the long-side and short-side shape loss. The specific details
will be described in the following sections.
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3.1. Material-Aware Path Aggregation Network

To further address the problem of multi-scale detection and occlusion in contraband
images, a Material-aware Path Aggregation network is proposed, which consists of multi-
scale smoothing atrous convolution (SAC) and a material-aware coordinate attention
mechanism module (MCA).

3.1.1. Multi-Scale Smoothing Atrous Convolution (SAC)

Compared to the traditional convolutional method, atrous convolution increases
the receptive field of the convolution kernel while keeping the number of parameters
unchanged [30]. However, atrous convolution faces a serious grid effect, weakening the
proximate connections while gaining long-distance dependence. To address this problem,
inspired by the smoothed atrous convolution [31], a multi-scale parallel smoothed atrous
convolution structure is designed, which is shown in Figure 3.
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As shown above, to limit the impact of the grid effect, this paper constructs parallel
atrous convolution branches; each branch uses a different expansion rate to minimize the
grid effect. Figure 4 shows the visualization of the atrous convolution grid effect rendering.
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A smoothed dilated residual block can effectively prevent the grid effect [31]; it
addresses the gridding effect by levering separable and shared convolutions (SS), based
on the idea of separable convolutions [32]. In SS convolutions, sharing means that the
filters are the same and shared by all the input and output channel pairs. For both the
input and output channels, the SS convolution uses only one filter to obtain all the spatial
information and shares that filter over all the channels. Therefore, smoothed dilated
convolutions can effectively amplify the receptive field to make this branch pay more
attention to style features(e.g. edges and global colors) [33]. We therefore apply this module
to our parallel multi-scale architecture. Finally, inspired by ResNet [34], the residual
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information is summed with the fused information in Pixel-Wise and activated by the SiLU
activation function.

Although the use of null convolution is effective in reducing the computational effort,
the model itself increases some of the parameters and computational effort because of the
addition of extra convolution

By using the SAC in the path aggregation network, the weight of the contraband
material information can be augmented, which significantly increases the capability of the
features to describe the important objects.

3.1.2. Material-Aware Coordinate Attention Mechanism (MCA)

Due to the unique physical characteristics of the X-ray scanner, the material infor-
mation of the contraband is greatly diminished and is ultimately represented as color
information. This means that channel information has a greater contribution to the detec-
tion of contraband in X-ray scanned images. The channel attention mechanism can learn
different weights of channel dimensions, so that the information from the key channels
can be utilized to a greater extent. The coordinate attention (CA) mechanism [35], as a
kind of channel attention module, embeds the spatial location information into the channel
attention, which means adding extra information into the channels.

However, due to the weakness of spatial information in X-ray images, the original CA
attention mechanism cannot fully extract the comprehensive spatial information of images.
For this problem, inspired by SRM [36], a material-aware coordinate attention mechanism
is designed, and the specific structure is shown in Figure 5.
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First, the input feature maps are put into the material-aware extraction module, which
is constructed by average pooling and standard pooling in the width and height directions,
to obtain four feature maps, respectively. Specifically, given the input X, two special two-
dimensional convolution kernels, (H,1) and (1, W), are used to encode the input data, and
four different pooling methods are used to obtain the horizontal and vertical coordinate
encoding information. The output of the height, h, at the c-th channel can be presented as

Avgh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

Stdh
c (h) =

√
1

W ∑
0≤i<W

(xc(h, i)− Avgh
c (h))

2 (2)
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Similarly, the output of width, w, at the c-th channel can be formulated as

Avgw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (3)

Stdw
c (w) =

√
1
H ∑

0≤j<H
(xc(j, w)− Avgw

c (w))2 (4)

The above four branches integrate the information of two spatial dimensions, encoding
the spatial information and channel information together. This serves as a summary
description of the material information for each example, n, and channel, c.

After that, we enter the coordinate information embedding layer to splice and convolve
the channel dimensions of the width and height feature information, which embeds the
width and height information with the channel information into one feature map. Two
feature maps with scales of H × 1 × C and 1 ×W × C are obtained. These two directional
feature maps of the width and height of the obtained global receptive field are put together
according to the spatial dimension. Then, in the coordinate attention generation part, the
two feature maps are fed into a convolution module with a shared convolution kernel of
1 × 1 to scale the dimension to C/r and, finally, to the sigmoid activation function and the
BatchNorm operation.

3.2. Shape Decoupling SIoU (SD-SIoU)

In addition to the anchor-free detector, YoloX also introduces a decoupled head.
The decoupled head decouples the classification task and the regression localization task
into two separate branches for separate outputs. This enables the model to focus on the
classification and localization tasks separately and improve the model performance. We
further improve the decoupled localization task by introducing the SioU [37] loss function
and improving it for the physical properties of the X-ray scanning object, which include the
shape-decoupling module and normalized optimization algorithm

3.2.1. Revisit SIoU Loss Function

Traditional IoU losses, such as DIoU, CioU [38] and GioU [39], only consider the
distance, overlap area and aspect ratio information, and do not consider the angle and ratio
between the shape and the predicted bounding box and the target bounding box, resulting
in a slight overlap. However, SIoU redefines the penalty matrix by considering the angle
and shape. SIOU regression loss consists of four components: distance loss, IOU loss, angle
loss and shape loss. The total loss is defined as:

Lbox = 1− IoU +
∆ + Ω

2
(5)

The angle loss is defined as:

Λ = 1− 2 ∗ sin2(arcsin(x)− π

4
) (6)

x =
max(bgt

cy, bcy)−min(bgt
cy, bcy)√

(bgt
cx − bcx)

2
+ (bgt

cy − bcy)
2

(7)

The distance loss is defined as:

∆ = ∑
t=x,y

(1− e(Λ−2)ρt) (8)
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where

ρx = (
bgt

cx − bcx

max(w, wgt)
)

2

, ρy = (
bgt

cy − bcy

max(h, hgt)
)

2

(9)

The shape loss is defined as:

Ω = ∑
t=w,h

(1− e−ωt)
θ (10)

where

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
, ωh =

∣∣h− hgt
∣∣

max(h, hgt)
(11)

bgt
cy and bcy represent the y coordinates of the center point for ground truth and

prediction. w and h represent the width and height of the bounding box.
SIoU has been widely used in recent networks and has proven to be a key component

in the implementation of advanced detectors [40–43]. However, although SIoU takes
shape loss into account, it couples the long- and short-side information of the prediction
bounding box together and assigns the same computational weight to them, which ignores
the proportional relationship between the long and short sides. In addition, SIoU limits the
shape loss to [0, 1] by dividing by the maximum of the predicted and true values, which
causes asymmetry in the parameter convergence curve and convergence difficulties due to
low proximity gradients.

In the following, we will reconsider the shape loss part for the above problem.

3.2.2. Shape Decoupling Module

In the X-ray contraband images, the distribution of the long side and short side is
always not equal, and the aspect weight of contraband varies greatly among different cate-
gories. Giving the same weight to the long side and short side will affect the optimization
of the model for the contraband shape information. Figure 6 shows the scatter plot of the
OPIXray dataset consisting of information on the long side and short side of different types
of contraband.
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As shown in Figure 6, there is a significant difference between the long–short sides
of the target box. To address this problem, we designed the long–short side decoupling
module and the category information embedding module, based on the special structure of
the YoloX decoupling head. The detailed structure is shown in Figure 7.
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In the long–short side decoupling module, the length and width information of the
input prediction bounding box is separated, and the lengths of the long side and the short
side are extracted, respectively. Therefore, a new shape loss penalty factor is decoupled for
the long length, l, and short length, s, as follows.

ωl =

∣∣l − lgt
∣∣

max(l, lgt)
, ωs =

∣∣s− sgt
∣∣

max(s, sgt)
(12)

In the category information embedding module, we collect the long and short side
information of the dataset by category and perform a cluster analysis to obtain the gathering
point information. Finally, we construct the long–short scale matrix, Mn×1, which can be
represented as follows.

M= [α1, α2, α3, · · · , αn]n×1 (13)

where n is the number of categories, and αi is the aspect ratio of i-th category clustered.
Then, multiplying the category prediction matrix, Cm×n, with the long–short scale matrix,
Mn×1, yields the category long–short side coefficient matrix, Am×1.

Then, we embed the category information into the shape loss by dividing the long-side
penalty factor by the category long–short side coefficient matrix, Am×1. The equation is
shown below.

ωl+ = ωl/Am×1 (14)

The above formula realizes the decoupling of the shape information and the embed-
ding of the category information, effectively alleviating the impact of the long–short sides
on detection accuracy.

3.2.3. Normalized Optimization Module

As we continue our research, we find that, in shape loss, the range of values is restricted
to R ∈ (0, 1) by dividing by the maximum value of the ground truth box width and height
and the predicted box width and height in Equation (7). However, this method leads to
a symmetry problem. It can be seen, in Figure 8, the maximum normalization does not
work consistently for the same distance gap between the target and predicted bounding
box sizes in the positive and negative directions, and the optimized gradient is worse as
distance between the target and prediction gets closer. Although the function has a very
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fast convergence speed in the early stage of training, the convergence ability of the model
decreases as the prediction results approach.
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To address this problem, we designed a symmetric normalization method for the
shape loss part of the SIoU. The new shape loss composition is shown below.

Ω = ∑
t=w,h

(1− e−ϕt)
θ (15)

where the novel penalty factor is:

ω+
t = b× ek×|w−wgt | − e−k×|w−wgt |

ek×|w−wgt | + e−k×|w−wgt | (16)

As shown above, the improved normalization function solves the left–right asymmetry
problem caused by the max function and optimizes the penalty factor regularization
algorithm, so that the loss decreases more smoothly during the training process and still
has a certain descent gradient in the late training period.

4. Experiment

In this section, we conduct comprehensive experiments on OPIXray and SIXray
datasets to evaluate the effectiveness of our method. OPIXray and SIXray are the common
datasets for X-ray contraband images.

4.1. Experiment Setting Details

This paper is implemented by a Windows 10 64-bit operating system, 12th Gen Intel
Core i9-12900K@3.2 GHz CPU, 32 GB RAM, NVIDIA 3080ti GPU with CUDA Toolkit
11.4 and Torch 1.11 in Python 3.8. As the benchmark of our model, YoloX uses the most
primitive parameter settings. The backbone of YoloX uses CSP-Darknet53.

All the experiments of our model and baselines are optimized by an Adam optimizer.
The initial learning rate is set to 0.001, and the Cosine Annealing learning rate reduction
strategy is used. The momentum and weight decay are set to 0.93 and 0, respectively. The
batch size is set to 16. We evaluate the mean Average Precision (mAP) to measure the
performance of all the methods. In addition, the IoU threshold measuring the accuracy of
the predicted bounding box is set to 0.5.
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4.2. Comparing with SOTA Detection Methods

To verify the effectiveness of the proposed methods in this paper, as shown in Tables 1
and 2, we compared the mainstream contraband detection models and object detection
models in the last two years on the OPIXray and SIXray datasets, respectively. The method
involved included object detection models such as Swin Transformer [44], RetinaNet [45],
DetectoRS [46], Yolov5 and baseline YoloX. It also includes the most advanced contraband
detection models in the last two years such as CHR [10], FBS [47], CFPA-Net [48], MCIA-
FPN [49] and POD-Y [21].

Table 1. Performance comparison results using different object detection methods on the OPIXray dataset.

Model Year Backbone
Category

mAP
FO ST SC UT MU

Swin Trans [44] 2021 Swin Trans 82.14 42.77 95.75 69.60 84.84 75.04

CHR [10] 2019 Resnet-50 87.94 84.53 95.23 50.99 74.47 78.63

RetinaNet [45] 2017 Resnet-50 89.27 55.66 98.15 79.79 85.27 81.63

FBS [47] 2022 CSPDarknet53 86.38 88.29 95.45 57.99 80.62 81.75

CFPA-Net [48] 2021 Resnet-50 87.72 76.10 90.52 85.94 84.87 81.84

DetectoRS [46] 2021 Resnet-50 88.51 64.01 89.86 81.02 86.59 82.00

DOAM [9] 2020 Resnet-50 86.71 68.58 90.23 78.84 87.67 82.41

Yolov5 2021 CSPDarknet53 90.36 64.85 97.69 80.93 94.44 85.65

MCIA-FPN [49] 2022 ResNet-101 89.08 74.48 89.99 86.13 89.75 85.89

ATSS-Lacls [50] 2022 ResNet-50 92.31 72.04 96.58 80.23 91.67 86.59

Chang et al. [5] 2022 Resnet-50 90.42 75.95 91.46 84.31 91.29 86.69

YoloX [8] 2021 CSPDarknet53 91.84 77.53 97.89 89.22 92.79 89.85

LIM [18] 2021 Resnet-50-FPN 94.79 77.66 98.20 88.92 93.75 90.43

POD-Y [21] 2022 CSP-
Darknet53 94.5 77.8 98.2 89.5 94.5 90.9

Ours N/A CSPDarkNet53 94.53 86.68 98.88 89.56 94.96 92.92

Table 2. Performance comparison results using different object detection methods on the SIXray dataset.

Model Year Backbone
Category

mAP
Gun Knife Wrench Pliers Scissors

CHR [10] 2019 Resnet50 79.22 63.77 73.77 71.55 65.55 70.77
RetinaNet [45] 2017 Resnet-50 81.16 77.27 33.24 66.87 22.61 81.50

FBS [47] 2022 CSP-DarkNet53 79.72 64.14 74.96 71.19 66.17 71.24
DetectoRS [46] 2021 Resnet-50 81.61 80.52 84.48 87.40 81.4 83.10
CFPA-Net [48] 2021 Resnet-50 86.07 86.33 72.44 87.28 75.95 81.61

DOAM [9] 2020 CSP-Darknet53 81.37 64.25 73.26 70.17 61.98 70.21
MCIA-FPN [49] 2022 Resnet101 85.75 83.75 81.50 86.79 88.34 85.23

Yolo v5 2021 CSP-Darknet53 97.36 84.60 90.00 85.56 85.20 88.55
YoloX [8] 2021 CSP-Darknet53 96.74 85.94 91.48 86.94 87.89 89.80

POD-Y [21] 2022 CSP-Darknet53 92.6 87.9 87.6 92.1 91.8 90.4
Ours N/A CSP-Darknet53 97.01 87.63 88.66 92.48 89.70 91.10

As Tables 1 and 2 show, the proposed model can achieve the optimal detection perfor-
mance on the OPIXray and SIXray datasets; the mAP values are 2.02% and 0.71% higher
than those of the state-of-the-art model on the OPIXray and SIXray datasets. Compared
with the existing one-stage prohibited items detection network, our model can achieve an
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optimal detection performance. Especially for the small target category “Straight Knife”
in OPIXray, which faces the problem of obscuration and small scale, and its aspect ratio
is extremely uneven, our model achieves an 8.88% improvement compared with POD-y.
The above experimental results fully demonstrate that our proposed method is effective
and efficient.

4.3. Comparing with Different Attention

To verify the effectiveness of the improved attention mechanisms in this paper, we
compare the mainstream attention mechanisms, including the SE [51], GAM [52], CA [35]
and PSA [53] attention mechanisms. The specific results are shown in Table 3, below.

Table 3. Comparison of different attention mechanism modules.

Model MAP GFLOPs Parameters (M)

YoloX 90.45 155.331 54.152
YoloX + SE 90.75 156.017 54.383
YoloX + GAM 89.87 218.954 88.624
YoloX + CBAM 91.18 156.013 54.383
YoloX + CA 91.49 156.032 54.342
YoloX + DOAM 92.24 175.362 54.290
YoloX + MCA (ours) 92.36 156.037 54.382

It is obvious that our method performs better on the OPIXray dataset compared
to the other methods, with results 2.11%, 1.81%, 2.69%, 1.38%, 1.17% and 0.21% higher
than the other attention mechanisms, respectively. We also compare DOAM, an attention
mechanism for contraband detection, and see that our model is 0.12% more accurate than
DOAM, with a smaller number of computations and parameters than DOAM. It can be
seen that our model maintains a high level of detection accuracy and speed without a
significant increase in the number of computations and parameters.

4.4. Comparing with Different Receptive Field Enhancement Module

We further verify the effect of our multi-scale smoothed atrous convolution (SAC). As
we can see in Table 4, we compare different receptive field enhancement modules include
ASPP [54] and RFB [55]. Our method shows an improvement of 1.80% and 0.34% over the
ASPP and RFB modules.

Table 4. Comparing with different receptive field modules.

Method
Category

mAP FLOPs Paras (m) FPS
FO ST SC UT MU

Baseline 91.84 77.53 97.89 89.22 92.79 89.85 155.331 54.152 89.834
Baseline + ASPP 91.74 78.42 97.87 91.36 92.09 90.03 238.416 100.955 74.567
Baseline + RFB 89.83 86.04 99.3 87.4 94.91 91.49 209.604 83.812 79.058

Baseline + SAC (our) 89.71 88.68 99.32 86.67 94.29 91.83 233.403 96.834 74.350

To better show the superiority of our proposed model, we plot the P-R curves for
different receptive field modules, as shown in Figure 9. The P-R curve of our module is
closer to the upper right position compared to the other models, which means that our SAC
has a better performance.
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4.5. Ablation Study

To verify the effect of each module on the model performance, we perform ablation
experiments on the OPIXray and SIXray datasets. The results are shown in Table 5. We
compare the mAP of the model with different combinations of components. The same
parameters were used for all the experiments performed in the ablation study to ensure
the validity of the comparison. The SD-SIoU increases the mAP of the baseline from
89.85% to 91.76% and 89.80% to 90.94% on OPIXray and SIXray, respectively. This result
shows that the SD-SIoU has considerably improved the detecting performance. Then, we
split the material-aware path aggregation network into SAC and MCA, which represent
the Smoothed Atrous Convolution and Material-aware Coordinate Attention. The MCA
increases the mAP of the baseline with SD-SIoU by 0.29% on OPIXray and 0.18% on
SIXray. SAC increases the mAP of the baseline with SD-SIoU by 0.60% on the OPIXray
and 0.33% on the SIXray. The experiments shows that the SAC and MCA modules are
helpful for the model to detect contraband accurately. Finally, when all the methods are
used together, our model mAP achieves 92.65%and 91.31%. These are 2.80% and 1.51%
higher than the YoloX baseline on OPIXray and SIXray, respectively. Each method can
improve performance individually, and combining these methods results in the optimal
performance. It is worth mentioning that the improvement on the OPIXray dataset is
greater than on the SIXray dataset. The main gap is in the SD-SIoU section. It will be further
investigated in the following.

Table 5. Ablation study on OPIXray and SIXray.

SD-SIoU MCA SAC
mAP (%)

GFLOPs Parameters
OPIXray SIXray

89.85 89.80 156.011 54.209√
91.76 90.94 156.011 54.209√ √
92.05 91.12 156.037 54.385√ √
92.36 91.27 256.835 109.284√ √ √
92.65 91.31 256.860 109.460

To further visualize the effectiveness of our SD-SIoU, we perform detailed ablation
experiments on the SD-SIoU part, which we illustrate by two parts of the mAP and loss
function curves.

As can be seen in Table 6, we compared the mAP of the SIoU loss function under
different conditions. ON denotes the optimized normalized curve; LSside denotes the long–
short side decoupling module. “Decoupling” means the category information embedding
module. The optimized normalized curve improves the mAP of the model by 1.38%
and 0.95%, which means this normalized method can improve the convergence results
of the model. It is worth noting that, when introducing the long–short side decoupling
module without the category information embedding module, the accuracy of the model
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decreases by 0.16% and 0.21%. The reason for this phenomenon is that there is a serious
maldistribution after the construction of the long–short side shape loss. The weight of the
long-side loss is not balanced with the weight of the short-side loss. Therefore, we continue
to add the category length ratio decoupling module. It increases the mAP by 0.69% and
0.50% and achieves higher AP detection performance.

Table 6. Ablation study for OD-SIoU.

Method
mAP (%)

OPIXray SIXray

SIoU 89.85 89.70
SIoU-ON 91.23 90.65

SIoU-ON-LSside 91.07 90.44
SIoU-NO-LSside-Decoupled 91.76 90.94

We recorded the shape loss curves and long–short loss curves of the SD-SIoU under
different conditions. Since the loss data under different conditions varied widely and had
small fluctuations, we normalized and denoised all the curves and indicated their validity
by observing the decreasing trend of loss. The specific images are shown in the Figure 10.
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The first figure shows the SD-SIoU loss curves under the ablation experiment. The
loss value drops lower after improving the normalization function of the shape loss factor,
but the trend is almost the same at the beginning of the training. This is because our
new normalization method still has a good gradient in the late training period, while
the gradient of the traditional normalization method is not significant in that period.
We also find that the downward trend does not change significantly after adding the
long–short side decoupling module, but there is a significant improvement after adding
the category information embedding module. To address this issue, we conduct more
detailed experiments.

Figure 10 splits the long side and short side from the shape loss. This represents
the long-side loss and short-side loss before and after adding the category information
embedding module. We can see that the addition of this module directly affects the
decreasing trend of the long-side loss, while the decreasing trend of the short edge does
not change significantly. This means that adding the classification module can effectively
improve the convergence of the long side without affecting the short-side loss. In other
words, this module alleviates the problem of uneven weights between the long–short sides.

Finally, we use the model proposed in this paper for visual inspection of the OPIXray
and SIXray datasets, as shown in Figure 11 below.
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5. Conclusions

In this paper, a new feature extraction network is designed considering the specific
physical characteristics of X-ray images. For the X-ray contraband multi-scale problem,
a multi-scale smoothing atrous convolution module is designed to capture multi-scale
contraband features by acquiring different sizes of the receptive field. For the occlusion
and weak textural information in X-ray contraband images, we design a material-aware
coordinate attention mechanism to enhance the material features’ extraction ability in
obscured X-ray images. In addition, an improved SIoU was designed, named SD-SIoU,
which addresses the problem of inconsistent aspect ratios in contraband images. Through
a large number of experiments and visualization results, we determine that the feature
extraction and enhancement strategies proposed in this paper can effectively strengthen
the ability of the model to detect contraband. Its validity is reflected in the evaluation index
mAP. Our experimental results, based on the OPIXray and SIXray datasets, show that our
method achieves an average accuracy of 92.65% and 91.31%, with a computational volume
of 256.86G for 109.46M parameters, respectively. From the quantitative point of view,
the proposed method has excellent performance in the field of contraband detection. The
comparison results show that the method outperforms other contraband detection methods.
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