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Abstract: Internet of things (IoT) devices’ evolution and growth have boosted system efficiency,
reduced human labour, and improved operational efficiency; however, IoT devices pose substantial
security and privacy risks, making them highly vulnerable to botnet attacks. Botnet attacks are
capable of degrading the performance of an IoT system in a way that makes it difficult for IoT
network users to identify them. Earlier studies mainly focused on the detection of IoT botnets, and
there was a gap in predicting the botnet attack due to their complex behaviour, repetitive nature,
uncertainty, and almost invisible presence in the compromised system. Based on the gaps, it is
highly required to develop efficient and stable AI models that can reliably predict botnet attacks. The
current study developed and implemented DBoTPM, a novel deep-neural-network-based model for
botnet prediction. The DBoTPM was optimized for performance and less computational overhead by
utilizing rigorous hyperparameter tuning. The consequences of overfitting and underfitting were
mitigated through dropouts. The evaluation of the DBoTPM demonstrated that it is one of the most
accurate and efficient models for botnet prediction. This investigation is unique in that it makes
use of two real datasets to detect and predict botnet attacks with efficient performance and faster
response. The results achieved through the DBoTPM model were assessed against prior research and
found to be highly effective at predicting botnet attacks with a real dataset.
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1. Introduction

IoT infrastructure and its implementations have grown exponentially in recent years as
communication efficiency has improved, costs have decreased, and demand has increased.
IoT devices have been developed and deployed in a variety of industries, including smart
living, intelligent security, real-time data acquisition; logistics, smart agriculture, etc. [1,2]. The
number of smart sensory gadgets capable of automated communication on the internet has
increased significantly over recent years. By 2050, it is expected to reach approximately
30 billion [2]. However, the tremendous growth in the number of IoT devices and their
global presence has created a chance for hackers to exploit the IoT infrastructure’s security
and privacy by utilizing irregular entities, such as botnets. The biggest threat to infrastruc-
ture security is botnet-based assaults, in which unauthorized users insert harmful code into
IoT infrastructure.

Botnets can be categorized into two categories: firstly, traditional botnets, and secondly,
IoT botnets. A traditional botnet consists of infected servers, computers, or personal
computers, whereas an IoT botnet consists of malware-infected IoT devices, such as smart
TVs, smartwatches, wearables, and cameras. This malware enables an attacker to take
control of the devices and perform tasks similar to those performed by a traditional botnet.
Botnet operators or herders can control infected machines through a covert channel or
peer-to-peer communication [2]. There are various types of botnet attacks, including scan,
DDoS, flooding (TCP, UDP and acknowledgement), and hybrid attacks [2].
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2. Earlier Studies

Several studies have focused on botnet detection and classification. Autoencoder-
based models were developed by [2] to detect and classify IoT botnet attacks. Ref. [3] used
ANN for botnet detection and DDoS attacks. Ref. [4] used k-nearest neighbours (KNN) to
identify IoT DDoS attacks and discovered that KNN provides better accuracy with low
overhead due to its feature-reduction capability. Ref. [5] detected botnet attacks using a
decision tree and observed that dimensionality reduction enhanced time complexity. Ref. [6]
used a machine learning model to detect botnets using a honeypot strategy to analyse
hacker behaviour by enticing an attacker to discover botnet attacks. Ref. [7] detected
intrusion using a model with PCA.

Different algorithms, including BotHunter, CAMNEP, and BClus, were compared
on normal vs. botnet traffic [8]. Binary classification was accomplished using the ANN
technique [9]. Additionally, binary modelling for botnet and normal traffic was proposed
by [10]. A decision-tree-based approach was utilized to detect a P2P botnet effectively
(Khan et al., 2019). Ref. [11] detected the IoT botnet based on MQTT protocol. To identify
Android malware, a deep-learning neural network was created that also makes use of a
recurrent neural network [12].

Deep learning (DL) is very commonly employed in the cybersecurity field. Ref. [1]
developed a PCNN model for IDS detection. Before deploying the CNN, PCA was used to
reduce the size of the feature vector [1]. The BotShark approach based on convolutional
neural networks (CNNs) was developed by [13]. The investigation by [14], employed a
convolutional neural network (CNN) to extract valuable features for prediction analysis.
Over time, researchers demonstrated that the bidirectional approach provides a superior
model [15]. Additionally, there is a method for detecting botnets utilizing graph nodes.
It clusters the characteristics using a SOM approach [16]. Additionally, some researchers
employ transfer learning by integrating multiple botnet datasets [17]. Another study by [18]
secured IoT fleet management with the deployment of a lightweight container-based botnet
detection technology (C-BotDet). Reinforcement learning is utilized to classify packets as
normal traffic or botnet attack using a real-world dataset [17]. Additionally, different feature
selection approaches are performed on a botnet dataset, followed by the discovery of the
optimal feature combination for binary classification [19]. Another study by [20], used
graph-based features based on static analysis for botnet detection and classification and
achieved accuracies of 98.1% and 91.99% for detecting and classifying botnets, respectively.
The major issue for [20] was the implementation of the models on a very limited dataset
of 8330 samples. One study from [21], used the K-means clustering technique as a feature
selection with SVM, LR, and DT models for botnet detection. The accuracy achieved
by [21] was good, at 99.99%, and their study displayed fast computational speed for the
obvious reason of using the ML models with reduced features through K-means clustering;
however, a single dataset was used, and hyperparameter tuning of the models was absent.
The investigation by [22], used two approaches for botnet detection; the first approach
used a sliding window approach to detect anomalies in network traffic, while the second
approach was based on graphs to estimate the interaction of the nodes.

Botnet detection has been the subject of numerous studies. However, very limited
research investigated botnet prediction due to their complex behaviour, repetitive na-
ture, uncertainty, and almost invisible presence in the compromised system. Additionally,
limited research has properly addressed the concerns of proper data preprocessing, over-
fitting, rigorous parameter optimization, and—most importantly—computational cost of
the model to utilize these models in real time. To examine botnet detection, the present
investigation used two real datasets. The novelty of the current study is to develop a novel
deep neural network model, i.e., DBoTPM, to predict botnet attacks with the inclusion of
two real datasets, systematic data pre-processing, rigorous hyperparameter optimization,
overfitting prevention, and low computational overhead in order to make the current model
usable in real-time applications.
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3. Datasets

The present investigation used two datasets to model and predict the botnet attacks.
The first dataset was the Context Computer Network Traffic (CCNT) dataset, which contains
network traffic data with 20,803 records and ten local workstation IP addresses. The
dataset spans three months between 2006-07-01 and 2006-09-30. During this time, half
of these local IPs were hacked and became members of various botnets. There were four
features in the first dataset: date, I_ipn, r_asn, and f. The date contains data records
from 2006-07-01 to 2006-09-30. I_ipn stands for local IP address, which was coded as
an integer from 0–9. The feature r_asn represents autonomous system number (ASN)
from a remote location; it identifies the remote internet service provider (ISP) based on
an integer value, e.g., 701 or 714. The count of connections for the day was represented
by fluxes (f). This dataset was acquired from Stanford data and can be accessible at
https://www.kaggle.com/datasets/crawford/computer-network-traffic, (1 August 2022).

The dataset was grouped by date to observe the net flow of the day based on all logs
for the same day (Table 1). In Table 1, yday and wday represented the day of the year and
day of the week, respectively.

Table 1. Dataset after grouped by daywise flux.

Features Date I_ipn r_asn f yday wday

0 2006-07-01 0 436,704 106 182 5
10 2006-07-02 0 460,025 920 183 6

The CCNT dataset was from 2006; the reason for choosing the CCNT dataset in the
present investigation is that it contains a significant number of records which were less
explored to that could be analysed concerning the botnet attacks. In addition to this, the
more recent N-BaIoT dataset was also used in this investigation. N-BaIoT contains traffic
data from nine industrial IoT devices [2]. The data comprise benign traffic and a variety
of malicious attacks such as scan, TCP, UDP, and SYN [2]. There were 1,486,418 instances
in the second dataset, with 115 features for each file comprising a total of 7.58 GB data
in size for benign and attack occurrences. Raw network traffic data were recorded using
Wireshark before and after the infection on the switch [2]. The components of two MIRAI
and BASHLITE botnet attacks were implemented in a private lab setting [2]. MIRAI and
BASHLITE botnet attacks were classified into ten attacks and one non-attack category
(see, Figure 1). The behaviours of the considered attacks fall into three categories: (1) scan
instructions used to identify weak IoT devices; (2) ACK, SYN, UDP, and TCP flooding; and
(3) combined attack used to initiate a connection and send spam to it [2].
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4. Methodology
4.1. Data Pre-Processing

In this section, we explored the datasets before deploying the DBoTPM model. The
class imbalance issue was found with the CCNT dataset. IP0 had a higher value of
3980 records for 3 months, while IP 3 had only 1186 records for the same period (Figure 2).
Previous research has concentrated on obtaining better accuracy values, with less emphasis
on the illusory accuracy caused by the dataset’s class imbalance [23]. Classification on
an imbalanced dataset revealed that minority classes had lower accuracy, while majority
classes had higher accuracy. In the current investigation, SMOTE was performed before
the data was fed into the DBoTPM model to address the issue of class imbalance. SMOTE
generates synthetic data using the k-nearest neighbour method. SMOTE begins by selecting
random data from the minority class and then sets the data’s k-nearest neighbours. The
random data would then be combined with the randomly chosen k-nearest neighbour to
create synthetic data (see Figure 2) [23]. The number of values for all minor IPs was in-
creased as per the value of the major class with synthetic values using SMOTE to overcome
the issue of class imbalance.
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There are various RNN algorithms, and the rationale of choosing LSTM is that it offers
more memory capability, which remembers the output results of each node for a longer
period in order to efficiently produce the output for the next node. LSTM networks also
address the issue of vanishing gradient in RNNs. LSTMs work better with normalized data,
so the transformation was applied [24]. Min–max scaling was performed, which transforms
the time series data between -1 and 1. After the prediction stage, this transformation was
inverted to return the values to their original scale, allowing the uncertainty calculation to
be properly assessed.

To understand and visualise the daywise traffic flow for all 10 IPs Figure 3 was
generated, with the x-axis showing the year of the day starting from 181 and going to 271.
The red line shows the mean combined with the standard deviation along with the length of
days. Figure 3 revealed that the IP4 showed much less traffic from day 180 to 259; however,
there was a sudden spike on days 259 and 260, which showed the abnormal behaviour
of traffic. All four features from the first dataset—date, I_ipn, r_asn, and f—were used to
feed the ML models. For the N-BaIoT dataset, the columns with NaN were dropped, and
the columns which contained more than one unique value were kept. The total number of
features was 115 in the N-BaIoT dataset, earlier work from [2] applied principal component
analysis (PCA) to reduce the dimension of the data, and the number of PCs was selected
based on the CEVR (cumulative explained variance ratio). The first PC was selected for
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the N-BaIoT dataset to feed in the ML models to trade off between the dimensionality
and efficiency in the present investigation. Another study which introduced the N-BaIoT
dataset [2] extracted 23 features [25].
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4.2. Botnet Detection using Approximate Entropy (AE)

AE was developed to analyse the randomness in time series data [26]. Network
anomalies detection and monitoring can be effectively understood using flow entropy.
The present investigation used AE to evaluate the time series. Suppose a time series of
measurements a(1), a(2), . . . , a(K) which is K equally spaced. Suppose two parameters b
and r where b is a positive integer demonstrating the length of consecutive measurements
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that must be compared and r is a positive real number demonstrating the tolerance level.
Another study [27], suggested that the value of b should be 2 and that r should be 20% of
the σ (SD) of the time series. AE allocates a positive number to the time series, and smaller
values show regularity in the data, while higher values correspond to irregularity in the
data. AE is calculated using the four steps procedure:

Step 1: Calculate a sequence of real b-dimensional vectors s(1), s(2), . . . . . . s(K – b + 1)
∈ Rb such that s(i) = [a(i), a(i + 1), . . . , a(i + b− 1)]

Step 2: For each i∈ {1, . . . , K− b + 1}, calculate Cb
i (r) = number of s(j): j ∈{1, . . . K

− b + 1} such that d(s(i), s(j)) ≤ r
K−b+1 , where d(s(i), s(j)) is a distance metric between

vectors s(i) and s(j) given by d(s(i), s(j)) = max
1≤l

(|a(i + l − 1)− a(j + l − 1)|).

Step 3: Calculate φb(r) = (K− b + 1)−1. ∑K−b+1
i=1 log Cb

i (r).
Step 4: Calculate AE (K, b, r) = φb(r)− φb+1(r).
The values of parameters b and r were selected as 2 and 3, respectively. The AE

calculates the logarithmic empirical likelihood that is near the observations within the
range of r for b consecutive observations following incremental comparison [26]. AE has
been used for a long time and due to its utility, it has been employed more recently in
applications including the volatility of bitcoin [28], electrochemical noise measurement [29],
and neuronal spike sorting [30].

4.3. Development and Implementation of the DBoTPM Model

Tensorflow 2.0 backend, Keras 2.3.0 API, Python 3.8 with, pandas, NumPy matplotlib,
sklearn, and SNS libraries were utilized to develop the DBoTPM model. Sklearn was
used for feature scaling and estimation of errors, while Keras was used to import models,
including LSTM.

Three auxiliary methods were coded in the current study to develop and implement
the DBoTPM model. The first method (create_fdataset) was used to create the list of features
and targets for our model. The method create_fdataset created the feature dataset, with
each row containing the sequence of the previous observations (lookback) represented as a
day of the week. The target value (y_train) was the traffic flow that needed to be predicted
for the current day. The second method (tModel) was used to train, compile, and fit the
developed LSTM model on the feature dataset. The model architecture is given in Figure 4.

The hyperparameters, including the batch size, number of units, and activation func-
tions, must be chosen initially. Activation functions are used to map the input value to an
output signal; that output signal is then used as an input in the following layer. Between
two LSTM layers, a dropout layer was added to avoid overfitting. It drops out input
variables from a layer, which could be from a preceding layer. With two dropout layers, a
value of 0.5 was chosen. Compiling the network was the next step after model architecture.
The compilation needs some parameters such as an optimization algorithm for network
training and a loss function for network evaluation. After compilation, the next step was to
fit the LSTM model. The weights are adjusted via model fitting, which depends on the train
set. It necessitates both inputs and outputs be specified with training data. The number of
epochs was set to 50 at the start, along with a validation split of 0.2, which means that 20%
of values were used for internal model validation.

The third method we developed was used to perform a prediction (Flow_pred) with
our trained model. The tmodel trained output for each IP traffic for wday was copied to
separate variables (t0, t1, . . . , t9). The predicted flow for each IP from the developed model
and the original dataset is shown in Figure 5 below. The SGD optimizer was used with
mean squared error (MSE) as a measure of loss.
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The hyperparameters of any ML model must be tuned before the model can be evalu-
ated and appraised. (1) Batch size, (2) the number of nodes and epochs, and (3) optimizer
choice were the primary hyperparameters of LSTM optimized in this study. For various
setup values, a walk-forward approach to optimizing the hyperparameters was evalu-
ated [21]. The optimization algorithm attempted in the present investigation were Adam,
(SDG), AdaDelta, and RMSProp, among the optimization techniques assessed. In the cur-
rent study, the optimized DBoTPM model containing seven layers trained for 100 epochs
and with a batch size of 16 with an SGD optimizer exhibited encouraging results in terms of
RMSE and computational efficiency. The external evaluation of the model prediction was
conducted using a separate dataset of 30 pieces of time step data that were kept separate
from the training and testing traffic data.

Seven layers of a deep neural network model have been employed in the present
investigation that function on all ten IPs traffic. Two LSTM, two dropouts, and three dense
layers were used. Defining the LSTM network architecture with layers is important. LSTM
requires input data to be in a 3D form including the number of features, batch size, and
timesteps. The batch size specifies the number of samples in each batch during training and
testing. The term “timesteps” refers to the number of values in a sequence and the number
of dimensions used to represent data in a single time step is represented through the
features. The reshape function converts our data into a three-dimensional shape composed
of training samples, time steps, and features. In the input layer, PC1 was fed as a feature
with 33 timesteps. The number of inputs and outputs was 1 and 128 in the first LSTM
unit with 33 timesteps. The dropout layer was used to prevent overfitting; it works by
terminating the connections between neurons. The second LSTM layer contains 128 and
64 as the number of inputs and outputs with 33 timesteps. Rectifier activation function
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(ReLU) was used as an activation function. For all positive values, ReLU functions as a
linear function, and for all negative values, it returns zero.

y = max(0, x)

The architecture of the developed DBoTPM is shown in Figure 4.
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4.4. Uncertainty Assessment

The moment correlation coefficient (MCC), root mean square error (RMSE), mean
absolute percentage error (MAPE), and Nash–Sutcliffe coefficient (NSE) were utilized to
evaluate the uncertainty of the models output [1], see Table 2.

Table 2. Uncertainty assessment metrics.

Metrics Formula Description

MCC n ∑ xy−∑ x ∑ y√
[n ∑ x2−(∑ x)2](n ∑ y2−(∑ y2)

X, y, and n are original, predicted, and the number
of samples, respectively.

RMSE ∑n
n=1(Pi−Ai)

2

n
Pi, Ai, and n represent the predicted value, actual
value, and number of samples, respectively.

MAPE 100
n

n
∑

n=1

∣∣∣ Ai−Pi
Pi

∣∣∣ Pi, Ai, and n represent the predicted value, actual
value, and number of samples, respectively.

NSE 1− ∑n
m=1|a(t)−y(t)|2

∑n
m=1|a(t)− a )̂|2

a, â, and y represent the actual time series, mean
of the actual time series, and predicted
series, respectively.

5. Results and Discussions

The DBoTPM model was developed to predict the expected flow of each host given
the previous number of days. To assess the botnet prediction performance, the predicted
data vs. actual data were compared to understand whether the host belonged to a botnet
or normal traffic data. In this section, the results were discussed based on the performance
and computational complexity. For proper verification and validation of the DBoTPM
model, the data which were kept separate from the training phase were utilized.

The major aim of the present investigation was botnet prediction using the DBoTPM
model based on the real dataset CCNT that compromised botnet attack traffic data for
10 IPs (Figure 5). Figure 5 showed the actual flow and predicted flow for all 10 IPs. The
performance of the developed novel DBoTPM model was given in Table 3 based on R2,
MCC, RMSE, MAPE, and NSE for all 10 IPs. The comparison of the DBoTPM model with
other well-known studies is presented in Table 4. Due to the interesting and significant
statistical utility of AE was implemented to detect the botnet attack (Table 5). The AE
calculates the logarithmic empirical likelihood that is near the observations within the
range of r for b consecutive observations following incremental comparison (Figure 5). The
comparison of botnet detection using AE in the present investigation with other studies
was shown in Table 6. Table 6 showed that the AE performance was better compared to the
earlier investigations based on accuracy and computational cost. The time duration of the
datasets used in the present investigation was large compared to other datasets, such as
SysNet and ISCX, which have durations between 8 h and 3 days as used by [28,29]. Table 4
shows that the developed DBoTPM shows better accuracy than other existing studies for
botnet prediction.

Table 3. Performance evaluation of developed DBoTPM model for botnet prediction based on
different accuracy metrics.

IP R2 MCC RMSE MAPE NSE

IP0 0.17 0.93 1.17 66.80% 0.24
IP1 0.72 0.21 0.35 12.30% 0.78
IP2 0.32 0.86 0.77 52.87% 0.39
IP3 0.58 0.53 0.59 17.87% 0.65
IP4 0.48 0.49 0.41 35.87% 0.57
P5 0.1 0.92 1.09 72.89% 0.16
IP6 −0.58 0.75 0.83 17.62% 0.66
IP7 −0.49 0.77 0.79 21.96% 0.58
IP8 0.09 0.93 1.27 73.98% 0.14
IP9 −0.57 0.64 0.87 15.94% 0.69
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Table 4. Comparison of the DBoTPM model for botnet prediction used in the present investigation
with other studies.

Studies Model Dataset R2 RMSE Remarks Limitations

Current Study DBoTPM CCNT, N-BaIoT 71% 0.81 Less computation
time (119 s)

Three IPs (0, 5, and 8) showed less
predictive accuracy due to their
abrupt behaviour caused by the

botnet attack.
[2] Autoencoders N-BaIoT 100% - TPR Computational overhead for

training was high with more than
45 min

[31] Markov chain SysNet, ISCX 98% - Accuracy The dataset utilized in this study
had a high state change probability

from communication to attack when
it was first created.

[32] Analyzers SysNet 20% - Predictive
capability

Lower prediction capability

[33] psLSTMs NIST 76% 0.83 Accuracy and
precision

Training time was very high for the
DL model (8.17 h).

[33] SVM 71% 0.26 Accuracy and
precision

Training time was high for the ML
model (4.57 min).

[34] SSA-ALO N-BaIoT 99% - TPR Data from one node which was the
security camera took 23 s alone to

detect a botnet attack.

Table 5. AE values for all 10 IP’s.

AE0 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9

0.01 0.02 0.01 0.36 0.01 0.17 0.29 0.00 0.01 0.26

Table 6. Comparison of AE-based botnet detection used in the present investigation with other studies.

Model Detection Accuracy Limitation Source

Deep Autoencoders 84% Unable to detect less-known
botnets [2]

DL technique 99.6%, Less feasible for real-time data [9]

Proof of concept, analysers 77% Lower accuracy, only 8 h of
the dataset [32]

DNNBoT 90.71% Computational speed of
3 s/epoch [35]

Semi-Supervised 80% Lower accuracy [36]
SMOTE-Recurrent Neural

Network (DRNN) 99.98% Lack of data pre-processing [37]

AE 100% Computational speed of 50 s (Current study)

The AE values for all 10 IPs were shown in Table 5 and Figure 6. AE was utilized
to investigate the randomness network traffic dataset. It assigns lower values to indicate
regularity in the traffic and higher values to indicate anomaly or irregularity in the traffic.
The higher AE values were observed with values of 0.36, 0.17, 0.29, and 0.26 for IP3, IP5,
IP6, and IP9, respectively. Hence, these IPs joined the botnets during the observational
period. Figure 6 interestingly shows that the AE values for IP 0, 1, 2, 4, and 8 are shown as
a straight line, which indicated normal activity. However, IPs 3, 5, 6, and 9 showed changes
in values with time and were probably associated with botnets. IP 7 also looks abnormal.
However, based on its value of 0.0, it was predicted as normal. The AE method can only
detect if a specific node has been affected by a botnet attack, whereas the DBoTPM model
can classify the attacks into three types: scan instructions used to identify weak IoT devices;
ACK, SYN, UDP, and TCP flooding; and combined attack used to initiate a connection and
send spam to it.
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The computation speed and accuracy of the model are compared to those of previous
studies. The current study made use of Tensor Processing Units (TPUs) version 2–8. The
TPU used in this experiment had eight cores and 64 GB of memory. It was frequently
observed that the optimal DBoTPN model consumed around 1 s for each epoch in the
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current investigation (see Figure 7), but the LSTM model developed by [38] consumed
85 s per epoch, and the LSTM model developed by [24] consumed 3 s per epoch. The
major reason for the higher computational speed was due the reduced number of features
using PCA.
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Figure 7. The computational speed of DBoTPM model for botnet prediction.

6. Conclusions

A botnet is a severe cybersecurity issue since it has control over many infected hosts
and can use them to carry out numerous attacks. Despite numerous earlier attempts at bot-
net detection, botnet attack prediction has received little attention. The major contribution
of the present investigation was botnet attack prediction using the developed DBoTPM
model based on a real botnet attack dataset for 6 months of traffic datasets for 10 hosts. The
R2 value for 10 hosts for botnet prediction was between 0.1 to 0.72, with an average R2
value of 70% and an efficient computation time of 119 s for 100 epochs. Botnet detection
was also performed using the AE model in the present investigation with 100% accuracy.
Unbiased assessment of the DBoTPM model’s performance was based on the unanticipated
data that were kept separate from the training procedure. Both models demonstrated
superior performance and efficiency in terms of time. The current investigation’s future
scope is to implement existing models using publicly available datasets.
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