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Abstract: Satellite-terrestrial-integrated internet of things (IoT) is an inevitable trend in future de-
velopment, but open satellite link and massive IoT device access will bring serious security risks.
However, most existing recognition models are unable to discover and reject malicious IoT devices
since they lack the decision information of these unauthorized devices during training. To address
this dilemma, this paper proposes a knowledge inference and sharing-based open-set recognition
approach to protect satellite-terrestrial-integrated IoT. It proceeds in two steps. First, knowledge infer-
ence, where we construct ideal substitutes for unauthorized devices after reasonable inference on the
training set, aims to compensate the model’s missing decision information. Second, knowledge shar-
ing, where we inherit the existing knowledge and modify the model’s decision boundaries through
model expansion and knowledge distillation, achieves accurate open-set recognition. Experiments
on the ORACLE dataset demonstrated that our approach outperforms other state-of-the-art OSR
methods in terms of accuracy and running time. In short, our approach has excellent performance
while only slightly increasing computational complexity.

Keywords: satellite-terrestrial-integrated internet of things (IoT); IoT device recognition; open-set
recognition; knowledge inference; model expansion

1. Introduction

The rapid development of the internet of things (IoT) technologies has triggered an
explosive growth of IoT device access. A report from Cisco showed that there will be
around 500 billion IoT devices connected to the Internet by 2030 [1]. Obviously, satellite-
terrestrial-integrated IoT is a trend in the future development of communication networks,
which can provide global massive devices with low-cost access. However, maintaining its
security is difficult due to open satellite links, massive connected devices, and complex
IoT application environments [2]. The existence of malicious unauthorized devices, in
particular, is a major hidden danger.

Each IoT device has unique hardware imperfection, which is caused by device-specific
variations such as IQ imbalance, nonlinear distortion, and phase noise. These imperfections
combine to form wireless device signatures, known as RF fingerprints, which serve as the
basis for a recognition model to identify different device identities. An ideal recognition
model should automatically extract fingerprint features of different devices and accurately
recognize them. However, most models are mistaken unauthorized devices for authorized
ones, since the training set used for model training has no information about unauthorized
devices. To address this dilemma, this paper focuses on the open-set recognition (OSR) for
IoT device in satellite-terrestrial-integrated IoT.

To date, many OSR approaches have been proposed to deal with unknown data
recognition or outlier detection. Clearly, they can be used to solve our problem. OSR
approaches can be divided into discriminative-based OSR and generative-based OSR.
Openmax [3] is a popular discriminative-based OSR approaches in which Bendale et al.
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replaced the Softmax layer in the neural network with the Openmax layer to correct test
sample scores and set a distance threshold to detect outliers. Guo et al. [4] then combined
center loss and the Openmax model to detect unauthorized devices. The above approaches
have been demonstrated to successfully perform OSR tasks, but their performance is heavily
dependent on the decision threshold, which requires a significant amount of computational
resources to tune.

Differ from the discriminative-based OSR approaches, the generative-based OSR
approaches transform this problem into a simpler K + 1 class closed-set classification
problem, where K is the number of known classes (authorized devices). Based on this
notion, Samer Hanna et al. utilized a set of known signals as substitutes to participate in
model training. Then, the trained model created boundaries around known distributions to
reject unknown signals [5]. Patrick Schlachter et al. split the known class data in the training
set into typical and atypical subsets. The atypical subset was regarded as substitutes for
unknown class data for model training to solve the OSR problem [6], whereas this simple
replacement tends to increase additional open risk in the recognition model, since the
distributions of known and unknown classes overlap. Recently, ref. [7] synthesized
signals via a generation model to augment the training set of RF transmitters, this way
has been shown to improve the classifier’s recognition accuracy. However, the generation
model cannot guarantee the quality of the synthetic samples while it consumes a lot of
computational resources. Moreover, these synthetic samples need to be screened before
being used to recognition model. This is not an easy way.

In this paper, a knowledge inference and sharing-based OSR approach is proposed
to maintain the security of satellite–terrestrial-integrated IoT. Specifically, in the first step,
we provide the lacking information of unauthorized devices to the recognition model by
constructing synthetic substitutes after making reasonable inference on the training set. In
the second step, we help the model inhert the learned knowledge and infer correct decision
boundaries by model expansion and knowledge distillation. Therefore, our approach is
able to both accurately identify authorized devices and effectively discover unauthorized
malicious devices, as described in Section 3. Simulation results show that the recognition
accuracy of our approach is better than that of the state-of-the-art OSR methods by 7.7%,
while the running time is the least. The overall performance of our approach is verified to
be superior to other four state-of-the-art OSR methods.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 presents the method framework based on the problem analysis and introduces the
components of the model architecture in detail. The ablation experiments and performance
simulations of our proposed approach on the public dataset ORACLE are presented in
Section 4. Finally, Section 5 gives the conclusions.

2. Related Work
2.1. Open-Set Recognition

The researches that are closely related to the open-set recognition task are outlier
detection [7,8], anomaly detection [9,10], or out-of-distribution detection [11]. These prob-
lems assumed that the training set cannot obtain any samples or information of unknown
classes. As a result, many OSR methods [3,12,13] proposed to first train a perfect closed-set
model on the trainning set, and then search for an optimal decision threshold based on
the validation set, and finally use the trained model for open-set data recognition. Similar
to our basic idea, some other works [14–16] trained one or more closed-set models with
the virtual examples created during model training, oftentimes sacrificing the recognition
performance on the known classes. However, most of them do not consider to alleviate
this performance degradation phenomenon of open-set models. Motivated by the previous
work of Li et al. [17], we found that model architecture expansion and fine-tuning training
were the main causes of this problem. In our approach, knowledge distillation [18] is
introduced to improve the model’s recognition performance for known classes. It corrects
the model decision boundaries by transferring the knowledge learned from a pre-trained
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closed-set model to the open-set model. In this paper, we show that the performance of our
approach is significantly better than other state-of-the-art OSR methods.

2.2. Knowledge Distillation

Knowledge distillation is a transfer learning method, which is first proposed by
Hinton et al. in [18]. Its purpose is to transfer the knowledge learned in the teacher network
(complex architecture but high accuracy) to the student network (compact architecture but
easy to deploy) and help the student network converge faster. In brief, the knowledge
distillation loss (KD loss) is an improved cross-entropy loss function (see Equation (7)), and
it encourages the student network to produce similar responses to the teacher network by
modeling the output of the original network when adapting to different tasks. Therefore,
the KD loss is widely used to generate networks that approximate the original network but
have different structures. After that, we note that Li et al. introduced KD loss in the related
research of incremental learning [17], which effectively alleviates the sequelae caused by
the change of model architecture, that is, the updated model forgets the knowledge learned
on the old class data. Inspired by this, our approach uses KD loss for knowledge sharing
between the original closed-set model and the expanded model. This is proved to help
our recognition model learn and correct decision boundaries between authorized and
unauthorized devices in the open-set recognition task.

3. Our Approach

In this section, we first propose the system model for open-set device recognition.
Then, we introduce the problem analysis of wireless IoT device recognition under open-set
scenarios. Finally, we describe the model architecture and implementation process of
our approach.

3.1. System Model

For the application of satellite-terrestrial-integrated internet of things, we propose
a simple system model for open-set IoT device recognition, as shown in Figure 1. In the
system model, it is assumed that the ground receiver performs open-set recognition on the
signals of all the received IoT devices in advance to determine whether there are malicious
unauthorized devices in the current system. When the satellite moves into the coverage
area of the ground receiver, the receiver transmits the IoT device recognition results in
the area back to the satellite, providing the basis for the satellite to receive the securely
authorized signals.

Satellite
Receiver

Unauthorized device

Authorized device

Figure 1. A simple diagram of the system model of open-set IoT device recognition for satellite-
terrestrial-integrated internet of things.

3.2. Problem Analysis

In this paper, we assume that the original signal dataset of authorized devices is a
set Da = {(ri(t), li)}n

i=1 with K authorized classes and n signal samples, where its label
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li ∈ {1, . . . , K}. Similarly, the signal dataset of unauthorized devices is a set Du = {ri(t)}m
i=n+1

without labels, its class number and sample number are unknown. According to [19–21],
the original signal sequence r(t) of a wireless IoT device is formalized as follows:

r(t) = s(t) ∗ c(t) + n(t) (1)

where, s(t) is the transmitted time series signal, c(t) is the impulse response of the trans-
mission channel, n(t) is the Additive White Gaussian Noise (AWGN), and r(t) represents
the split IQ signal sample of a wireless IoT device.

The open-set IoT device recognition task, similar to the traditional closed-set classi-
fication task, can be viewed as a K + 1 class decision problem, where K is the number of
authorized devices and all unauthorized devices correspond to the class K + 1. Most signal
recognition models cannot deal with the OSR problem since they lack decision information
of unauthorized classes. Our approch is proposed to solve the open-set recognition problem
of wireless IoT device. It provides the model’s missing information of unauthorized devices
to improve the recognition performance by constructing virtual knowledge as substitutes
for unauthorized devices. Then, the basic recognition model is expended by adding an
output neuron for unauthorized devices to dynamically learn the decision boundaries.
Third, these decision boundaries are modified by using knowledge distillation, which can
reduce the interference caused by model expansion and virtual knowledge.

3.3. Model Architecture

As shown in Figure 2, the model architectire of our approach consists of three parts: a
virtual knowledge inference module, a feature extraction module, and a knowledge sharing
module. Each component is described in detail below.

Split

Feature Extraction 

Module

Virtual Knowledge Inference Module

Input IQ Samples

Mixup

Decision Boundary

Authorized device 1

Authorized device 2

Authorized device 3

Synthetic substitutes

Feature extractor

Linear classifier

A linear unit 

Knowledge Sharing 

Module

newD

XD

YD

mixupD

Figure 2. The schematic diagram of the knowledge inference and sharing-based open-set device
recognition approach.
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3.3.1. Virtual Knowledge Inference Module

It aims to use virtual knowledge to construct substitutes for unauthorized devices
to offer the model’s lack of decision information. Follow [16], these substitutes should
have two main characteristics: i.e., their distribution seems novel, and the generation
process should be fast. Despite the GAN-based sample generative methods [22,23] can
generate such data, training them is difficult. To this end, we make a reasonable knowledge
inference on the raw signals of authorized devices and construct the ideal substitutes for
unauthorized ones by using mixup operations [24]. Mixup is a simple data augmentation
method without consuming additional computing resources. In this module, we select
two signal samples of different wireless IoT devices and mix them up in the original
signal space. {

r̃i = αri + (1− α)rj
l̃i = αli + (1− α)lj

, α ∼ Beta(β, β) (2)

where, (ri, li) and (rj, lj) are two signal samples from different authorized devices, r̃i is
the synthetic substitute created by inferring the knowledge of two signals from different
authorized devices, li 6= lj. α is a mixup parameter, α ∈ [0, 1], and its value obeys the Beta
distribution, β = 0.2.

These synthetic substitutes frequently occupy the low-confidence regions of the feature
space where real unauthorized classes located. As a result, they are similar to but different
from the signal samples in the training set, and they meet the requirements proposed
by [16]. In this section, these substitutes are used to augment the subset of the original
training set Da, and their labels are forced to be a constant K + 1, where K is the number of
authorized devices. In Algorithm 1, we provide the detailed pseudo-code of the virtual
knowledge inference alogrithm.

Algorithm 1 Virtual Knowledge Inference

Input: training set Da = {(ri, li)}n
i=1, and li ∈ {1, . . . , K};

Output: new training set Dnew = {(r∗i , l∗i )}n
i=1, and l∗i ∈ {1, . . . , K + 1};

1: DX = {(ri, li)}n/2
i=1 , DY = {(ri, li)}n

i=n/2;
2: for i = 1: n/2 do
3: r̃i = α · ri + (1− α) · rj, li 6= lj, α ∼ Beta(β, β) ;
4: l̃i = K + 1;
5: end for
6: Dmixup = {(r̃i, l̃i)}n/2

i=1 ;
7: Dnew = {Dmixup ∪ DY}shu f f le.

The Algorithm 1 includes three steps. In the first step, a minibatch training set Da
contains the authorized IoT device signals are split into two subsets DX and DY, each
has half samples, see line 1. The second step performs virtual knowledge inference on
the subset DX, we can obtain a synthetic substitute set Dmixup by adopting the mixup
operation, and its corresponding label is set to K + 1, see from line 2 to line 6. In the third
step, the minibatch subset DY is augmented by adding the Dmixup and then shuffled, see
line 7. The new training set Dnew can provide the model’s missing decision information of
unauthorized IoT devices to improve the recognition performance.

3.3.2. Feature Extraction Module

Its task is to map the augmented training set Dnew in original space into a compact
RF fingerprint feature set. These fingerprint features provide discriminative information
to the subsequent knowledge sharing module, they are critical in determining the model
performance, and even outperforming human-engineered features [25,26].

Generally, feature extraction gets latent features for the input data through a pre-
trained deep CNN, and the extracted features are the activation vectors of one layer (the
last layer) or multiple layers of the given data. In this paper, considering the input data
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form of the signal differs greatly from that of an image, the feature extraction network we
used is primarily for fingerprint feature extraction of IoT device signals. The deep CNN
model proposed in [19] (see Table 1) inspired the basic network architecture of our feature
extraction module, which consists of two convolutional layers and two fully connected
layers. This model architecture has been used in many applications and achieved excellent
results. For example, Malte Schmidt et al. [27] used this CNN model to identify 15 classes
of wireless interference in the 2.4 GHZ ISM frequency band. When the SNR > −5 dB, its
recognition accuracy reaches 95%; Furthermore, Merima Kulin et al. [28] used this CNN
model to identify wireless signals in spectrum monitoring tasks. When SNR > 5 dB, the
recognition accuracy reaches more than 98%.

Table 1. The network parameters of the CNN model [19] and our model.

Layer Number of Filters Filter Stride Activation Function Other Parameters Output

Conv1 256 (1, 3) (1, 1) ReLu Batch Normalization, (N, 256, 2, 126)
Padding = (0, 0)

Conv2 80 (2, 3) (1, 1) ReLu Padding = (0, 0) (N, 80, 2, 124)

Layer Number of Units Bias Activation Function Other Parameters Output

FC1 256 True ReLu dropout = 0.6 (N, 256)
FC2 (CNN [19]) K True Softmax - (N, K)

FC2 (Ours) K + 1 True Softmax - (N, K + 1)

In our feature extraction module, the time-domain IQ signals of the model input are
first passed through 256 and 80 filters of convolutional layers to extract latent feature maps
from various channels. At the end of each convolutional layer, a batch normalization and
ReLu activate function is added to improve the stability and nonlinearity of the output
features. These feature maps are then compressed into a one-dimensional feature vector
before being fed into two fully connected layers of 256 neurons and K + 1 neurons to
generate the RF fingerprint features for signal label prediction, where K is the number of
authorized classes. More details are shown in Table 1 and Figure 3.

Convolution Layer

Convolution Layer

Fully Connected Layer

Fully Connected Layer

Softmax

Classification

Initial 

Weights

Fully Connected Layer

Training Data

(After knowledge inference)

Feature 

Extraction

Knowledge 

Share

1q 2q
3q

127q 128q

1i 3i2i 127i 128i

Input

256 1 3 

ReLu

80 2 3 

ReLu

BatchNorm

256 units

ReLu

Dropout(0.6)

K units K+1 units

Share 

Weights

Figure 3. The model structure of the knowledge inference and sharing-based open-set device recog-
nition approach.

We hope that the extracted fingerprint features have the characteristics of short intra-
class distances and long inter-class distances. Since the more compact the latent space of
fingerprint features of authorized devices, the more space reserved for that of unauthorized
devices, which helps to improve the model performance for identifying unauthorized
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devices. Many works based on metric learning can assist us to obtain features with the
above desired compact attributes. For example, Wen et al. [29] proposed center loss
function which is a penalty on the distance between latent feature vector and the class
center, and pushed the same class of feature and its class centers together. This way avoids
the complicated sample pair construction process. Similar work include constrained center
loss [30] and II-loss [31]. These methods enhance the decision boundary constraint for
feature space by adding a penalty term to the loss function, and to compress the intra-class
distribution of authorized classes. In this paper, the center loss is used to improve the
objective function of feature extraction module, and its definition is provided in [29].

Lcenter(θ, θK; r(t)) =
1

2n

n

∑
i=1
|| fθK (ϕθ(ri(t)))− cli ||

2
2 (3)

where, fθK (·) is map function of the K-class classifier with the parameter θK, ϕθ(·) is the
map function of the feature extraction module, and θ is the model parameters. ri(t) is the
i-th original signal in the new training set Dnew, fθK (ϕθ(ri(t))) represents the corresponding
output feature vector without passing through the softmax layer, cli is the class center of
the class to which label li belongs, and n is the number of signals.

Therefore, the optimization function used to train this feature extraction module has
two components: softmax loss and center loss. The former is intended to quantify the
degree of deviation between the feature extraction network’s predicted values and the
ground truth. The latter is used to tighten the intra-class features. In this module, its
training purpose is to minimize this optimization function.

Lext(θ, θK; r(t)) = Lso f t(θ, θK; r(t)) + ηLcenter(θ, θK; r(t)) (4)

where, θ and θK are the model parameters of the feature extraction module and the K-
class linear classifier, respectively. Furthermore, η is the penalty parameters of the center
loss function.

3.3.3. Knowledge Sharing Module

It aims to share the knowledge learned from a pre-trained K class model with the
expanded model via knowledge distillation technology, so as to correct decision boundaries
and achieve open-set recognition. In this module, the K shared output units and the new
adding output unit assign each input fingerprint feature K + 1 category probability scores.

Specifically, most closed-set recognition models use only K output units to predict
K authorized classes and all unknown unauthorized classes, which will inevitably lead
to misjudgment. Their output layers lack a unit for predicting the probability score of
unauthorized classes. Therefore, this paper shares the existing K output units and expands
the recognition model with an additional output unit to output the model’s prediction
scores for RF fingerprint features of unauthorized devices. The model parameters are then
fine-tuned for the open-set recognition of IoT devices.

fθK+1(zi) = [ fθK (zi), fθ∗(zi)], zi = ϕθ(ri(t)) (5)

where θ∗ and θK are the model parameters corresponding to the additional output unit
and the K shared output units in the extended model fθK+1(·) with parameter θK+1, θK+1 =
[θK, θ∗], and zi represents the fingerprint feature generated from the i-th input signal ri(t)
passes through the feature extraction module ϕθ(·).

Model fine-tune is a transfer learning method that modifies the pre-trained model
parameters to train it for a new task. According to the simulation results, the fine-tuned
model often outperforms feature extraction [32,33] or networks learned from random initial-
izations [34]. In this paper, our approach fine-tunes both the feature extractor parameters
(θ) and the output parameters (θK+1), enabling the recognition model to better distinguish
between authorized and unauthorized devices. However, the research by Li et al. [17]
informed us that training for fine-tuning after the model architecture is expanded causes
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the model to gradually forget what it has learnt, i.e., the model’s performance in identi-
fying authorized devices degrades. We use the knowledge distillation loss (KD loss) to
correct the model decision boundaries, which can transfer the knowledge learned by the
pre-trained closed-set model with K output units to our expanded model with the K shared
output units and a new adding output unit, thereby alleviating the catastrophic forgetting
phenomenon. In summary, the overall optimization of our open-set recognition model
framework considers the following objective function.

L(θ, θK+1; r(t))=Lso f t(θ, θK+1; r(t)) + µLKD(θ, θK, θK+1; r(t)) (6)

where θ, θK, and θK+1 are the model parameters of the feature extractor, the K shared output
units, and the K + 1 output units consists of θK and a new adding unit θ∗, respectively, and
µ is the penalty parameters of the KD loss function.

The KD loss [18] is aims to make the output probability of each authorized signal close
to the output probability recorded by the pre-trained closed-set model, which is a modified
cross-entropy loss with the addition of weights corresponding to small probability values.

LKD = − 1
K

K

∑
i=1

q∗i · log p∗i (7)

and the q∗i and p∗i are the modified versions of probabilities,

q∗i =
(qi/T)
∑
j

qj/T
, p∗i =

(pi/T)
∑
j

pj/T
(8)

where K is the number of authorized devices in the training set, the qi and pi represent the
output probabilities of the pre-trained close-set model and the first K output probabilities
of our expanded model, T is the temperature coefficient, and we set T = 2, this is in line
with the author’s suggestion in [18].

The knowledge sharing module of our approach is suitable for solving the open-set
recognition problem of IoT devices for the following two reasons. First, it reserves a
special output unit for unauthorized classes, allowing the model to learn the decision
boundary between authorized and unauthorized classes adaptively without setting a
judgment threshold. Second, it introduces KD loss to address the expanded model’s issue
of forgetting the knowledge learned from authorized classes. The subsequent experimental
results show that our recognition framework is effective.

4. Experiments and Results

In this paper, we propose a knowledge inference and sharing-based OSR approach
to solve the IoT device recognition problem of satellite-terrestrial-integrate IoT. It should
perform well in the following scenario: given a fixed number of authorized devices, the
recognition model can accurately identify authorized device signals and effectively detect
unauthorized device signals. In this section, we need to verify the rationality of knowledge
inference and knowledge sharing in solving the OSR problem for IoT devices. As a result,
we first show the feature similarity between real unauthorized device signals and synthetic
substitutes generated by the virtual knowledge inference module. Then, we demonstrate
the performance improvement of the above two modules by ablation study. Furthermore,
we evaluate that whether our approach has superior open-set recognition ability. Two
experiments are designed to compare our approach and other four state-of-the-art OSR
methods in terms of recognition performance and runtime. All simulation experiments use
the ORACLE dataset [35]. The following describes the implementation process and the
analysis of experimental results.
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4.1. Dataset and Evaluation Metric
4.1.1. Dataset

In this paper, all experiments are carried on the ORACLE dataset [35] which is a large
WiFi signal dataset for recognizing the bit-similar wireless IoT devices. In order to improve
the identifiability of different devices, two forms of controlled impairments are added
to the received complex IQ signal samples: I/Q imbalance and DC offset. The receiver
SDRs capture WiFi signals from 16 bit-similar USRP X310 radios with a center frequency of
2.45 GHz at 5 MS/s sampling rate. Each transmitter collects more than 20 million complex
IQ signal samples. We utilize a window with length 128 to segment the collected complex
IQ samples into multiple subsequences to enhance the translational invariance of features.
Each sample is used to come each complex value is represented as 2 real values for storage,
so the data input dimension of the recognition model is 2*128, which has the same signal
format as the public RML2016.10a dataset [19].

In this paper, we take the first 2000 subsequences of each IQ sample as the signal
dataset samples to construct four subsets: the training subset dtrain, the validation subset
dvalid1, the validation subset dvalid2 and the test subset dtest, with the proportions of 70%,
10%, 10%, and 10%. The subset dtrain is used to build the training set for model pre-training
and open-set fine-tuning, the subset dvalid1 is used to build the validation set for model
pre-training, and the subset dvalid2 and dtest are used to build the validation set and test
set for open-set model evaluation. Specifically, for an open-set device recognition problem
with three authorized devices and one unauthorized device, we need a training set and a
validation set to pre-train the K class close-set model (K = 3), where both sets are composed
of the training subset dtrain and the validation subset dvalid1 of the three authorized classes,
respectively. Then, we use the training set again to fine-tune our expanded model. Finally,
we adopt an open validation set or a test set to evaluate our model, where both sets are
composed of the validation subsets dvalid2 and test subsets dtest of the three authorized
classes and the one unauthorized class, respectively.

4.1.2. Evaluation Metric

The recognition accuracy is used as an important metric to evaluate different OSR
methods. In closed-set scenarios, recognition accuracy is defined as the proportion of the
number of correctly predicted samples to the total number of all samples. Further, the
extension of recognition accuracy to open-set scenarios should consider the unknown class
(the unauthorized device), and the OSR accuracy (ACC) can be written as follow [36]:

ACC =

K+1
∑

i=1
(TPi + TNi) + TU

K
∑

i=1
(TPi + TNi + FPi + FNi) + (TU + FU)

(9)

where, K is the number of authorized devices in the training set. TP and TN represent
the true positive and the true negative, FP and FN represent the false positive and false
negative, TU and FU represent the true unknown and false unknown.

Moreover, the accuracy on known samples (AKS) is the proportion of the correctly
classified number to the total number in authorized class samples, and the accuracy
on unknown samples (AUS) is the proportion of the correctly classified number to the
total number in unauthorized class samples in [13,37]. These two metrics are intro-
duced to evaluate the model’s recognition performance for authorized and unauthorized
devices, respectively.

AKS =

K−1
∑

i=0
(TPi + TNi)

K−1
∑

i=0
(TPi + TNi + FPi + FNi)

(10)
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AUS =
TU

TU + FU
(11)

In addition, the F1-score is presented by Sokolova and Lapalme in [38]. It represents
a harmonic mean of precision P and recall R and often appears in related literatures as a
performance evaluation metric of open-set recognition models. The definition is as follows.

F1− score = 2× P× R
P + R

(12)

where, P =

K−1
∑

i=0
TPi

K−1
∑

i=0
(TPi+FPi)

, R =

K−1
∑

i=0
TPi

K−1
∑

i=0
(TPi+FNi)

in [36].

The open-set recognition performance of our approach is evaluated by calculating
the above four parameters in later experiments: the average accuracy of known samples
(AKS), the average accuracy of unknown samples (AUS), the average OSR accuracy (ACC),
and the average F1-score [37]. AKS and AUS, respectively, represent the proportion of the
correctly classified number to the total number in known class samples and in unknown
class samples, which are used to evaluate the model’s ability to recognize the authorized
classes and the ability to discover the unauthorized classes. ACC shows the comprehensive
recognition performance of the OSR method. F1-score represents a harmonic mean of
precision and recall, which is the most important parameter for evaluating the overall
performance of open-set recognition methods.

4.2. Implementation Details

Our approach’s training process is divided into four stages to achieve stable results:
(1) closed-set model pre-training, (2) synthetic substitutes construction based on existing
knowledge inference, (3) training set augmentation and model architecture expansion, and
(4) model open-set fine-tuning based on knowledge sharing. More specifically, in the first
stage, the closed-set model (includes θ and θK) is pre-trained on the training set consisting of
signals from K authorized devices. We do for 350 epochs utilizing the Adam optimizer with
a learning rate of 0.001, the size of each minibatch is set to 64, and the penalty coefficient of
center loss is 1.0. In the second stage, the virtual knowledge is constructed as substitutes
for unauthorized device signals after making reasonable inferences on the training set,
which can compensate for the model’s missing information of unauthorized classes. In
the third stage, these synthetic substitutes are used to augment the training set, and the
model architecture is expanded by sharing K output units and adding an additional unit
(θK+1 = [θK, θ∗]). Finally, the expanded model is trained on the new training set for model
fine-tuning and knowledge sharing in order to achieve IoT device recognition. In this stage,
we set the batch_size is 64 and do for 600 epochs and the Adam optimizer is used with
a learning rate of 0.001, then, saving optimal model parameters. In addition, we use the
coefficient µ = 0.1 of the KD loss to correct model decision boundaries, as shown in Table 2.

Table 2. The coefficient µ selection of the knowledge distillation loss.

µ 0.0 0.05 0.1 0.5

ACC 83.75% 88.00% 89.75% 86.50%

4.3. Ablation Study

In this paper, our approach makes two efforts to enhance the recognition performance
of the model. One is knowledge inference, which constructs substitutes for unauthorized
device signals after inferring on the training set, providing the model with the missing
decision information. The second is knowledge sharing, which expands the model by
reserving an output unit for unauthorized classes and introduces knowledge distillation for
decision boundary correction, so that the model inherits learned knowledge and discovers



Electronics 2023, 12, 1143 11 of 17

new knowledge. In the following, two experiments are performed to demonstrate the
contribution of the above two improvements to the overall performance improvement. The
first one shows the similarity between the constructed synthetic substitute and the real
unauthorized device signals, as shown in Figure 4. The second one compares the change
in model recognition performance by adding the synthetic substitutes and the KD loss
function, respectively, as shown in Figure 5 and Table 3.

In the following two experiments, we set the first three devices in the ORACLE WiFi
signal dataset as authorized classes Da, and the fourth and fifth devices as unauthorized
classes Du. The dataset is set as follows: firstly, we get subset dtrain and subset dvalid1 from
each of the authorized classes Da to form the training set and valication set, and pre-train
the three class closed-set model in advance. Secondly, we use the training set for model
open-set fine-tuning. Finally, we get the subset dvalid2 from each of the authorized classes
Da the subset dtest from each of the unauthorized classes Du to make up the valication set
and the test set for performance evaluation of our model. Other details are set as described
in Sections 4.1 and 4.2.

X

Y

Figure 4. Comparison of constructed virtual substitutes with real unauthorized device signals. The
plus sign, triangle and circle represent the extracted features of the authorized class (a), unauthorized
class (un) and virtual class, respectively.

Most existing models are unable to solve the OSR problem since they lack the decision
information of unauthorized devices. As a result, we propose the knowledge inference
module to compensate for the lack of information. This module constructs virtual substi-
tutes for unauthorized devices after making reasonable inference on the original training set.
In the well-trained neural network, the feature representations of unauthorized classes are
located in the low-confidence region near decision boundaries [16], so that of constructed
substitutes should also appear in these feature space. In this section, we use the feature
extraction module to map the original signals of authorized devices, unauthorized devices
and constructed virtual classes into latent features, and then apply the t-SNE algorithm [39]
to reduce the dimension of these features to two dimensions.

In Figure 4, we show the latent feature distribution of virtual substitutes and real
unauthorized device signals. These simulation results show that the constructed virtual
substitutes appear in the target region where unauthorized device features are located,
which matches our expectations. Furthermore, these virtual substitutes are generated in
a simple manner that requires no additional computational or training effort. It proves
that these virtual class data are ideal substitutes for unauthorized device signals, and our
approach aims to use them to pre-occupy the feature space where the unauthorized classes
may appear.
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(a) close-set model (θ and θK) (b) expanded model (θ and θK+1)

(c) our approach without synthetic substitutes (d) our approach without KD loss (e) our approach

Figure 5. Contribution analysis of different modules to the model performance improvement. r1, r2
and r3 represent authorized devices, and r4 represents all unauthorized devices.

Table 3. Contribution analysis of different modules to the model performance improvement.

Module AKS AUS ACC

close-set model 99.33% - -
expanded model 97.00% 0.00% 72.75%

our approach without synthetic substitutes 98.00% 0.00% 73.50%
our approach without KD loss 80.00% 95.00% 83.75%

our approach 88.00% 95.00% 89.75%

In addition, the model expansion of our approach is realized by sharing the K linear
output units of the pre-trained closed-set model and adding an additional output unit
for unauthorized classes. Then, we hope to sovle the OSR problem of IoT devices by
fine-tuning the expanded model on the augumented the original training set. However,
the obtained results (as shown in Figure 5a,b) are not consistent with our expectations.
After model fine-tuning, the expanded model (includes θ and θK+1) forgets the knowledge
learned from the original training set, resulting in the performance degradation of the
model on the authorization class (the value of AKS decreased from 99.33% to 97.00% as
shown in Table 3). The reason is that the latent feature distribution of authorized classes
has changed, and the original decision boundary is no longer optimal.

In this paper, we construct substitutes for unauthorized devices after inferring on the
training set, providing the model with the missing decision information. Furthermore,
drawing inspiration from Li et al. [17], we introduce KD loss to alleviate the forgetting
phenomenon by modifying the model’s decision boundary. The simulation results of the
ablation study are shown in Figure 5 and Table 3.
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Two aspects of information are shown in the confusion matrix in Figure 5b,c. First, the
addition of the KD loss function improves the model’s average accuracy for authorized
devices (AKS) by 1%. Second, only relying on KD loss without synthetic substitutes,
our model cannot identify unauthorized devices since lacking the decision information
about these unauthorized classes. Furthermore, the results show in Figure 5c,e prove that
the substitutes we constructed is useful, which improves recognition performance of the
extended model by sharing the learned knowledge of the closed-set model. In addition,
Figure 5d,e show the effect of adding KD loss on our approach’s recognition accuracy. It
can be seen that the KD loss in our approach not only rarely affects the model’s ability to
discover unauthorized devices, but also improves the accuracy of authorized devices by
8% (the average accuracy of authorized devices (AKS) increased from 80.00% to 88.00%
as shown in Table 3). This indicates that the KD loss coordinates the identification and
discovery capabilities of the model by correcting the decision boundary, and achieves
an improvement in model recognition performance. Our approach is able to effectively
discover unauthorized devices while improving the model forgetting on authorized ones.
However, in contrast to our approach, most open-set models ignore the coordination
between known and unknown classes, and they sacrifice the performance of known classes
for the better performance of unknown classes.

4.4. Performance Comparison

The goal of open-set recognition is to effectively discover unauthorized device signals
while recognizing authorized device signals. Therefore, experiments should demonstrate
the ability of the proposed method to meet the above requirement. In this section, two
experiments are contructed to compare the performance between our approach and other
four state-of-the-art OSR methods in terms of recognition accuracy and running time. Soft-
max and Openmax [3] are a typical type of OSR methods that identify unknown classes by
setting decision thresholds, and DC_LSTM [4] is a derivative of Openmax applied in the
signal recognition field. DML (Deep Manifold Learning) [40] is another type of OSR meth-
ods, which maps the unauthorized class signals to the learned authorized class manifold
representations, and uses a clustering model DBSCAN to distinguish unauthorized devices
and authorized devices. It can be used to achieve open-set recognition of IoT devices, but
the device number (or category number) need to be known in advance.

In this section, we randomly select K authorized devices and one unauthorized device
in the ORACLE dataset for experiments with K = 3, 4, 5, respectively. The training set,
valication set, and test set are set up similarly to Section 4.1. Each experiment is repeated
15 times, the value of mean and variance are taken in Tables 4 and 5.

Table 4. Comparison of the average accuracy of different state-of-the-art open-set recognition methods.

OSR Method 3 Authorized Devices 4 Authorized Devices 5 Authorized Devices

Softmax 73.55% (±0.84%) 68.58% (±0.72%) 61.03% (±0.31%)
Openmax 82.13% (±5.87%) 73.46% (±5.56%) 69.07% (±5.49%)
DC_LSTM 83.59% (±3.72%) 73.36% (±2.89%) 68.38% (±0.65%)

DML 85.73% (±0.60%) 74.56% (±0.30%) 70.03% (±0.13%)
Our Approach 93.50% (±0.06%) 87.70% (±0.20%) 83.25% (±0.04%)

Table 5. Comparison of the recognition performance of our approach in different conditions.

Authorized Classes AKS AUS ACC F1-Score

K = 3 93.67% (±0.16%) 92.88% (±0.31%) 93.50% (±0.06%) 0.96 (±0.0002)
K = 4 90.13% (±0.38%) 78.00% (±0.50%) 87.70% (±0.20%) 0.94 (±0.0012)
K = 5 89.90% (±0.45%) 50.00% (±2.00%) 83.25% (±0.04%) 0.91 (±0.0003)
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Table 4 gives the test accuracy of our approach and the other four state-of-the-art
OSR methods. It can be found that our approach outperforms other OSR methods in
different open-set scenarios, although when the authorized device number K = 3, the
test accuracy is improved by about 7.7% on average compared to the suboptimal DML
method. Experimental results demonstrate that our approach is effective. Its effectiveness
stems from the fact that our approach not only utilizes the knowledge inference module to
construct ideal substitutes for unauthorized devices, but also uses the knowledge sharing
module to correct the model’s decision boundaries. In contrast to other four OSR methods,
our approach considers balancing the recognition performance of the model for authorized
and unauthorized classes.

Table 5 shows the recognition performance of our approach through a variety of
evaluation metrics. Here, we conducted three OSR experiments when the number of
authorized classes K is set to 3, 4, and 5. From Table 5, we can draw the following two
conclusions. First, given a fixed number of authorized devices, the model’s accuracy on
different unauthorized devices (AUS) is stable. Second, when the number of authorized
devices changes, the model’s accuracy on unauthorized devices (AUS) decrease with the
crease of authorized device numbers. The major reason for this is that as the number of
authorized devices grows, the source of synthetic substitutes becomes more complex, and
thus the interference caused by these substitutes to the authorized devices in the feature
space also increases.

Here, we discuss the computational complexity of our approach. As we all know that
time complexity and space complexity are two important evaluation indexes of compu-
tational complexity [41,42]. Time complexity is generally represented by the number of
floating-point operations (FLOPs), which can be understood as the amount of computation
and is the approximate estimation of the computing speed of the model. The multiply–adds
(MAdds) index serves a similar purpose. Space complexity refers to how many parameters
(Params) the model contains, which can be understood as the size of the model. As shown
in Table 6, we provide the complexity evaluation results when the number of authorized
classes K = 3, 4, 5. Table 6 shows that the value of the total Params, total FLOPs, and the
total MAdds does not change much as the number of authorized classes increases, which
indicates that our approach does not require many additional computing resources and
model memory.

Table 6. Comparison of the complexity index of our approach in different conditions.

Authorized Classes Total Params Total FLOPs Total MAdds

K = 3 2,664,790 18,120,832 36,017,852
K = 4 2,665,047 18,121,088 36,018,363
K = 5 2,665,304 18,121,344 36,018,874

In addition, running time is an important factor to evaluate the complexity of OSR
methods. The definition is the total time spent on one epoch model training and a cor-
responding test. We compared the running time spent by five OSR methods for the
recognition model training on the ORACLE dataset. The running time results, as shown in
Figure 6, confirmed that our approach outperforms other four OSR methods. Combined
with the results shown in Table 4, our approach provides a significant performance ad-
vantage over than other four OSR methods. Therefore, we suggest that the OSR method
proposed in this paper be used for wireless device recognition in open-set scenarios.



Electronics 2023, 12, 1143 15 of 17

8.95

14.8
13.19 13.07 13.06

0

2

4

6

8

10

12

14

16

Our Approach DML Softmax Openmax DC_LSTM

Ru
nn

in
g 

Ti
m

e 
(s

)

Figure 6. Comparison of running time of the five open-set recognition methods on the ORA-
CLE dataset.

5. Conclusions

In this paper, we propose a knowledge inference and sharing-based open-set device
recognition approach for in satellite-terrestrial-integrated IoT which has open satellite link
and vast IoT device access. However, most existing models cannot handle the OSR problem
due to their lack of decision information for unauthorized devices. Therefore, our approach
first performs knowledge inference on the original training set, that is, constructs virtual
data as substitutes for unauthorized devices to provide additional decision information to
help model recognition. Then, we augment the training set and expand the model archi-
tecture, i.e., adds these substitutes into training set, and reserves an output dimension for
the unauthorized device for adaptive learning the decision boundary between authorized
and unauthorized classes. Moreover, considering the catastrophic forgetting phenomenon
caused by knowledge inference and model expansion, we propose a knowledge sharing
module that introduces the KD loss to alleviate this problem. In contrast to most OSR
studies, our approch considers how to better balance the model’s ability of recognizing
authorized classes while discovering unauthorized classes. However, they focus on main-
taining the model’s recognition ability or enhancing the model’s discovery ability, but
ignore the coordination between the two. The experimental results on the ORACLE dataset
show that our approach outperforms other four state-of-the-art OSR approaches in both
recognition accuracy and running time. In the future, we will consider conducting open-set
recognition experiments on real signal dataset that are closer to the real world, and carry
out more detailed studies on different communication channel requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
OSR Open-set Recognition
IQ In-phase and Quadrature
RF Radio Frequency
KD Knowledge Distillation
ACC Open-set Recognition Accuracy
AKS The Accuracy on Known Samples
AUS The Accuracy on Unknown Samples
TP The True Positive
TN The True Negative
FP The False Positive
FN The False Negative
DML Deep Manifold Learning
DC_LSTM Dual Channel LSTM
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