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Abstract: Eye gaze interfaces are an emerging technology that allows users to control graphical
user interfaces (GUIs) simply by looking at them. However, using gaze-controlled GUIs can be
a demanding task, resulting in high cognitive and physical load and fatigue. To address these
challenges, we propose the concept and model of an adaptive human-assistive human–computer
interface (HA-HCI) based on biofeedback. This model enables effective and sustainable use of
computer GUIs controlled by physiological signals such as gaze data. The proposed model allows
for analytical human performance monitoring and evaluation during human–computer interaction
processes based on the damped harmonic oscillator (DHO) model. To test the validity of this
model, the authors acquired gaze-tracking data from 12 healthy volunteers playing a gaze-controlled
computer game and analyzed it using odd–even statistical analysis. The experimental findings show
that the proposed model effectively describes and explains gaze-tracking performance dynamics,
including subject variability in performance of GUI control tasks, long-term fatigue, and training
effects, as well as short-term recovery of user performance during gaze-tracking-based control tasks.
We also analyze the existing HCI and human performance models and develop an extension to
the existing physiological models that allows for the development of adaptive user-performance-
aware interfaces. The proposed HA-HCI model describes the interaction between a human and
a physiological computing system (PCS) from the user performance perspective, incorporating a
performance evaluation procedure that interacts with the standard UI components of the PCS and
describes how the system should react to loss of productivity (performance). We further demonstrate
the applicability of the HA-HCI model by designing an eye-controlled game. We also develop
an analytical user performance model based on damped harmonic oscillation that is suitable for
describing variability in performance of a PC game based on gaze tracking. The model’s validity
is tested using odd–even analysis, which demonstrates strong positive correlation. Individual
characteristics of users established by the damped oscillation model can be used for categorization
of players under their playing skills and abilities. The experimental findings suggest that players
can be categorized as learners, whose damping factor is negative, and fatiguers, whose damping
factor is positive. We find a strong positive correlation between amplitude and damping factor,
indicating that good starters usually have higher fatigue rates, but slow starters have less fatigue
and may even improve their performance during play. The proposed HA-HCI model and analytical
user performance models provide a framework for developing an adaptive human-oriented HCI
that enables monitoring, analysis, and increased performance of users working with physiological-
computing-based user interfaces. The proposed models have potential applications in improving the
usability of future human-assistive gaze-controlled interface systems.

Keywords: human–computer interface; gaze tracking; eye tracking; mental fatigue; circular statistics;
central moments; usability; human–computer interaction
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1. Introduction

The human–computer interface (HCI) based on physiological interaction, also known
as physiological computing [1], is a very important research area in computer science.
This type of interface goes beyond the typical human–computer interaction. Physiological
interfaces incorporate human body characteristics into their functionality. Physiological
features of the human body could be determined as any quantitative data of a physiological
nature that are recorded from the human [2]. The concept of physiological interaction
or physiological computing systems (PCSs) encompasses such well-known paradigms
as brain–computer interface (BCI) [3], neural computer interface (NCI) [4], gaze-tracking
interface [5], etc.

The initial focus of the PCS-based interfaces was on people with disabilities, since their
condition often requires an alternative mode of communication [6–8]. Recently, we can
observe an increasing number of applications that primarily focus on healthy users. BCI
games and entertainment application, for instance, are expected to constitute a large market
of potential users (both healthy and disabled) [9]. Although eye tracking has been known
as a useful research utility, recent studies reveal that gaze tracking gives a more challenging
experience to the PC game players [10]. One of the main reasons why PCS-based interfaces
are more often used in entertainment applications is the growing number of consumer-
grade electronic devices for physiological signal scanning. For a long time, systems were
bulky, expensive, and lab-oriented. Recently more consumer-affordable devices based on
physiological computing and eye tracking emerged in the market (e.g., Tobii eye trackers
for gaze tracking, Emotiv EPOC+ for BCI applications, MYO gesture control armband for
electromyography (EMG)-based control) [11]. The gaze-tracking systems have become more
user-friendly and significantly cheaper [12]. However, in many cases, higher affordability
has been achieved at the expense of accuracy [13]. The primary purpose of such PCS-based
communication and control systems is to enable alternatives or enhance methods to control
user interfaces. Physiological computing systems are suitable for work and home activities.
These can sustain work productivity and entertain. For disabled people who cannot move
their hands and (or) legs, it can improve their quality of life. Systems that solve this problem
are called assistive systems [14]. PCS is widely used in areas where manual human control
is employed, but additional control is also required (e.g., car drivers, plane pilots, etc.), as
well as in other domains like marketing research and advertisement testing, prosthetics,
rehabilitation, psychology, etc. One of the major usability problems of these systems is the
decrease in performance due to mental and physical fatigue. The control of interfaces based
on PCS is a rather demanding task since a user has to carry out often unnatural activity,
which results in high cognitive and physical load. The performance of a user controlling
this kind of interface varies due to training, emerging fatigue, or change in mental state.
Mental and physical fatigue has negative impact on performance, while training affects
performance positively.

We propose the concept and model of the adaptive human-oriented HCI to enable the
monitoring, analysis, and increase in the performance of users working with physiological-
computing-based user interfaces. We perform the analysis of the existing HCI models
related to physiological computing; carry out the analysis of the existing human perfor-
mance models; develop an extension to the existing physiological models to allow for the
development of adaptive user-performance-aware interfaces; and adapt the performance
models for EMG-based HCI and gaze-tracking-based HCI.

Our contribution is as follows. First, the extension of the biocybernetic loop concept,
called the human-assistive HCI (HA-HCI) model, is proposed. The novelty of the proposed
model lies in two aspects: (i) the aforementioned model is derived from the concept of the
biocybernetic loop, but it is more specific in the sense that it provides a practical framework
for user interface design; (ii) the proposed model incorporates the performance evaluation
in the human–computer communication process.

The paper is organized as follows. In Section 2, we discuss the related studies. In
Section 3, we present an overview of the PCS paradigms which enable adaptability and
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an analysis of physiological signals suitable for fatigue estimation, analyzing the works
on fatigue detection in different scientific domains. In Section 4, we describe the pro-
posed human-assistive HCI (HA-HCI) model and its evaluation using game performance
metrics. Section 5 describes the design of the application based on the proposed model.
Section 6 describes the experimental results for adaptation of the HA-HCI model. Fi-
nally, Section 7 provides discussion on notable observations and limitations, and Section 8
presents the conclusions.

2. Overview of Related Works

Gaze tracking is the process of locating the point of a person’s gaze [15]. Applications
of gaze tracking are numerous and include cognitive studies [16], medical research (ophthal-
mology, neurology, and related areas) [17] for diagnosing diseases such as Attention Deficit
Hyperactivity Disorder (ADHD), Schizophrenia, Parkinson’s and Alzheimer’s disease, psy-
chological evaluation [18], website usability [19] and advertisement studies [20], consumer
product research [21], driver fatigue and drowsiness detection [22], reading studies [23],
evaluation of image quality [24], learning process assessment [25], and human–computer
interfaces for impaired [26].

Analyzing gaze fixation is important because it can provide insights into fundamental
cognitive processes, diagnose and monitor neurological and developmental disorders, im-
prove marketing research, and enhance visual assessments. For example, Hooge et al. [27]
investigated the impact of fixation and saccade selection rules on the distribution of fixation
durations in eye-tracking data. The researchers analyzed eye-tracking data of different
qualities and used seven classification algorithms to determine the role of selection rules in
merging and selecting fixation candidates. They found that for good-to-moderate-precision
data, the choice of classification algorithm was not critical, as long as the selection rules
were followed, which included selecting saccades with amplitudes greater than 1.0◦ and
fixations with a duration longer than 60 ms. The authors suggest that researchers should
report whether they used selection and their parameter values due to the importance
of selection in the analysis of eye-tracking data. Altemir et al. [28] aimed to assess the
evolution of gaze stability throughout life during short and long fixational tasks. The
study included 259 subjects aged between 5 months and 77 years, who underwent a com-
plete ophthalmological assessment. The results showed that gaze stability improved with
age from 5 months to 30 years, while fixations tended to be longer. The study reported
normative data of gaze stability and duration of fixations for every age group, and the
authors suggested that currently available technology can increase the accuracy of visual
assessments. Masedu et al. [29] investigated differences in visual exploration patterns
between toddlers with ASD and those with typical development using an eye-tracking
paradigm. The study included 18 children with Autism Spectrum Disorder (ASD) and
18 with TD, and gaze-tracking data were collected by showing a human face together
with other objects. The gaze fixation sequence was modelled with a Markov chain model,
obtaining transition probabilities between areas of interest (AOIs). The results showed that
the transition between AOIs could differentiate between the studied groups.

Gaze tracking has been adopted to enhance road safety and reduce accidents by
alerting drivers to potentially dangerous situations. Shah et al. [30] propose an advanced
driver assistance technique that utilizes a real-time gaze-tracking system to obtain and
communicate the gaze information of the driver. The authors developed a benchmark
image dataset consisting of head poses and horizontal and vertical direction gazes of the
driver’s eyes and used the You Only Look Once (YOLO-V4) face detector and Inception-
ResNet-v2 CNN model for accurate detection and estimation of head pose directions and
eye directions. The results showed high accuracy, with the head pose detection system
achieving an average accuracy of 91%, and the eye gaze estimations achieving an RMSE
of 2.68 for vertical and 3.61 for horizontal eye gaze. Yuan et al. [31] propose a knowledge-
based solution for driver gaze tracking that does not require calibration, which is often a
tedious and time-consuming process. The method is based on the domain prior to typical
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driver gaze patterns and self-calibrates in real-time during naturalistic driving scenarios.
The method can extract relevant driver status features gradually and update estimation
parameters periodically, and the results show that the auto-calibrated gaze estimation
method can achieve automatic gaze calibration for gaze tracking during in-the-wild on-
road driving without requiring cooperation from the driver. Ledezma et al. [32] propose a
model-based gaze-tracking system that was tested on a suitable-features driving simulation
environment using a Kinect v2.0 sensor. The developed advanced driver assistance (ADAS)
uses gaze information to determine if the driver is looking at the road with their full
attention, and alerts the driver only in case of distraction. The results are promising, with
hit ratios between 96.37% and 81.84%. Khan and Lee [33] review various eye- and gaze-
tracking techniques and their applications in ADAS. The paper discusses the acquisition of
driver’s eyes and gaze data and the algorithms used to process this data and explains how
the data related to a driver’s eyes and gaze can be used in ADAS to reduce losses associated
with road accidents occurring due to visual distraction of the driver. The authors also
present a discussion on the required features of current and future eye and gaze trackers.
Naqvi et al. [34] used a deep-learning-based gaze detection method that considered driver
head and eye movements, along with a near-infrared (NIR) camera sensor. This approach
does not require initial user calibration and has shown better accuracy than previous
methods. Lee et al. [35] suggested using a CNN to detect the emotions of drivers by
analyzing images of their faces captured by thermal and NIR light sensors. To test their
approach, the researchers conducted an experiment using their own database and found
that their method was better at identifying aggressive or relaxed driving than previous
methods. Finally, Naqvi et al. [36] proposed a method to detect aggressive driving based on
changes in driver gaze and facial emotions using NIR camera sensors and a driving game
simulator. The method extracts face, eye, and lip images using Dlib and uses convolutional
neural networks to detect changes in gaze and emotions. The proposed method achieves
high classification accuracy and outperforms previous methods.

Fatigue is described as extreme tiredness resulting from mental or physical exertion
or illness [37]. It is common for almost every human physical activity. While controlling a
personal computer (PC) in conventional ways, a user experiences fatigue after a relatively
long period of time. Fatigue while controlling a PC or any other digital device using
a human–machine interface based on physiological computing usually emerges much
faster. Fatigue effects in the EMG-based interfaces are usually concerned with tension
of specific muscles which are responsible for muscle control. Users of the eye-tracking-
based human–machine interfaces are usually affected by fatigue caused by eye muscle
tension or even tiredness related with continuously looking at a PC screen and a low
blinking rate. In the field of BCI, a user encounters mental fatigue because control of BCI
applications requires significant mental concentration. User fatigue results in the decrease
in performance and accuracy of system control, so that a user can perform high-quality
control only for a relatively short period of time (measured in minutes or hours). To
expand the time of high-quality control in the human–machine interface, intelligent user
interfaces (UIs) are developed or, if possible, multimodal interfaces are applied. The training
effect opposes the fatigue effect. Therefore, the period of high-quality control might be
expanded by performing consistent training. Concepts of fatigue and training are common
for physiology research. The analytical models of sport athletes’ performance, which
encompass the muscular fatigue and training components, were proposed by Banister
et al. [38] in the 1980s and elaborated later.

Several studies have investigated the use of eye-tracking technology to detect the
effects of fatigue and mental fatigue on human performance in different fields, including
radiology, transportation, and cognitively demanding tasks. Pershin et al. [39] use AI-
based metrics to predict fatigue-related changes in radiologists’ image-reading patterns. Li
et al. [40] propose a four-phase framework that analyzes spatial and temporal gaze patterns
to assess vigilance levels in traffic controllers. Bafna-Rührer et al. [41] explore the feasibility
of mental fatigue detection using smooth-pursuit movements in an eye-interactive task.
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Lin et al. [42] suggest that eye movement behavior can be employed to recognize visual
fatigue more sensitively than other methods. Tseng et al. [43] show that smartphone gaze is
significantly impaired with mental fatigue. The authors tracked the onset and progression
of fatigue, suggesting that it could provide a digital biomarker of mental fatigue. Lohr
et al. [44] propose a method for detecting eye fatigue using fixation data that can be
implemented on mobile and wearable devices, making it possible to react to fatigue in
various environments. Craye et al. [45] present a multi-modal approach for detecting driver
fatigue and distraction based on sensor data collected in a driving simulator and show
that their approach can achieve high accuracy. Sommer et al. [46] compare the accuracy of
different fatigue-monitoring technologies (FMT) for detecting fatigue in driving simulations
and find that FMT devices perform acceptably at low temporal resolution (>20 min) but
have large errors when estimating fatigue at high temporal resolution. Finally, Suzuki
et al. [47] propose a model for detecting mental fatigue in natural viewing situations and an
automated feature selection method to make the model robust to the target’s age, showing
that their model improves detection accuracy compared to previous studies. Overall, these
papers suggest that eye-tracking technology is a promising tool for detecting the effects of
fatigue and mental fatigue in various contexts. We summarize the previous approaches in
Table 1. Nowadays, this research has not lost its relevance. Moreover, it can be applied in
new research areas, such as PCS, multimodal interfaces, BCI, and NCI.

Table 1. Comparison of related works on fatigue recognition using gaze tracking.

Ref. Strengths Weaknesses

Băias, u and Dumitrescu [22] Detects drowsiness
Only frontal face images are

used. The images are not
captured in real-life setting

Pershin et al. [39]
Suggested an information

gain metric blending reading
time, speed, and coverage

The study was highly specific
and used chest X-ray images

Li et al. [40] Measured comprehension
time as a proxy for vigilance Used simple reaction time test

Lin et al. [41] Measured accuracy of
gaze fixation

Used just one minute of
gaze data

Bafna-Rührer et al. [42]
Analyzed as characteristics of

smooth-pursuit
eye movements

High level of false positives

Tseng et al. [43]
Used gaze fixation of circular

stimulus and
measured accuracy

Used just a few minutes of
gaze data

Lohr et al. [44] Measured fatigue as accuracy
of fixation on target

Assumes the user is
not fatigued

initially

Craye et al. [45] Used gaze tracking as one of
inputs in multimodal system

Only analyzes eye
opening/closing

Sommer et al. [46] Uses electro-oculogram Temporal resolution is low

Suzuki et al. [47] Captures cognitive fatigue The study used only 10 min of
gaze-tracking data

3. Foundation of Physiological Computing Systems
3.1. Biofeedback

In the first treatise on cybernetic theory and communication as well as control in
biological and mechanical systems by Wiener in 1948, the theory of feedback is of core
importance. The concept of feedback here relies on the recognition that the controller of the
system can control an appointed variable if it can access information about that variable.
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Starting in the 1960s, the perception of humans as able to exercise conscious influence
over apparently unconscious physiology was seriously dealt with and it was discovered
that feeding back physiological information to a subject ensured successful physiological
control [48]; this process is called feedback. This helps people to increase their awareness
of, trust in, and control over their physiological processes as well as to reduce stress [49].
Recent computer-based systems for presentation of physiological signals are to carry out
two separate applications, namely clinical biofeedback and hands-free human–computer
interaction (HCI). The same signal pre-processing and presentation requirements apply for
both applications. A general scheme of biofeedback is presented in Figure 1.

Electronics 2023, 12, 1130 6 of 26 
 

 

Starting in the 1960s, the perception of humans as able to exercise conscious influence over 

apparently unconscious physiology was seriously dealt with and it was discovered that 

feeding back physiological information to a subject ensured successful physiological con-

trol [48]; this process is called feedback. This helps people to increase their awareness of, 

trust in, and control over their physiological processes as well as to reduce stress [49]. 

Recent computer-based systems for presentation of physiological signals are to carry out 

two separate applications, namely clinical biofeedback and hands-free human–computer 

interaction (HCI). The same signal pre-processing and presentation requirements apply 

for both applications. A general scheme of biofeedback is presented in Figure 1. 

Physiological 
signals

Feedback

Signal 
representation

Signal analysis

Application

 

Figure 1. A general scheme of biofeedback. 

The general workflow of biofeedback starts with recording physiological signals. Af-

terwards, these signals are quantified and processed to produce suitable representation of 

the signals for specific application. Signal analysis as well as its representation are strongly 

related with application (e.g., in medical applications, sampled signals are usually repre-

sented in a complex form as time series, whereas in PC games, representation of the sig-

nals is simplified and can be transformed to colors, emoticons, sounds, etc.). A user re-

ceives the feedback as determined by the application. 

The concept of the biocybernetic loop originates from a closed-loop control and com-

munication model. The feedback loop consists of three stages: collection, analysis, and 

translation. The specific processes involved in each stage depend on the type of system. 

In the first stage, the system collects data using sensors worn by the user. The second stage 

involves quantifying the data and identifying any artifacts. This is done in real time using 

an analysis algorithm, which determines if any data are irrelevant or incorrect. For the 

analysis stage, much attention is paid to certain cognitive aspects. For EMG and BCI sys-

tems (e.g., where the cortex helps to capture motor functions), the biocybernetic loop aims 

at changing physiological signal patterns into a certain computer command [50]. The bio-

cybernetic loop encompasses biofeedback. The recording of physiological signals and 

providing feedback to the user are common stages of the biocybernetic loop. However, a 

biocybernetic loop is a more complex paradigm. It has additional stages: classification and 

adaptation. The classification stage aims to classify physiological signals to the interface 

control commands. In the adaptation stage, functionality or appearance of the system can 

be modified based on classification results or direct real-time measurement of psycho-

physiology [48]. 

Other physiological systems count on the accurate recognition of subconscious psy-

chological states to detect changes in emotional states [51]. The adaptive controller is re-

sponsible for converting real-time physiological signals into computer commands, and 

therefore, for pattern-matching algorithms, adaptive control is direct. For biocybernetic 

adaptation, the role of the controller changes. These systems are developed for promoting 

positive states and forbidding undesirable ones. The impact between the user and system 

changes since biocybernetic control is for shaping and manipulating the state of the sub-

ject. If the user faces great mental workload, the system interferes to reduce workload and 

keep the situation stable. If the system user experiences failure, the system might either 

Figure 1. A general scheme of biofeedback.

The general workflow of biofeedback starts with recording physiological signals.
Afterwards, these signals are quantified and processed to produce suitable representation
of the signals for specific application. Signal analysis as well as its representation are
strongly related with application (e.g., in medical applications, sampled signals are usually
represented in a complex form as time series, whereas in PC games, representation of the
signals is simplified and can be transformed to colors, emoticons, sounds, etc.). A user
receives the feedback as determined by the application.

The concept of the biocybernetic loop originates from a closed-loop control and com-
munication model. The feedback loop consists of three stages: collection, analysis, and
translation. The specific processes involved in each stage depend on the type of system.
In the first stage, the system collects data using sensors worn by the user. The second
stage involves quantifying the data and identifying any artifacts. This is done in real time
using an analysis algorithm, which determines if any data are irrelevant or incorrect. For
the analysis stage, much attention is paid to certain cognitive aspects. For EMG and BCI
systems (e.g., where the cortex helps to capture motor functions), the biocybernetic loop
aims at changing physiological signal patterns into a certain computer command [50]. The
biocybernetic loop encompasses biofeedback. The recording of physiological signals and
providing feedback to the user are common stages of the biocybernetic loop. However,
a biocybernetic loop is a more complex paradigm. It has additional stages: classification
and adaptation. The classification stage aims to classify physiological signals to the in-
terface control commands. In the adaptation stage, functionality or appearance of the
system can be modified based on classification results or direct real-time measurement of
psychophysiology [48].

Other physiological systems count on the accurate recognition of subconscious psy-
chological states to detect changes in emotional states [51]. The adaptive controller is
responsible for converting real-time physiological signals into computer commands, and
therefore, for pattern-matching algorithms, adaptive control is direct. For biocybernetic
adaptation, the role of the controller changes. These systems are developed for promoting
positive states and forbidding undesirable ones. The impact between the user and system
changes since biocybernetic control is for shaping and manipulating the state of the subject.
If the user faces great mental workload, the system interferes to reduce workload and keep
the situation stable. If the system user experiences failure, the system might either offer help
or adapt itself to reduce the challenge. Certain change in a human–computer duo seeing the
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computer as a partner or team player as opposed to a servant-like system is the net result
of the closed-loop design. At different levels of HCI, the functions of the biocybernetic loop
are different. Biocybernetic adaptation alters parameters of the interactions (e.g., game
levels) [52,53] or intervenes into the system actively (e.g., offers help) [54]. Each component
of the biocybernetic loop is explained below.

1. Inference. The stage’s primary objective is to link the desired psychological state to
a physiological metric. A psychophysiological concept is established that best represents the
desired psychological state (e.g., a condition of high cognitive burden), and physiological
measurements that define the most valid operationalization of that psychological state are
chosen. Choosing sensor technologies and signal-processing techniques that are suited for
field use and deliver high signal fidelity is critical at this point. The selection of inference
model characteristics is the most important factor in the loop’s success. If the physiological
indicators are not sensitive and reliable enough to capture the psychological concept,
the inference model cannot establish a clear relationship between user state and system
function [55].

2. Classification. At this level, the identification of the psychophysiological state in
real time or near real time is of interest. If the loop is to work dynamically, it is critical
that the information given from this step be up to date. As a result, the selection of the
classification algorithm becomes critical at this stage. The classifier must be capable of
processing and categorizing data in a fast and accurate way. The cost of misclassifying user
answers must be carefully examined since the classifier eventually feeds forward judge-
ments into the adaptation engine, shaping the efficacy of system adaptation in response to
user behavior [55].

3. Adaptation. At this point, the psychophysiological reaction has already been
measured and categorized. The categorization findings are utilized to determine the type
of modifications to be applied at the interface. As a result, adaptation is concerned with the
application of the loop’s governing rule set, specifically, what actions should be conducted
at the interface in response to categorization results about the user’s state [55].

4. Interaction. The adaptation process is a type of interaction between the user and the
system. From psychophysiological inference through categorization and adaptation, the
form of adaptation will impact user perceptions of system efficacy. To instill user confidence,
it must be properly developed to give timely and meaningful action or feedback at the
interface [39].

3.2. Fatigue in HCI

Fatigue as the result of professional sport activities and fatigue resulting from the
application of HCI based on physiological signals are similar in their nature. In both fields,
mental and physical fatigue occur (see Table 2).

Table 2. Comparison of fatigue in sports and HCI.

Criterion Fatigue in Sports Fatigue in HCI

Origins of fatigue Mental/Physical Mental/Physical

Temporal scale Months/week/days Hours/minutes

Detection methods

Physiological
signals/Subjective tests/

Objective tests
(performance)/Analytical
training—fatigue models

Physiological signals/
Subjective tests/

Performance-based
approaches

Environmental conditions High physical activity and
considerable strain

Low physical activity and low
or medium strain

From the perspective of time, under time training–fatigue models applied in sports,
the effects of fatigue come out in the temporal space of months, weeks, and days [56].
Meanwhile, a decrease in fatigue-induced performance of HCI based on physiological
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signals can be expected in hours or even minutes. It should be emphasized that in sports,
fatigue can also occur in a relatively short period of time (for example, in sports such as
the sprint, which requires a lot of explosive power), but in this analysis the time scale is
determined based on the practice of existing training–fatigue models. The environmental
conditions affecting athletes and HCI based on physiological signals are significantly
different. Professional athletes train methodically, consistently for a long time. During
exercise, physical activity is very high. This training can eventually lead to mental fatigue.
Meanwhile, users of HCI based on physiological signals operate under conditions of
relatively low physical activity, though control of certain systems using physiological
signals has its own specifics. Here, the type and strength of fatigue greatly depends on a
specific input signal. Using EMG-based HCI involves muscle tiredness that is of the same
nature as during exercise training, but this fatigue is localized in the body where the EMG
signal is generated. BCI systems cause mental fatigue because this type of interface does
not involve any physical activity. The use of a gaze-tracking interface results in visual
fatigue, which occurs due to muscular fatigue around the eye and a slight flicker; thus,
it is a distinct form of muscle fatigue [57]. In addition, mental fatigue occurs in both
the use of EMG-based HCI and the gaze-tracking interface in the long run. In terms of
fatigue detection methods, both domains share similar approaches. Fatigue detection using
physiological signals, subjective tests, and objective tests by their nature are similar in
sports and HCI, but in terms of implementation they can differ from each other. However,
analytical training–fatigue models are typical only in a professional sports domain. Most
physiological measurements used for fatigue detection in sports have an equivalent in
HCI. The HRV measurements are used in both a broad and very similar context in both
areas [57].

The application of the EMG signal for the detection of local muscle fatigue has long
been known in sports workouts (as in rehabilitation and ergonomics). Hence, various
devices for monitoring muscle fatigue have been developed [58,59]. This equipment oper-
ates precisely when muscle tiredness is determined by isometric muscle contractions, but
during dynamic contractions, measurement accuracy is questionable due to the movement
of the electrode. EMG-based HCI control is dominated by dynamic contractions, which
cause muscle tiredness to occur relatively quickly. As a result, other methods of the EMG
signal analysis are used to detect muscle fatigue in the HCI field. Upper-limb power-assist
exoskeletons are constantly exposed to muscle fatigue caused by dynamic muscle contrac-
tions. To solve this problem, complex methods are used to measure and analyze several
EMG features (e.g., root mean square, mean power frequency, and spectral features) at the
same time [60]. The EDA, EEG, and EOG signals are mainly used for detection of mental
fatigue. In the HCI field these signals are most used to detect driver fatigue [61,62].

3.3. Combination of Biocybernetic Loop and Performance Evaluation

Biofeedback is a part of the biocybernetic loop that describes how psychophysiological
data from the user are captured, analyzed, and converted to a computer control in real
life [61]. It helps to achieve the adaptive communication between a user and a system.
However, the user in this context is described as an unstable system member, since it is
affected by many internal and external factors [61]. The wide variety of these factors results
in the description of adaptive communication only on a very high level of abstraction.

Although the biocybernetic loop provides some abstract description of the adaptive
interaction between a user and a system, it still faces limitations in some domains in the
integration of physiological sensors, signal processing, and communication between phys-
iological systems and applications [62]. Moreover, the biocybernetic loop lacks practical
system development frameworks, which would facilitate the integration of the biofeedback
loop to a specific application. The specific realization of the biofeedback loop highly de-
pends on a user and an application. The application may define the level of instability of
the user, since user state measurement depends on the specific system design.
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The analysis of performance models based on impulse and response revealed that
human performance can be defined by fitness and fatigue factors. A combination of
impulse and response models with the biocybernetic loop may result in approximation
of user states since user performance would be defined only by two factors (training and
fatigue). Therefore, this extension of the biocybernetic loop could lead to a more detailed
specification of the adaptive user interface and its interaction with the human. However,
impulse and response models lack validation in the HCI domain; therefore, it is of high
interest to test those models in the HCI domain and possibly extend the concept of the
biocybernetic loop by including the performance models. The inclusion of performance
models to the biocybernetic loop is even more reasonable because fatigue factor, which is
the key factor in human performance modelling, is of the same origin despite the domain
in which it occurs.

4. Human-Assistive HCI Model

A human-assistive HCI (HA-HCI) model is applied for users who can control only
one modality of input (e.g., in BCI, the input modality is the brain wave signal, and in
some cases it is the only input channel). An intelligent layer of the system monitors the
input channel. The user receives feedback on physical and (or) mental burden, which is
assessed throughout the performance evaluation method. As a recovery activity, feedback
is supplied to the user, assisting the user in regaining lost performance. Following this
technique, the system may be further controlled.

4.1. Structure of the Model

The structure of the HA-HCI model is as follows (see Figure 2):

1. The interaction layer sets communication between the user and the system. It has two
components: input channel and feedback activity.

1.1 The input channel represents the input modality that is used for control of the
system.

1.2 Feedback represents the response of the system when fatigue effects appear.

2. The intelligent layer is a central component of the model responsible for coordination
of other components and decision-making processes.

3. The performance evaluation procedure is responsible for performance evaluation of
the user using the system.

4. The control layer represents application-specific actions to control the system.
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The human-assistive HCI model consists of several layers:

• Interaction layer. This layer provides tools of communication and control of the
system. It is divided into two blocks: the input channel and feedback activity. The
input channel is responsible for capturing an input modality which is presented in
the model as an input channel. Feedback activity is a specific response of the system
when the intelligent layer triggers a decreased level of performance. The purpose of
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this activity is to help the user relax and recover from mental and (or) physical fatigue.
The type of feedback can be visual, auditory, tactile, or somatosensory.

• Intelligent layer. This layer is responsible for decision-making processes. Each time
the user sends an input signal to the system, a decision must be made whether the
signal should be converted to a control command, or a recovery activity should be
provided to the user. The features of the signal, which represent fatigue, depend on the
type of input modality. The extraction of these features is made in an intelligent layer.
Afterwards, the extracted features are sent to a performance evaluation procedure,
which returns feedback as an estimate of current performance level. The features
of performance can also be received from the control layer as specific metrics of
application (e.g., accuracy of user control, input speed, information transfer rate, etc.).
Then, the decision is made whether the user should keep controlling the system or the
fatigue is too high, and the recovery activity should be activated. Furthermore, the
classification of a signal to determine the specific control command of application is
also made in the intelligent layer.

• Performance evaluation procedure. This serves as a tool for quantitative assessment
of user performance. The performance itself may depend on fatigue and training
aspects of a specific user. The aforementioned procedure is application-specific and
may vary from sophisticated fatigue feature extraction and classification techniques to
a threshold function, which takes as an argument certain performance parameters. The
output of this procedure is an estimate of performance level. The initial performance
model can be pre-defined and, if necessary, modified online.

• Control layer. The control layer determines specific actions which are used to control
the application. The application area is wide; technically it encompasses almost any
digital device that can receive at least one input modality of any human-suitable form
and can provide at least one output modality of any human-suitable form.

4.2. Control in the Proposed Model

From the point of view of the HA-HCI model, a user is also a part of the system. The
user can send input commands and get feedback from the system (see Figure 3). System
control tasks can be executed using input modalities, which are determined by the system
design. No distinction is made between traditional input modalities (e.g., mouse, keyboard,
joystick, etc.) and alternative ones like physiological-computing-based (e.g., EEG, EMG,
EOG, gaze tracking, etc.) or NUI-based (e.g., human gestures) modalities. The user provides
input to the system, which later is pre-processed in the input channel.
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Figure 3. Communication between user and the interaction layer of HA-HCI.

The concept of “single channel” in the HA-HCI model does not necessarily mean
that the user is able to control the system via one input mode. The input channel can
receive one unified set of input modalities. A unified set means that input modalities are
undetachable from each other in terms of control. For example, a mouse and a keyboard
are undetachable from each other in many cases, because one set of control commands are
covered by the mouse, and another set by the keyboard. If one input mode cannot cover all
control commands, one cannot consider it as an independent input mode.
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The input channel is responsible for pre-processing a task. Not all input types may
need pre-processing (e.g., a mouse and a keyboard); in such cases, this task is simply
skipped. The most pre-processing is needed when system input is based on a physiological
signal; then, signal sampling and filtering are usually applied. Further analysis of the
pre-processed input data is then made in the intelligent layer.

The intelligent layer triggers feedback activity when the performance of system control
decreases. In general, feedback activity is every activity which helps a user to recover
performing abilities. In terms of sensing ability, feedback activity can be classified into
(i) sensory feedback activity and (ii) hidden feedback activity.

• Sensory feedback activity can be sensed by the user. The feedback type can be visual,
auditory, tactile, or somatosensory. The main purpose of any type of sensory feedback
activity is to help a user regain performing abilities. Typical examples of such feedback
are a GUI change due to an increased level of fatigue or inserts of relaxing music
during the control process.

• Hidden feedback activity cannot be directly sensed by the user. In this case, the user
can feel improvement of the interface performance or other metrics but cannot sense it.
A typical example is the adjustment of control parameters (e.g., dwell time adjustments
in gaze-tracking interfaces).

• In terms of how feedback activity is included into a control–feedback loop, it falls into
(i) interruptible and (ii) uninterruptible feedback activity.

• Interruptible feedback activity interrupts the control process of the system. In this
case, control of the system is disabled, and the user is instead stimulated by a relax-
ing activity.

• Uninterruptible feedback activity does not disable the control process. It is carried
out simultaneously. The adjustment of control parameters is also a proper example to
demonstrate this kind of feedback.

The intelligent layer is the most complex component of HA-HCI (see Figure 4). It
is responsible for (i) pre-processed data classification to the control commands, (ii) user
performance extraction, and (iii) decisions when feedback activity should be triggered.
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• Pre-processed data classification to determine control commands. This procedure
is common for PCS. The complexity of the classification approach depends on the
application. Physiological signal classification may require sophisticated pattern recog-
nition methods (e.g., artificial neural networks, SVM, etc.). In some cases, additional
feature extraction must precede classification to reduce the dimension of the data
(e.g., PCA). In simple solutions, input data can be transformed to control commands
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by applying a threshold function. Some interface types do not require classifica-
tion at all (e.g., the gaze-tracking interface provides point of gaze). Therefore, data
classification is optional in this model.

• User performance feature extraction is an important process in HA-HCI. The extracted
performance features are used in the performance evaluation procedure as input
arguments. Therefore, the intelligent layer and performance evaluation procedure are
strongly related. Since performance is usually affected by user fatigue and training
factors, the feature extraction tends to search for features in the input signal that are
related with user fatigue. To extract features from input data, one may need to link a
physiological measure to a specific fatigue state. Karran calls this process inference [55].
Another way to estimate the performance features is to use pre-set application-specific
performance metrics of the control layer. Performance metrics like accuracy and
input speed are common for many systems and those metrics are strongly related
with fatigue because those metrics decrease in the presence of fatigue. A combined
approach, extracting fatigue features from both input data and performance metrics,
may increase accuracy, but it is a more complex approach.

• Decisions regarding when feedback activity should be triggered depend on the per-
formance evaluation procedure. The performance evaluation procedure returns the
performance estimate to the intelligent layer. The performance estimate can be a
numeric value or pre-defined user state. To activate the trigger when the performance
estimate is a numeric value, a threshold or sigmoid function can be used. When a
pre-defined user state is an indicator, the intelligent layer should recognize this state
and execute the necessary actions.

The performance evaluation procedure defines the means of performance measure-
ment in the specific system. It can be a set of logic rules, mathematical equations or complex
dynamic structures like Kalman filters and artificial neural networks (ANNs). A perfor-
mance model can be passive or adaptive. A passive performance model is a pre-defined
analytical model which does not change its behavior during the control process. An adap-
tive performance model changes over time and can be optimized during control process
(e.g., using Kalman filter or other optimization algorithms [63–66]).

The control layer represents the logic of application. It receives control commands
from the intelligent layer. These control commands are used to control the main application.
The control layer also returns performance metrics, which can be used for evaluation.

4.3. Human Performance Modelling Using Impulse–Response Models

According to this model, any training session will have both a fitness-building effect
and a fatigue-inducing effect. The total performance is defined as the sum of fitness and
fatigue. In this model, fitness has a positive impact on performance, while fatigue has a
negative impact. This statement is defined in a simple mathematical expression as follows:

P = Ff ittness + Ff atigue, (1)

where P is performance, Ff ittness is fitness, and Ff atigue is fatigue.
This model is based on the empirical observation that at the start of the training fatigue

has a high amplitude, which decreases fast. At the same time, fitness has a lower amplitude,
which decays slower than fatigue. The performance peak is the point where the difference
of fitness and fatigue is the smallest.

The damped harmonic oscillation (DHO) model is used to describe daily physical
performance capacity in team sports [67]. The rationale for using this model is based on
chronobiology research, in which cosinor-based rythmometry is a common approach [68,69].
This model represents long-term day-to-day variation in physical performance capacity.
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The model is represented as a product of a damped simple sine wave and an exponential
resistance component.

Single DPCn = −TLnsin
(

2πt
T

+ π

)
e
−t
θ , (2)

where DPC is the performance capacity on day n, TLn is the sum of all training loads of the
day, t is the elapsed time (in days) since the training day, θ is the damping parameter in
arbitrary units, T is the time period of one oscillation (in days).

Since professional sports training is a long-term matter, it is expedient to evaluate
cumulative DPC, which is the sum of single DPCs till day n.

Cumulative DPCn = ∑n
i=1 DPC(n−i)i

, (3)

where n is the number of training days.
Kolossa et al. [69] proposed a linear fitness and fatigue model with Kalman filtering,

which allows us to improve prediction by combining the last model state and indirect
measurements. The model is a transformation of the well-known 3-time-constant fitness–
fatigue [70] model to a linear, time-variant state-space model.

xk+1 = Akxk + Bkuk + vk (4)

where x is a state vector:

x =

(
x1
x2

)
(5)

where x1 is the fitness rate and x2 the fatigue rate; Ak is the system matrix with exponential
decay rates in the diagonal, where the decay rates from the fitness and fatigue model
proposed by Busso et al. [70] are as follows:

Ak =

e
−1
τ1 0

0 e
−1
τ2

 (6)

Bk is a time-varying input matrix:

Bk =

 e
−1
τ1

c2(k)·e
−1
τ2

 (7)

It includes c2(k), the training effect factor on the fatigue component, in addition to
two exponential decay rates. This is how it is defined:

c2(k) = c3 ∑k
j=1 u(j)e

−(k−j)
τ3 (8)

The system states cannot be accessed directly under this approach. They can only be
established using indirect yk readings.

yk = Ckxk + nk (9)

where nk denotes observation noise (often Gaussian), and Ck is the amount of each state
component on the measurement. The following is how Ck is defined:

Ck = (c1 − 1) (10)

where c1—c3 are the weighting factors and τ1—τ3 are time constants.
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The capacity to adjust the predicted model state live is the major advantage of a linear,
time-variant state-space model with Kalman filtering. As a result, as compared to standard
fitness–fatigue models, the tolerance for measurement errors is larger.

4.4. Gaze Performance Metrics

Dwell time is the amount of time a gaze fixation stays on an object, and it can distin-
guish between accidental, visual search, and intentional gazes during tasks. The duration
of a fixation corresponds to the brain’s processing activity, and it is predicted that dwell
time will increase as a result of fatigue.

Previous studies [71–74] have used point of gaze (POG) accuracy. POG accuracy
measures the distance between the center of the target and the point where the eyes are
aligned when fixating on the target of visual attention. The point where the eyes are aligned
is known as the point of gaze. Fatigue is expected to decrease POG accuracy.

The Fatigue Threshold (TF) [41,75] is a value that is calculated using an empirical
formula. The formula depends on the average spatial accuracy of the eye tracker, denoted
as θavg. The threshold can scale with noisier signals, A, the difference in fixation qualitative
score (FQlS) [76] between the first fatigued group of data and the initial FQlS, and µ, which
is the mean spatial accuracy of the data.

TF =
A× θavg

µ
(11)

Average spatial accuracy [41,77] is calculated during calibration by finding the mean
gaze point, Gi, for each calibration point, Pi, and then calculating the average distance in
degrees, θi, between each calibration point and gaze point.

To calculate the average spatial accuracy, the mean gaze point is determined for each
calibration point during calibration. The average distance in degrees, θi, between each
calibration point Pi and gaze point Gi is then calculated.

θacc =
1
n ∑n

i=1|Pi − Gi| (12)

5. Design and Evaluation of PCS Application Based on HA-HCI Model
5.1. Architecture

The gaze-based control architecture used in HCI is based on the HASCM model
(Figure 5) and relies on eye movements as an input channel. To keep users engaged and
motivated, gamification techniques [78] are used. An adaptive dwell time is used as an
initial recovery activity, which is adjusted based on the rate of typing errors detected by the
system’s intelligent layer. This study also includes a more complex training and fatigue
model that uses the accuracy of the sight landing position as input. The intelligent layer of
the system is responsible for mapping gaze on a PC screen, detecting typing errors, and
providing feedback to the user. To evaluate fatigue, an error rate threshold function is
used, which determines the number of errors that can be made before the recovery activity
is initiated. The specific threshold value is set by the user. The system workflow is as
follows: the user enters text using eye movements, and the system monitors the number
of unwanted selections or errors. When the error threshold is reached, the dwell time is
increased. Conversely, when the user reaches a defined number of intentional selections,
the dwell time is decreased.

The present version of the developed gaze-controlled Pac-Man game [79] also extends
the original game by the means of control mode. Eye movement control mode is introduced.
The user can control the game by either eye movements or a keyboard. Since the primary
task of the system is to play the game via eye movements, the keyboard control is introduced
only after certain fatigue indicators emerge.
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Figure 5. Application of the HASCM model for an eye-controlled game.

The HASCM framework for an eye-controlled game is presented in Figure 5. This
application of the HASCM consists of the components listed below.

1. Multimodal interaction layer. It describes the means of communication and feed-
back. The user can use one of the following input channels: (1) eye movements
and (2) keyboard control. The eye movement control is established via Tobii Eye
Tracker 4C. Both input channels are switched alternately based on the supervision of
the intelligent layer. The component of the input channel selector is responsible for
switching the input channels and informing the user of which input channel is active
at the moment.

2. Intelligent layer. It is responsible for analyzing the input channel parameters and
making decisions related with switching between input channels. The control using
eye movements is a more demanding activity, which leads to fatigue more prominently.
However, it is the primary control mode of the presented game; thus, the prolonged
usage of it is of interest. The relation between the eye movement parameters and
fatigue is not clear enough; therefore, it is the research focus of this study. The
keyboard control is enabled when the eye movement parameters indicate fatigue. It
is basically a layover of the eye movement. Keyboard control is terminated after a
defined period.

3. DHO-based performance model. This model is chosen since it has demonstrated
promising results in modelling training effects on physical performance capacity [64].
It is investigated further in the following sections.

4. Eye-controlled game. The idea of the game is based on a well-known Pac-Man game,
which is a type of maze chase game. We implemented a version of the game in
which a player must move in the maze horizontally or vertically and collect pills.
The desired eye movements are made by navigating in the maze (Figure 6). The
alternating vertical and horizontal movements of the eyes are the important part of
therapy that were demonstrated to improve eyesight [80] and treat amblyopia [81]
and eye movement disorder.
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5.2. Subjects and Setup

The gaze-tracking experiment was carried out with 20 volunteers (age range 19–42,
mean age 28 ± 5.3 SD). The study used a convenience sampling technique, which is a
non-probability sampling method. Convenience sampling involves selecting participants
who are readily available and willing to participate in the study. The recruitment process
involved posting advertisements in campus buildings and emailing potential participants
directly. The respondents were university students and academic lecturers. All participants
were healthy with no self-reported history of eye-related diseases. All subjects signed an
informed consent form, and the Helsinki Declaration was followed. The respondents were
instructed to play the game for 15 min in a timed mode. The Tobii Eye Tracker 4C gadget
was utilized to collect eye movements and control the main character of the game based on
the player’s gaze. See Figure 7 of an individual playing the game.
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6. Results

For modelling eye performance in the spelling system based on gaze tracking, Banister
et al.’s model was used. Accuracy based on a gaze landing position was taken for fatigue
evaluation. The results of gaze velocity measurements before playing the game (pre-task)
showed a significant variability between the subjects ranging from 195 ms to 372 ms
(Figure 8a). The gaze velocity measurements were repeated after playing the game and
demonstrated a noticeable drop in average gaze velocity (Figure 8b). However, this drop
was not observed across all subjects. In fact, some subjects showed a slight improvement in
gaze velocity, thus confirming the positive effect of learning.

Electronics 2023, 12, 1130 16 of 26 
 

 

5.2. Subjects and Setup 

The gaze-tracking experiment was carried out with 20 volunteers (age range 19–42, 

mean age 28 ± 5.3 SD). The study used a convenience sampling technique, which is a non-

probability sampling method. Convenience sampling involves selecting participants who 

are readily available and willing to participate in the study. The recruitment process in-

volved posting advertisements in campus buildings and emailing potential participants 

directly. The respondents were university students and academic lecturers. All partici-

pants were healthy with no self-reported history of eye-related diseases. All subjects 

signed an informed consent form, and the Helsinki Declaration was followed. The re-

spondents were instructed to play the game for 15 minutes in a timed mode. The Tobii 

Eye Tracker 4C gadget was utilized to collect eye movements and control the main char-

acter of the game based on the player’s gaze. See Figure 7 of an individual playing the 

game. 

 

Figure 7. Subject during experiments. 

6. Results 

For modelling eye performance in the spelling system based on gaze tracking, Ban-

ister et al.’s model was used. Accuracy based on a gaze landing position was taken for 

fatigue evaluation. The results of gaze velocity measurements before playing the game 

(pre-task) showed a significant variability between the subjects ranging from 195 ms to 

372 ms (Figure 8a). The gaze velocity measurements were repeated after playing the game 

and demonstrated a noticeable drop in average gaze velocity (Figure 8b). However, this 

drop was not observed across all subjects. In fact, some subjects showed a slight improve-

ment in gaze velocity, thus confirming the positive effect of learning. 

  
(a) (b) 

Figure 8. Subject gaze velocity: (a) pre-task and (b) post-task. 

Eye tracker

Figure 8. Subject gaze velocity: (a) pre-task and (b) post-task.



Electronics 2023, 12, 1130 17 of 26

The results of this experiment reveal that Banister et al.’s model [38] fits well for
evaluating user performance in the gaze spelling task. The Principal Component Analysis
(PCA) of the data collected during the experiment suggests that fatigue effects in this case
appear faster than training effects and have a major impact on performance. However, the
experiment was executed in a relatively short period of time; thus, one can assume that
training effects could have a higher impact in the long term.

The analysis of gaze error vs. angle of approach showed an increase both in number
and magnitude of errors while executing gaze-controlled tasks (Figure 9) when observed
after playing the game (Figure 9b) as compared to pre-game measurements (Figure 9a). We
found that as time went on, saccade velocity decreased and the spatial distribution of gazes
became less focused on the horizontal (i.e., W-E) and vertical (i.e., N-S) axes of the game,
indicating a decrease in both the ability to follow the game and accuracy in control.
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Figure 9. Rose plots of gaze error vs. angle of approach: (a) pre-task and (b) post-task.

Figure 10 shows the difference in accuracy of gaze movements used as part of game
control. The game requires using vertical and horizontal movements during movements
of the game character in the maze. Deviation from horizontal or vertical moves decreases
the speed of control and leads to errors and eventually to a lost game. Note that spatial
accuracy decreases after subjects become fatigued while playing the game.

The fatigue effects in the PC game based on eye tracking were measured for a longer
period compared to previous research. For this purpose, the DHO model of training and
fatigue was applied. The reason for choosing this model is the wavy nature of the data
collected during the PC game experiment. The DHO model is suitable for describing the
data which reflect both long-term fatigue and training effects and short-term recovery of
performance. The DHO model validity is determined with sufficient even–odd reliability
(r = 0.82) (Figure 11). However, the DHO model showed high variability in terms of
deferent user control [78]. To validate the claim, we use the comparison operator:

C(∆t)∑
∆t
[v(t + ∆t) < (t)] (13)

where [.] is the Iverson bracket operator, v is saccade velocity, ∆t is time difference.
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Figure 10. Rose plots of individual subject showing the efficiency of execution of gaze-controlled
tasks during the game. The game requires the player to move their gaze horizontally and vertically.
Moves in other directions represents error due to fatigue or lack of training. (a) Start of the game. (b)
End of the game.
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Then, we calculated the linear regression of C with respect to ∆t as C = b0 + b1∆t
for all subjects. The decrease in saccade velocity was confirmed for all participants with
b1 = −0.53 ± 0.09 and a mean correlation of 0.98 [78].

The training–fatigue model [38] fits well the empirical data gathered during the gaze
spelling task. However, it failed to fit the data obtained from the PC game based on eye
tracking. Therefore, in this application, the DHO model was employed, since it showed a
significantly better result. The experiments with the gaze spelling system and the PC game
based on gaze tracking differed in terms of duration. This implies that Banister et al.’s [38]
model is possibly suitable for describing the performance in the short term, as the DHO
model deals well the performance in the long term. Some research suggests that users
begin to sense the fatigue after 13 min of using a gazetracking system [47]. However, to
prove this assumption on the performance models, more experiments are required. We
also noticed large variability of user parameters, suggesting the need for personalization in
physiological-computing-based HCI. Training and fatigue models like Banister’s or DHO
cannot be generalized for the whole population. On the contrary, they can be applied for
the specification of individual users and even can serve as a performance classification tool,
where users are classified into learners and fatiguers.

7. Discussion
7.1. Discussion on Performance in Assistive Systems

The human-assistive HCI model provides a framework for the development of human–
machine interfaces based on physiological computing. Using the human-assistive HCI
model, user interfaces based on the performance characteristics of physiological interaction
can be designed. The aim of this model is to enhance the time of continuous accurate
control of the human–machine interface based on physiological computing.

Typically, one of the biggest application areas of user interfaces based on various
physiological signals is the systems used by disabled people [82,83]. In general, such
assistive technologies can be applied everywhere (both at work and home) in our every-
day life to increase the quality of our life, sustain work productivity, as well as provide
entertainment [84]. Using such a system, the user starts feeling fatigue relatively fast;
therefore, performance of the system control decreases as well. The performance of a user
depends on individual characteristics. The proposed model aims to adapt the interface to
individual user needs and abilities and helps to prolong the time of effective usage of a
certain interface [85]. Moreover, some specific performance evaluation methods, suitable
for interfaces based on eye tracking and EMG recording, have been adapted from other
domains such as sports informatics [86,87]. In PCS, physiological signals (e.g., EEG, EOG,
EMG, etc.) are applied for interface control. This way of interface control allows disabled
people to communicate with others and control their digital devices and their environment.

When using assistive interfaces based on PCS systems, performance can decrease
radically. Many factors have an impact on this, but the most important is fatigue [88,89].
In solving the problem, fatigue is simply bypassed by developing a sophisticated user
interface and multimodal solutions (e.g., hybrid BCI). However, it must be acknowledged
that fatigue effects in similar systems are unavoidable. Often users can control only
one input modality; therefore, after fatigue appears and accuracy of the system control
decreases, user’s motivation decreases as well. Another major factor of the interface
control performance is training (learning) [90]. The training factor has a positive impact on
interface control performance. The training aspect increases constantly while the user uses
the interface. Evaluation and prediction of the system control performance in real time
would be a natural way to solve the motivation problem.

Athlete performance models used in sport training could be applied to predict fatigue
and training effects in PCS-based interfaces. Human-assistive HCI models rely on a biocy-
bernetic loop and HI principles, though their novelty lies in the performance assessment
and prediction element included in the system design. Hence, it is a priori accepted that
fatigue and training effects will occur using assistive interfaces based on PCS. Though the
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proposed models originate from the concept of a biocybernetic loop, the representation of
the aforementioned models focuses on practical aspects of the development of PCS-based
user interfaces. In general, human-assistive HCI models provide a design framework for
the PCS-based user interfaces. The distinction between the concept of a biocybernetic
loop and human-assistive HCI models also lies in the performance measurement methods.
Performance or user states in a biocybernetic loop are measured based on biophysiological
characteristics of the user. In a human-assistive HCI model, performance can be measured
directly from biophysiological signals generated by the user, or indirect measures related
to the specific application can be applied (e.g., accuracy, error rate, information transfer
rate, etc.). Thus, the proposed models are suitable for but not limited to the development
of the PCS-based user interfaces. Fatigue in the field of sport training and physiology is
widespread for researchers [91,92]. Both subjective and objective research methods are
applied. In addition, the monitoring of human physiological signals is often used to detect
fatigue. Furthermore, impulse–response models in the physiological domain elegantly
include fatigue factor in mathematical performance models. Although a mathematical
impulse–response model abstracts the human performance to two factors (fitness and
fatigue), it has still been validated in many studies regarding the performance estimation
of athletes [91,92].

The generation of physiological signals for system control sometimes involves the same
muscles (e.g., in EMG-based interfaces) as in an intensive physical activity (e.g., athlete training).
This implies that fatigue is of the same nature in both domains. In fact, the analysis carried
out in this paper shows that fatigue is estimated using similar methods both sports and HCI.
Fitness factor is also relevant to more than just human physiology. A more general term for
fitness is training. The importance of training can be seen in many fields where permanent
exercise is required, one of which is the use of certain software. The assumptions suggest
that impulse–response models are worth testing in PCS.

The aim of the integration of impulse and response models to PCS interface design
is to ensure the adaptiveness of the interface. The common approach of the adaptivity in
PCS is the biocybernetic loop. Therefore, the obvious way to introduce the training–fatigue
models in PCS is by including these models into the biocybernetic loop. This extension of
the biocybernetic loop could lead to a more detailed description of the adaptive system
and its interaction with the user. The analytical model of athlete performance proposed by
Banister et al. [38] was adapted to the PCS research area. Based on this analytical model and
experimental results, the analytical performance model for a speller based on eye tracking
has been derived. The derived model of eye tracking performance could be applied to
develop human-assistive interface systems. The analytical DHO model, applied to evaluate
the performance of sports athletes, was adapted to evaluate the performance of users in the
context of a PC game based on eye tracking. This model is suitable for long-term analysis
of performance dynamics. Findings show that this model effectively describes long-term
fatigue and training effects and short-term recovery of user performing abilities.

7.2. Limitations

The main drawback of the model lies in variability of performance estimation metrics.
The CMJ metric used in sports training is suitable to evaluate athletes’ performance or
fatigue level in many sports [93]. However, to objectively evaluate performance in the HCI
domain, no similar metrics are distinguished. Performance assessment methods in the HCI
and PCS areas are greatly dependent on the scope and the type of input modalities used
for control. The arguments of mathematical performance functions based on training and
fatigue will also vary from one system to another. Using the same system does not change
the analytical model for different users, but the parameters of this model will be different
for different users. Hence, every user must necessarily undergo trial testing before using a
certain system to find the right model or, at least, suitable parameters.

After using the system for a longer period, the user trains himself; thus, controlling
the system becomes smoother. For the same reason, the performance evaluation procedure
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can also change. Then the need for re-optimization of the analytical model emerges. This
problem might be solved by adjusting the model online as proposed in [69].

7.3. Recommendations

General recommendations for the HCI designers when developing human-assistive
interfaces are formulated as follows:

1. Analyze requirements for user performance introduced by the specific domain of
application and the developed system.

2. Analyze the communication modalities used by the system and any user-related
effects on performance, such as those introduced by fatigue.

3. Adopt the Banister or DHO model presented in this dissertation for the developed
HCI of the system. The choice of the analytical performance models is not limited to
the models presented in this dissertation.

4. Implement a biocybernetic feedback loop to allow the adaptability of the HCI char-
acteristics depending on human performance when working with the system in
real time.

5. Evaluate usability of the interface and test with users in a real-world environment.

7.4. Theoretical Implications

This study has several theoretical implications that contribute to our understanding of
the human fatigue effect during gaze-controlled tasks; they are as follows:

• Theoretical foundations: The study has helped to establish a theoretical foundation for
understanding human fatigue recognition. It has identified key factors that influence
fatigue, such as sleep deprivation, circadian rhythm disruption, and workload, and
has shown how these factors can affect cognitive and physical performance. This
study has also demonstrated that fatigue can have both subjective and objective
components, with subjective experiences of fatigue often not correlating with objective
performance measures.

• Multidisciplinary perspective: The study has drawn on insights from multiple disci-
plines, including psychology, neuroscience, physiology, and engineering. This multi-
disciplinary approach has helped to build a more comprehensive understanding of
fatigue and has led to the development of more effective methods for detecting and
measuring fatigue.

• Technology development: The study has contributed to the development of new
technologies for detecting and monitoring fatigue. For example, wearable sensors
and mobile apps have been developed that can track physiological indicators of
fatigue, such as heart rate variability and skin conductance. These technologies have
the potential to improve safety in high-risk industries, such as transportation and
healthcare, by providing real-time feedback to workers and alerting them when they
are at risk of fatigue-related errors.

7.5. Managerial and Practical Implications

The study has practical and managerial implications, which are discussed below:

1. Occupational safety: The findings of the study have significant implications for
occupational safety. Human fatigue is a critical factor in many workplace accidents
and incidents. By developing an accurate and reliable model for recognizing human
fatigue, managers can take proactive measures to prevent accidents and ensure the
safety of workers.

2. Workforce management: The study provides a valuable tool for managers to monitor
employee fatigue levels and make informed decisions about scheduling, workload,
and resource allocation. This can improve productivity, reduce absenteeism, and
enhance employee well-being and job satisfaction.
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3. Training and education: The study highlights the importance of educating employees
and managers about the risks of fatigue and the importance of recognizing and
managing it. By providing training and education on this topic, organizations can
promote a culture of safety and well-being.

4. Human resources management: The study underscores the need for human resource
managers to consider fatigue when designing job roles, selecting candidates, and
managing performance. By taking fatigue into account, organizations can ensure that
employees are appropriately matched to their roles and have the necessary support
and resources to manage fatigue effectively.

5. Healthcare: The study has implications for healthcare providers who are responsible
for diagnosing and treating fatigue-related conditions. By improving our understand-
ing of the physiological and behavioral signs of fatigue, healthcare providers can
develop more effective interventions to manage fatigue and its associated health risks.

8. Conclusions

Mental and physical fatigue is the primary factor in the decrease in performance
abilities in physiological computing systems (PCSs). Despite the significance of the fatigue
factor, previous research in the PCS domain was conducted only in a fragmented manner
and lacked a complex approach to the fatigue problem. On the other hand, fatigue research
in the sports training domain is of high interest and is far more advanced. Since the nature
of fatigue in both sports training and PCS is similar, the approaches of fatigue estimation
and prediction known in the sports domain could be adopted in PCS. The proposed human-
assistive HCI model describes the interaction between a human and PCS from the user
performance perspective. The main novelty is the performance evaluation procedure,
which interacts with the standard UI components of the PCS and describes how the system
should react to loss of productivity (performance). The applicability of the human-assistive
HCI models has been demonstrated by the design of an eye-controlled game.

The analytical user performance model developed by Banister et al. is applicable for
the evaluation of training and fatigue effects in using the gaze-tracking-based spelling
system. To validate the model, the accuracy of gaze landing in performing a text entry
task was analyzed for seven subjects. The analysis results were fitted to Banister et al.’s
model. The most accurate model reached good fitness results (R2 = 0.9027, RMSE = 0.0098,
SSE = 0.0005); however, user performance variability is high, and it is greater than intra-
user variability owing to learning and fatigue effects. According to PCA analysis, two
factors can explain intra-user variability: weariness (73% of variation) and learning (17%
of variance). Because learning is slower than tiredness and has less of an influence on
results, the time-to-peak value is less than the time-to-initial performance. As a result, it is
recommended that time-to-initial performance be used as an estimate of rest time.

An analytical user performance model based on damped harmonic oscillation (DHO)
is suitable to describe variability in performance of a PC game based on gaze tracking. The
validity of the DHO model fitting has been tested using odd–even analysis, which has
shown a strong positive correlation (0.82 ± 0.08). To categorize players based on their skills
and abilities, individual characteristics established through the damped oscillation model
can be used. The results of our experiments show that players can be classified as learners
or fatiguers based on their damping factor. The amplitude and damping factor show a
strong positive correlation, indicating that good starters tend to have faster fatigue rates,
while slow starters have less fatigue and may improve their performance. A temporal and
directional analysis of saccade velocity indicates that saccade velocity and gaze movement
accuracy tend to decrease due to eye fatigue over the course of the game, since linear
regression models demonstrate negative trends for each subject.
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18. Grgič, R.G.; Crespi, S.A.; De’Sperati, C. Assessing Self-Awareness through Gaze Agency. PLoS ONE 2016, 11, e0164682. [CrossRef]
19. Johansen, S.A.; San Agustin, J.; Skovsgaard, H.; Hansen, J.P.; Tall, M. Low cost vs. high-end eye tracking for usability testing. In

CHI ‘11 Extended Abstracts on Human Factors in Computing Systems (CHI EA ‘11); ACM: New York, NY, USA, 2011; pp. 1177–1182.
20. Choi, D.Y.; Hahn, M.H.; Lee, K.C. A Comparison of Buying Decision Patterns by Product Involvement: An Eye-Tracking

Approach. In Proceedings of the Intelligent Information and Database Systems: 4th Asian Conference, ACIIDS 2012, Kaohsiung,
Taiwan, 19–21 March 2012; Volume 7198, pp. 37–46. [CrossRef]

21. Kamil, M.H.F.M.; Jaafar, A. Usability of package and label designs using eye tracking. In Proceedings of the 2011 IEEE Conference
on Open System, Langkawi, Malaysia, 25–28 September 2011; pp. 316–321. [CrossRef]

22. Băias, u, A.-M.; Dumitrescu, C. Contributions to Driver Fatigue Detection Based on Eye-tracking. Int. J. Circuits Syst. Signal Process.
2021, 15, 1–7. [CrossRef]

23. Holmqvist, K.; Holsanova, J.; Barthelson, M.; Lundqvist, D. Reading or scanning? A study of newspaper and net paper reading.
In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research; Hyönä, J.R., Deubel, H., Eds.; Elsevier: Amsterdam, The
Netherlands, 2003; pp. 657–670.

24. Ninassi, A.; Le Meur, O.; Le Callet, P.; Barba, D.; Tirel, A. Task Impact on the Visual Attention in Subjective Image Quality
Assessment. In Proceedings of the 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006.

25. Kaklauskas, A.; Vlasenko, A.; Raudonis, V.; Zavadskas, E.K.; Gudauskas, R.; Seniut, M.; Juozapaitis, I.; Jackute, L.;
Kanapeckiene, S.; Rimkuviene, G. Kaklauskas: Student progress assessment with the help of an intelligent pupil analysis system.
Eng. Appl. Artif. Intell. 2013, 26, 35–50. [CrossRef]

http://doi.org/10.1109/MC.2015.291
http://doi.org/10.4135/9781483381411
http://doi.org/10.1007/s42979-022-01515-0
http://doi.org/10.1109/TBME.2022.3210892
http://doi.org/10.1016/j.ijhcs.2017.11.005
http://doi.org/10.2174/1874120701913010127
http://doi.org/10.3389/fnhum.2022.1007199
http://doi.org/10.3389/fnhum.2022.952380
http://www.ncbi.nlm.nih.gov/pubmed/35966988
http://doi.org/10.3390/s140814601
http://doi.org/10.3390/mti2020023
http://doi.org/10.1007/978-1-0716-2391-6_3
http://doi.org/10.7717/peerj.1746
http://doi.org/10.1108/JET-10-2020-0043
http://doi.org/10.1016/j.patcog.2022.108944
http://doi.org/10.3390/s150511092
http://doi.org/10.3233/JIFS-189846
http://doi.org/10.1371/journal.pone.0164682
http://doi.org/10.1007/978-3-642-28493-9_5
http://doi.org/10.1109/icos.2011.6079272
http://doi.org/10.46300/9106.2021.15.1
http://doi.org/10.1016/j.engappai.2012.01.006


Electronics 2023, 12, 1130 24 of 26
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