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Abstract: While human–robot collaboration is already integrated in industrial and service robotics
applications, it is only used with able-bodied workers. However, collaboration through assistive
robots is a major driver toward the inclusion of people with disabilities, which was demonstrated
in recent research projects. Currently, inclusive robot workplaces have to be customized toward the
work process and the individual needs of the person. Within, robots act along a fixed schedule and
are not able to adapt to changes within the process or the needs of the interacting person. Hence,
such workplaces are expensive and unappealing for companies of the first labor market, and do
not realize the full potential of the technology. In this work, we propose a generalized approach
toward the inclusion of people with disabilities with collaborative robots. To this end, we propose
a system that analyzes the in situ capabilities of a person using a two-stage reasoning approach.
The methodology is based on an ontology that allows the matchmaking of individual capabilities
with process requirements. Capabilities are modeled in two time frames, through which fast (e.g.,
fatigue) and slow effects (e.g., worsening of illness) become distinguishable. The matchmaking is
used in task allocation to establish high-level control over the assistive system. By this approach,
inclusive workplaces become autonomously adaptive to the in situ capabilities of the individual
person, without the need for customization. Therefore, collaborative workplaces become not only
inclusive, but a contributor toward a labor market for all.

Keywords: system design; people with disabilities; human–robot collaboration; capabilities

1. Introduction

While human–robot collaboration (HRC) in general is a well-studied field, it is often
applied to sectors in which able-bodied workers are supported to reduce strain and increase
their ergonomics, besides other benefits. However, those general approaches cannot be
used to include people with disabilities (PwD; also used as “person with disabilities” in
this work), as their capabilities vastly differ from those of the able-bodied worker. HRC
is a tool particularly well suited to assist PwD in the first labor market and manual labor
tasks. In Gemany, PwD often work in workshops, which are isolated from the regular labor
market and only offer simple tasks. Therefore, workshops essentially establish a parallel
labor market, i.e., distinction in the “first labor market” and others.

PwD need to be treated individually, as their type of particular disability is often a
combination of different partial disabilities. This results in a highly individual capability
profile. If HRC is to be used to include PwD in manual labor tasks, the robot has to
adapt to the person’s individual needs. However, to keep HRC attractive to the company,
customization of workplaces is a non-tolerable socio-economical risk, as this raises the
costs and turns inclusion into a financial risk. Therefore, our effort is to design a general
approach toward HRC that allows the robot to adapt directly to the observed capability
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profile of the user rather than to a predefined set of capabilities. The technology is intended
for use in manufacturing and implements capabilities required in such applications. In this
work, we propose the following:

• A matchmaking ontology that models the collaborative process, including sub-ontologies
that model the capability profiles and the process steps, and a sub-ontology that maps
sensor observations to capability qualifications.

• A system design that allows reasoning on the evolution of the capability profiles and
which interfaces with automated task allocation.

Note that a methodology tailored for PwD is also suitable for other user groups. First,
from a modeling viewpoint, able-bodied workers are PwD without limited capabilities.
Second, the user group of PwD comprises not only people which are permanently disabled,
but also the elderly, temporarily disabled people (e.g., due to illness or injury), or people
new to the working process. Hence, every person is characterized by a set of (partially)
limited or non-limited capabilities (compare Section 3.2) and may be modeled with the
proposed ontologies, and, therefore, be supported by a robot in the HRC process.

This work describes the initial steps taken toward adaptive HRC for PwD. We propose
a novel methodology, which is currently in a descriptive state but will be validated over
the course of the next years. The paper is structured as follows: First, we discuss related
work in Section 2. Section 3 presents the system design and modeling of the capability
profiles designed for PwD. Section 4 discusses the composition of the sub-ontologies used
in the robotic assistance matchmaking ontology (RAMO), including the profile ontology
(Section 4.1), the process ontology (Section 4.2), and the observable capability emissions
ontology (OCEO; Section 4.3). Section 5 describes how the ontologies are embedded in
automated task allocation. Section 6 discusses the proposed system design and gives an
outlook toward future research. Finally, Section 7 summarizes the work.

2. Related Work

For the design of inclusive workplaces in general, as an initial step, a comparison of the
individual capability profile with the process requirements is necessary. The comparison
allows to adapt the workplace according to the person’s individual needs with the best
possible support for the PwD. This section first introduces some concepts to perform
capability matchmaking for PwD (Section 2.1). Subsequently, related work in knowledge
representation is discussed (Section 2.2), which is later used to model information to assess
the PwDs’ capabilities.

2.1. Capability Matchmaking for People with Disabilities

IMBA (from German: “Integration von Menschen mit Behinderungen in die Ar-
beitswelt”) is a tool to compare and document the human capabilities and the workplace
requirements, established by the German Ministry of Health and Social Security [1,2].
The documented capabilities are elicited by means of an occupational health examination.
However, IMBA is not a survey instrument in the sense of a test procedure, but rather a
documentation method with general assessment aids. Therefore, IMBA does not allow a
clear quantitative survey in the assessment of process requirements. Ranz et al. [3] decom-
pose industrial processes on the basis of a directed graph into a sequence of work processes,
which in turn can be described as a sequence of fundamental motions. In industry, the
method–time measurement (MTM) [4] approach is a common way to model manual work
processes using fundamental motions. The primary method MTM-1 [5] consists of 19 fun-
damental motions, which are extended by skills such as hearing, seeing, calculating, and
reading.

The tool RAMB (“robotic assistance for manufacturing including people with dis-
abilities”), introduced in [6] and elaborated in [7], is used to identify those process steps
in which the PwD require individual assistance. This is achieved by combining the pro-
cess decomposition according to MTM and IMBA such that the process requirements can
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be evaluated uniformly and compared with the capability profile of a PwD. The profile
representation in RAMB is discussed in Section 3.2.

2.2. Knowledge Representation

For advanced AI and HRC applications, often many different sensors have to be
used. The vast amount of sensor data has to be evaluated. These evaluations, again, have
to be related to each other and thus re-evaluated. Furthermore, the knowledge has to
be exchanged between humans and robots or other artificial systems. This requires the
development of complex knowledge representation systems that can collect and combine
data from different sources and integrate them in a meaningful knowledge base which has
a common conceptualization for all users as indicated by Prestes et al. [8].

The term ontology originates from philosophy and denotes a systematic representation
of existence. However, in computer science, the term is used as a formal conceptualization
of a domain of knowledge. That means describing the universe of discourse ontology
by a set of definitions, e.g., classes, relations, constraining axioms, properties, and their
instances [9]. Ontologies gained special importance through the approach of the Semantic
Web [10], in which the World Wide Web should become computer readable through seman-
tic metadata. Meanwhile, ontologies are used in many applications of robotics as complex
and expressive knowledge representation systems to improve the autonomy of robots by
enabling fast and convenient reasoning [11].

Projects such as the OpenRobots Ontology (ORO) [12] or KnowRob [13] are examples
of specific knowledge base representations for robots. For example, KnowRob and its suc-
cessor KnowRob2 [14] are knowledge processing systems for autonomous personal robots
that are to perform everyday manipulation tasks. Their ontologies consist of encyclopedic
knowledge of the task domain and general knowledge about the robot’s environment,
action models, instances, and computables. Action models describe possible manipulations
that can be performed, and computables are used for creating instances or relations between
instances. The ORO [12] focuses on human–robot interaction needs and implements a
fast, standard-based knowledge storage, where different perception modules, users, or
reasoners can pull or push needed or inferred knowledge.

3. Toward Adaptive and Inclusive Human–Robot Collaboration

To allow robots to adapt to the PwDs’ needs, we base our approach on the sense–
plan–act principle. The robot observes its environment using exteroceptive sensors, e.g.,
cameras and force–torque sensors. The sensor data are processed to gather information on
the human behavior. This information is then used to reason on the human capabilities
and perform matchmaking regarding the process requirements. The matchmaking is used
in a task scheduler to allocate tasks between the human and the robot. In the following
section, we present the system design and capability profiling used to this end. Following
definitions are used and detailed accordingly:

Generic
T Task
SPl Standard process
g Set of features
gj Feature, gj ∈ g
p Capability profile
fi Capability, fi ∈ p
bk Basic element, bk ⊆ p
Qualified
pi Capability profile qualified for a person i
f i
i Capability qualified for a person i, f i

i ∈ pi

bk,l Basic element bk qualified in a standard process SPl
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3.1. System Design

The system consists of sequenced modules interfacing with a database (see Figure 1).
Sensor data are processed to generate features gj on the system state. Such features are,
for example, the relation between skeleton joints or the force transmitted into the robot
structure. The set of features g = {g0, g1, . . . , gn} is post-processed in a reasoning module
to translate features into the human capability profile p consisting of individual capabilities
fi. Individual features in the feature set may not be available in situ. Hence, some features
may be deactivated for pre-reasoning.

The output of the pre-reasoning is the so-called anytime profile pany (see Section 3.3.2)
that is compared to the process requirements in matchmaking. The decision of whether
the human can fulfill the task is then forwarded to the task allocation, which generates
a plan of actions on the shared working process. To this end, the task planner manages
standard task durations in the database. The task schedule is then forwarded to robot
control and the human in an accessible way, e.g., using visual or auditory feedback. The
task planning module reasons internally on the success state of the performed actions by
incorporating environmental information and the standard task durations. Based on this,
new information is gathered that is then used for post-reasoning. The latter is mainly used
to update the so-called offline profile po f f (see Section 3.3.1), which represents an ex situ
forecast of the person’s capabilities throughout the day, and which is used as initialization
of pany at the day’s start.

Figure 1. Flowchart of system components consisting of a two-stage reasoning approach, profile
matchmaking, task allocation, and sensor processing. The methodology interfaces with a database
managing the ontologies, system states and profiles.

3.2. Capability Modeling and Matchmaking for People with Disabilities

In [6], capabilities are defined in relation to a work task T. A task consists of a set of
standard processes SPl , which again define a sequence of basic elements bk ⊆ p, e.g., grasp,
move. Hereby, index l denotes the standard process and k the specific basic element, which
are mutually independent. The qualification of basic elements is set according to a standard
process; hence, bk,l denotes the qualification of bk in SPl . Further, p = { f1, f2, . . . , fm}
denotes the set of all assessable capabilities (m = 87 in RAMB, see Table 1), whereas each
capability has a qualification f i

i = [−3, 3] ⊂ Z. The qualified capabilities are aggregated in
the qualified profile pi, which is user dependent. After qualification, a regular capability is
defined by f i

i ≥ 0, and f i
i < 0 denotes a partial disability. While the set of capabilities in

each basic element does not change, their qualification bk,l may differ between standard
processes containing them, and hence we have the following:

||bk,1 − bk,2|| ≥ 0. (1)
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Hereby, the Manhattan metric is a well-suited choice, as it directly indicates the number
of deviations.

Table 1. 87 capabilities defined in RAMB, structured in six main categories: ergonomics, motor functions,
perception, cognitive, body motion, and complex capabilities (d.—double sided; s.—single sided).

Cat. ID Capability

<e
rg

on
om

ic
s>

Posture
01 Sitting
02 Standing
03 Kneeling
04 Squatting

Inclined/Stooped
05 Sitting, inclined
06 Sitting, bent
07 Standing, inclined
08 Standing, bent

Arms restrained
09 Sitting/Standing,

arms frontwards
10 Sitting/Standing,

arms overhead
11 Supine, arms overhead
12 Lateral, arms frontwards

<m
ot

or
fu

nc
ti

on
>

Head/Neck
13 Rotation
14 Bent, lateral
15 Bent, sideways

Torso
16 Rotation, sit
17 Rotation, stand
18 Bent/Erect

Leg/Foot
19 Squat
20 Pedal actuation

Arm
21 Reaching, over shoulder, d.
22 Reaching, over shoulder, s.
23 Reaching, frontwards, d.
24 Reaching, frontwards, s.
25 Reaching, sidewards, d.
26 Reaching, sidewards, s.
27 Reaching, backwards, d.
28 Reaching, backwards, s.
29 Forearm rotation, d.
30 Forearm rotation, s.

Cat. ID Capability

<m
ot

or
fu

nc
ti

on
>

Hand/Fingers
31 Encompassing handle,

fist closure, d.
32 Encompassing handle,

fist closure, s.
33 Encompassing handle,

hand closure, d.
34 Encompassing handle,

hand closure, s.
35 Hand, contact handle, d.
36 Hand, contact handle, s.
37 Hand rotation, d.
38 Hand rotation, s.
39 Finger, grasping handle, d.
40 Finger, grasping handle, s.
41 Finger, contact handle, d.
42 Finger, contact handle, s.
43 Thumb, contact handle, d.
44 Thumb, contact handle, s.

<p
er

ce
pt

io
n>

Sight
45 Visual acuity, close
46 Visual acuity, far
47 Spatial vision
48 Field of view
49 Color vision
50 Mesopic vision

Hearing
51 Listening comprehension
52 Noise/Speech pattern

recognition
53 Frequency
54 Volume
55 Direction

<c
og

ni
ti

ve
> Basic education

56 Vocal output/Speaking
57 Reading comprehension
58 Calculating
59 Writing

Cat. ID Capability

<b
od

ym
ot

io
n>

Walking/Climbing
60 Walking, at level
61 Walking, on inclined plane
62 Walking, on loose/

uneven ground
63 Ascending
64 Climbing
65 Crawling/Sliding

<c
om

pl
ex

>

Lifting
66 Horizontal
67 Floor to waist height
68 Waist to eye height
69 Waist to overhead height

Carrying
70 Sideways
71 Front of body
72 On the back

Physique
73 Pushing (objects)
74 Dragging (objects)
75 Physical stamina
76 Balance

Fine motor skills
77 Hand dexterity, d.
78 Hand dexterity, s.
79 Finger dexterity, d.
80 Finger dexterity, s.
81 Hand-arm stability
82 Control accuracy
83 Coordination of

multiple limbs
84 Wrist speed
85 Finger speed
86 Movement speed, arms
87 Movement speed, legs

To perform matchmaking, the qualified basic elements are compared to the qualified
capabilities of the human pi, given by

∆bi
k,l = bk,l − (pi ∩ bk). (2)

If any entry in ∆bi
k,l is positive, the specific basic element in the standard process cannot

be performed by the human and, consequently, needs to be allocated to the robot. Note that
superscript i denotes the capabilities of a specific human and the derived qualifications,
and that a basic element is qualified by the standard process and not by the human. Only
the difference in matchmaking is qualified by the human and the standard process; hence,
∆bi

k,l carries the corresponding indexes (k: basic element, l: standard process) and the
superscript i.
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3.3. Dynamics of Capability Profiles

In reality, a capability profile is non-static and changes over time. In [7], this effect is
modeled in a Langevin system. The qualified profile can, therefore, be modeled as

pi(t) = p̃i(t) + εi(t), (3)

where p̃i(t) are the qualified capabilities originating from the individual disability complex,
and where εi(t) are small fluctuations in the capabilities. The origin of these capabilities’
time dependency is significantly different. While p̃i(t) changes only slowly, it is mostly
superimposed by the fast variations in εi(t), which is typical in a Langevin system.

To transfer this idea to manual labor tasks, two effects have to be taken into account.
First, the worker arrives with a similar capability profile at the start of the day. Second,
the capabilities deteriorate over the course of the day. To model this property, two time
concepts are introduced: the work time 0 ≥ τ (which is delimited by a shift’s end) and the
global time t0 ≥ 0, which is fixated at the start of a day or shift; hence, t = t0 + τ. Effectively,
t0 becomes constant when observed in the time frame of τ. Therefore, we assume that the
influence of the disability changes so slowly that it is assumed constant over the course of
the day. Therefore, Equation (3) is rewritten as

pi(t) := pi(t0, τ) = p̃i(t0) + εi(τ). (4)

In adaptive HRC, two types of profiles are managed: (1) the offline profile that
establishes a baseline to the matchmaking on a per-day basis, and (2) the anytime profile
that reflects the in situ capabilities of the person.

3.3.1. Offline Profile

The offline profile is defined as the global time-dependent qualified capability vector

pi
o f f (t) = p̃i(t0) + ∆p̃i(τ) + ν(t), (5)

where ∆p̃i(τ) is the daily fluctuation, and ν(t) is a noise vector in which entries are
independent. The offline profile is initialized with ∆p̃i(τ = 0) = 0, and p̃i(t0 = 0)
incorporating the data from a medical preliminary examination (MPE) as usually performed
in advance of including PwD in work processes. As this—and all sensor data later in the
process—is subject to noise or personal bias (medical personnel), ν(t) is introduced in
Equation (5).

With the MPE, pi
o f f (t) is constant over the course of a day. To better predict the

fluctuations during the day and, therefore, decrease the size of the fluctuations in ν(t),
∆p̃i(τ) is re-evaluated in two ways: (1) continuously by post-reasoning, and (2) by the
mining of past profiles and fitting ∆p̃i(τ) accordingly. The latter establishes a global
optimization problem with the aim of reducing ν(t) to a minimum, and hence,

lim
t−>∞

||ν(t)|| = 0 (6)

In states close to initialization, the values in ν(t) will superimpose the other factors,
particularly ∆p̃i(τ) (see Figure 2).
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Figure 2. Exemplary evolution of a qualified capability in the offline profile from initialization (t0 = 0)
to optimal convergence (t0 >> 0). Note, while the course of the function is continuously displayed,
in reality, it is discrete in the range [−3, 3] ⊂ Z.

3.3.2. Anytime Profile

The anytime profile is defined as the in situ qualified capability vector

pi
any(t) = pi

o f f (t) + η. (7)

The anytime profile is the main output of the reasoning modules and represents the in
situ capabilities of the person superimposed by stochastic system noise η, which is mainly
influenced by the following:

• Noise in the sensor signal.
• Uncertainties in feature extraction.
• Propagated uncertainties from hidden Markov model (HMM; see Section 4.3).
• Uncertainties in the modeling approach.

As uncertainties in the model and HMM are Gaussian, and sensor noise is assumed
white noise, η may be modeled as Gaussian noise.

4. Ontology-Based Reasoning

The next step toward automatic task allocation and scheduling is the estimation of a
person’s in situ capabilities. As mentioned in Section 3.1, sensor data are processed into
features gj representing certain information on the human behavior, the environment, and
the interaction between human and robot. For data processing, typical methods are used,
e.g., OpenPose [15] for skeleton tracking or the method by Buondonno and De Luca [16] for
interaction force computation. The explicit origin of processed sensor data is not relevant,
as the methodology discussed in this section establishes a generalist approach to transform
these data into a capability profile estimate.

Equation (2) establishes a common base at the human’s capabilities to perform capabil-
ity matchmaking onto process requirements. There are two ways to reach these capabilities
fi: from the sensors, and from the task defined by the work process. Therefore, there exists
an open loop from the processed sensor data to the task. This dependency is modeled in
the novel robotic assistance matchmaking ontology (RAMO) that is depicted in Figure 3.



Electronics 2023, 12, 1118 8 of 14

Figure 3. Composition of the robotic assistance matchmaking ontology (RAMO) and its system
layers. The sub-ontologies observable capability emissions ontology (OCEO) and process ontology
are connected by the matchmaking layer. The matchmaking layer embeds the profile ontology to
model the capability profiles pany and po f f .

RAMO consists of two sub-ontologies. First, the observable capability emissions ontol-
ogy (OCEO) models the emissions of the qualified capabilities measurable by exteroceptive
sensors. Second, the process ontology as used in RAMB [7] models the tasks and their
structural components. Both sub-ontologies are connected by the profile ontology defined
by the capabilities fi.

4.1. Profile Ontology

The profile ontology models the relations and influences between the capabilities fi of
a human, which are accumulated in the profile p. Capabilities are structured in six main
categories: ergonomics, motor functions, perception, cognitive, body motion, and complex
capabilities. Usually, human capabilities are not mutually independent, e.g., the capability
to perform a squat ( f19) also influences the capability of climbing ( f64). Particularly, complex
capabilities, e.g., horizontal lifting ( f66), are highly dependent on basic capabilities, e.g.,
reaching sideways ( f25) or torso rotation ( f16 and f17).

Relations between capabilities are modeled directed and may have minor, major, or no
influence on the other capabilities. A directed relation is chosen, as some capabilities may be
influenced by multiple other capabilities, but the cause of the qualification may be manifold.
For example, an impaired capability reaching sideways may either come from an impairment
in the limbs or the torso, which manifests in different capabilities. Hence, this example
is modeled as depicted in Figure 4. Capabilities and their relations are modeled based
on IMBA [1,2] and according to observations from user tests during the Next Generation
https://www.nextgeneration-mrk.de/ (accessed on 22 February 2023) project.

https://www.nextgeneration-mrk.de/
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Figure 4. Exemplary modeling of relations in the profile ontology.

4.2. Process Ontology

The process ontology models the structure explained in Section 3.2 (compare right-
hand side in Figure 3). A work process is defined as a task T. This task consists of standard
processes SPl . Standard processes are characterized by entry and end states. These are
defined with the aim to reduce process dependencies between standard processes, i.e., all
sequenced basic elements should be accumulated in one SPl . Therefore, standard processes
are interchangeable if the real system fulfills the requirements of their entry state. A
standard process then consists of basic elements bk,l that are sequenced in a fixed manner
and must not be interchanged. However, the basic elements can still be inaccessible to the
human and, therefore, the robot needs to assist or take them on completely. It is subject to
the task planner to assign basic elements to both agents or solely to the robot. There might
occur the situation that the human can fulfill only a small margin of basic elements in a SPl
and in which it is more efficient for the robot to take on the complete SPl .

4.3. Observable Capability Emissions Ontology

The observable capability emissions ontology (OCEO) is based on the assumption that
qualifications of capabilities manifest in features observable by sensors, system states, and
meta information (compare Figure 3). Sensor data are processed into features characterizing
the human behavior, the environment, and other agents. System states represent the
continuous evaluation of successfully fulfilled actions in the task planner (see Section 5)
and meta data are a composition of non-sensor data from outside the system, e.g., the
information collected in a medical examination. Sensor, meta, and system data form the
input layer. The features are then fed into a multilevel hidden Markov model (compare,
for example, [17]). In a HMM, non-observable states cause so-called emissions, which are
observable and deliver evidence on the origin of the emission’s cause, e.g., impaired vision
may result in an unsteady gait. The unsteady gait may be measured by a skeleton model
and, therefore, may be used as an emission in the HMM. In a multilevel approach, emissions
exist that cause emissions themselves, hence obscuring the capability qualifications over
multiple layers. Transitions in and between the hidden Markov layers are annotated with
their uncertainties, which are propagated toward the matchmaking layer.

It is to be noted that some features are directly measurable (e.g., f1 in Figure 3), while
others (e.g., f4 in Figure 3) are not observable at all. Further, features or emissions do
not directly qualify a capability. Instead, they map onto a qualification value in the range
[−3, 3] ⊂ Z, whereas not all qualification values may be connected to the same emission or
feature. Indeed, some qualification values may only manifest in very specific emissions, e.g.,
a minor vision impairment ( f46) may result in unsteady gait, but a major vision impairment
may also result in tripping or collisions with the environment. The example is detailed in
Figure 5.

In the matchmaking layer, the qualified capability profile is compared with the qualified
basic elements. Hence, a decision is made as to whether a basic element may be allocated
to the human. To this end, the propagated uncertainties are analyzed and reasoned on.
While the matchmaking layer itself is not part of either the OCEO or the process ontology,
both sub-ontologies end in the capability profile. Both sub-ontologies and the matchmaking
layer generate the robotic assistance matchmaking ontology RAMO.
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Figure 5. Exemplary modeling of qualification through observation (here through hidden states and
meta data) in OCEO.

5. AI Task Planning for Human-Robot-Teams

Automated task planning or AI task planning methods compute the actions that
must be executed by agents to bring the system to a desired goal state. The goal state
of the methodology described in this work is the fulfillment of task T. AI task planning
methods (e.g., [18]) perform two steps: (1) select, order, and instantiate abstractly defined
actions to specific actions, and (2) optimize the preliminary plan with respect to a set of
criteria. The execution of specific actions brings the system from a given initial state to
a given goal state, e.g., the generic action grasp agent object place can be instantiated to
grasp robot screw table (read: “the robot grasps the specific screw at the specific table”).
This action is assigned to the robot agent. The ordering and instantiation process of
actions considers the dependencies between these actions, e.g., a place action is selected
only when an agent handles an object, and hence, beforehand, a grasp action has to be
performed. This is also depicted in the standard processes, which define a sequence of
basic elements. Note that the task planner may either allocate individual basic elements
bk,l or the whole standard process SPl to the individual agent. The result of the first solving
step is a preliminary plan containing ordered and instantiated actions ai, whereas ai is the
robot-readable abstraction of the basic elements bk,l . In a second step, AI task planning
methods optimize the preliminary plan with respect to a set of criteria (e.g., time). The
methods adapt the start times and the order of the planned actions, without violating the
dependencies between them, to obtain a plan with minimal makespan (execution time).
The final result is the plan

π =< a0, . . . , an > . (8)

The advantages of AI task planning methods are that they require only abstractly
defined actions (analogous to bk), an initial planning state, and a set of goals that must
hold in a goal state for solving a planning problem [19]. AI task planning methods can
be used as flexible, high-level control strategies. They are able to generate new plans for
manifold planning situations, e.g., when new orders arrive or when the characteristics
of the agents change. The latter is particularly important when the capabilities of an
agent are expected to be dynamically adaptable, which is the case for PwD. For each new
planning situation, only the initial and the goal states must be re-set, while the remaining
definitions and the planning process itself must not be further adapted. AI task planning
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approaches were already successfully deployed in several of standard HRC applications
using the ROSPlan (https://kcl-planning.github.io/ROSPlan/ (accessed on 22 February
2023)) framework [20–22] and may be adapted toward the methodology described in this
work.

The capability profiles pi
any(t) are encoded as preconditions for the defined generic

actions of a planning problem (see Algorithm 1).

Algorithm 1 Definition of a generic action, of an initial state, and of a goal state.

1: (:action grasp
2: :parameters (?r - robot ?i - item ?f1, f2 - capability)
3: :precondition (and (near ?r ?i) (?f1 <= 3) (?f2 > 0))
4: :effect (and (item_grasped (?r ?i))))
5: —
6: (:objects o1 - item r1 - robot)
7: —
8: (:init (= f1 -2) (= f2 2))
9: —

10: (:goal (and item_grasped(r1, o1)))

Further, these profiles are instantiated to specific values as part of the initial state
of a planning problem, analogous to the specification in Section 3.2. In Algorithm 1, the
grasp action has the constraint f2 > 0 as one of its preconditions, i.e., this action can be
planned and assigned to a human only if in the initial state of the planning problem, the
standing capability f i

2 is instantiated to a value > 0, e.g., to the value f i
2 = 3. The solving

process automatically assigns all planned actions to agents by taking into consideration the
capability profiles pi

any(t) that are defined in relation to a work task T.
As described in Section 3.3, the capability profiles are dynamic. The allocation of tasks

to the agents (robots or PwD) must consider these changes. AI task planning methods
enable a seamless integration of these changes for the planning process. Solely the initial
state of the planning problems must be adapted, e.g., the considered capability can be
modified for a new planning problem from f i

2 = 2 to f i
2 = −2. This is the only modification

required by the planning system, such that it can determine new plans that consider the
new profiles.

The generated plan π must be executed such that the application reaches the targeted
goal state in the real world. The AI task planning framework ROSPlan enables a combined
planning and execution approach [23]. It uses action interface modules to send execution
commands to the agents (robots or PwD) and to supervise the execution of the dispatched
actions. As part of this work, the existing AI task planning framework is extended with
further modules to allow system states as input to the reasoning modules (see g5 in Figure 3).
The new modules translate the execution state (i.e., success or failure) of the actions
to features that can be integrated with the reasoning modules. These again transport
important knowledge for the assessment of the capability profile pi

any(t) (see transition to
post-reasoning in Figure 1). In this way, capability profiles pi

any(t) and pi
o f f (t), respectively,

are additionally updated based on the execution success of the actions and not only based
on sensor data. This also closes the control loop from the task execution toward the initial
capability assessment.

6. Discussion and Outlook

As mentioned already in Section 1, the proposed methodology is only a system
design and ontology description that has not yet been implemented in real work processes.
Therefore, this section discusses some aspects that need to be considered when deploying
the proposed methodology.

Due to its novel character, there are manifold uncertainties in the later implementation,
and particularly the instantiation of the ontologies and the reasoning system likewise.

https://kcl-planning.github.io/ROSPlan/
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While the process model, including its process ontology and the central capability profile
(compare Section 3.2) are already defined, relations between the capabilities (see Section 4.1),
and the transitions and states in OCEO (see Section 4.3) are yet to be fully defined. The
major challenges in modeling the proposed system are in the design of the hidden Markov
layers. By Bayesian optimization, it is possible to define the probabilistic dependencies
between the emissions and the hidden states, i.e., the capability qualifications. However,
emissions have to be modeled manually, which is more complicated than in more modern
learning methods, in which features and intermediate states are connected with minimal
supervision. On the contrary, in HRC, it is desired to have more explainable AI [24,25],
particularly when it comes to direct interaction. Therefore, we expect the HMM to yield
more explainability and acceptance in later deployment. However, it remains to be seen
how well the emissions can be defined, and how large the uncertainties will be in the
final implementation. Note that we assume that there will be fewer features than the
total number of qualifications of capabilities, and hence, the instance of the OCEO will
be under-determined. To this end, of particular importance will be the definition of the
relations within the capabilities (e.g., see Figure 4). Well-defined dependencies will reduce
the uncertainties propagated from the HMM and the number of degrees of freedom of
the whole OCEO instance. To this end, we will also reduce the number of capabilities m
defined in the capability profile, which again will be performed after a profound modeling
of dependencies to assess the influence of the capabilities on the matchmaking decision.

Besides the technical aspects, there are also social and ethical uncertainties. While
we assume that such a matchmaking system will raise the efficiency and acceptance of
HRC workplaces in manual labor tasks, the opposite may manifest. In particular, when
able-bodied workers and PwD share the same work place, and the situation occurs in which
the system reallocates certain tasks from the able-bodied worker to the robot (e.g., caused
by exhaustion or distraction), the interacting worker may become confused or skeptical.
This behavior is expected in the first interactions. However, we assume that over a longer
period of working with the HRC workplace, a learning process will take place that lets the
worker appreciate the technology and its supportive actions rather than being repelled by it.
We further assume that by establishing a work process capable of supporting able-bodied
workers and PwD likewise, also the acceptance toward PwD will be increased. This is what
makes full inclusion in first labor market processes possible in the first place.

In the following years, we will delve further into the methodology. We aim to imple-
ment and evaluate, in particular, the matchmaking ontology RAMO. Therefore, we hope
to facilitate a discussion on the topic and to use this paper as a vehicle for the improved
inclusion of PwD in HRC processes of the first labor market.

7. Conclusions

In this work, we first introduced how capabilities of PwD are modeled and how their
dynamics evolve over the course of a workday and over a long time span. To this end, we
introduced two time concepts τ and t0 which eventually manifest in a Langevin system.
The emerging capability profile p states the basis to a two-sided matchmaking ontology
consisting of the two sub-ontologies: the process ontology and the observable capability
emissions ontology (OCEO). While the process ontology models the qualification of sub-sets
of capabilities, so-called basic elements bk ⊂ p from the work task T, OCEO models how the
full capability profile is derived from features gj, originating from sensors, meta data, and
system states. Based on the combined ontology, robotic assistance matchmaking ontology
(RAMO), people may be observed and matched with process requirements to assess the
specific in situ need of assistance. In addition, we showed how the ontology is used in
automated task planning to generate dynamic work schedules based on the ontology-based
reasoning approach. This results in a system description that allows dynamic and intuitive
HRC not only for PwD, but for everyone.
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The following abbreviations are used in this manuscript:

AI Artificial intelligence
HMM Hidden Markov model
HRC Human–robot collaboration
IMBA Integration von Menschen mit Behinderung in der Arbeitswelt

translated: “Integration of people with disabilities in the labor market”
OCEO Observable capability emissions ontology
ORO OpenRobots ontology
MPE Medical preliminary examination
MTM Method–time measurement
PwD People/person with disabilities
RAMB Robotischer Assistenzgrad für Menschen mit Behinderung

translated: “Robotic assistance for manufacturing including people with disabilities”
RAMO Robotic assistance matchmaking ontology
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