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Abstract: In recent years, the huge growth in the number and variety of blockchains has prompted
researchers to investigate the cross-blockchain scenario. In this setting, multiple blockchains coexist,
and wallets can exchange data and money from one blockchain to another. The effective and efficient
management of a cross-blockchain ecosystem is an open problem. This paper aims to address it
by exploiting the potential of Social Network Analysis. This general objective is declined into a set
of activities. First, a social network-based model is proposed to represent such a scenario. Then, a
multi-dimensional and multi-view framework is presented, which uses such a model to handle a
cross-blockchain scenario. Such a framework allows all the results found in the past research on
Social Network Analysis to be applied to the cross-blockchain ecosystem. Afterwards, this framework
is used to extract insights and knowledge patterns concerning the behavior of several categories
of wallets in a cross-blockchain scenario. To verify the goodness of the proposed framework, it is
applied on a real dataset derived from Multichain, in order to identify various user categories and their
“modus operandi”. Finally, a new centrality measure is proposed, which identifies the most significant
wallets in the ecosytem. This measure considers several viewpoints, each of which addresses a
specific aspect that may make a wallet more or less central in the cross-blockchain scenario.

Keywords: cross-blockchain ecosystem; Social Network Analysis; user behavior; wallet centrality;
cross-blockchain money swaps; cross-blockchain data transfer

1. Introduction

Since the introduction of the blockchain concept and the Bitcoin cryptocurrency by
Satoshi Nakamoto in 2008 [1], a huge number of ideas, proposals, approaches and systems
having blockchains as their fundamental core have been presented [2–4]. The main context
in which blockchains initially developed was cryptocurrencies. This led to the emergence
of a large number of cryptocurrencies, each managed by a blockchain, and a thriving
ecosystem of blockchains supporting the creation and the exchange of amounts of money
expressed in cryptocurrencies or tokens [5–7]. As evidence of this, Decentralized Finance
(hereafter, DeFi) [8,9] is one of the most intriguing among the emerging technological
evolutions in the context of global finance.

DeFi enables the decentralized delivery of financial services through a set of in-
frastructures, markets, technologies, systems and applications having blockchains as
their core component. A challenging issue in the context of DeFi is cross-blockchain
interoperability [10–14]. It aims to allow wallets to make transactions between differ-
ent blockchains. The blockchains involved may have different architectures, consensus
mechanisms, security models and privacy requirements. The problem of cross-chain inter-
operability is becoming increasingly relevant since the number and variety of blockchains
involved in the DeFi context are growing enormously. This makes the solutions thought in
the past to address this issue may now be ineffective and inefficient; hence, the definition
of new approaches is compulsory. Regarding this scenario, there are several aspects that
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are attracting the interest of both academia and industry [15]. Examples of them concern
the use and role of cross-blockchain tokens (i.e., tokens that can be exchanged across multi-
ple blockchains [16]) and cross-blockchain data storage (i.e., data transfer across different
blockchains [17]). All of these aspects require complex interactions and methodologies,
which are the subject of current investigations by researchers.

A key component to facilitate cross-blockchain interoperability is represented by the
cross-blockchain router protocols. Such a protocol, also known as cross-blockchain bridge,
is a mechanism that allows different blockchains to communicate and share data with each
other [18]. It provides the bridging infrastructure for enabling data to flow across different
blockchains and, therefore, allows an asset to be transferred from one blockchain to another.
The former is called “source blockchain”, the latter is called “target blockchain”, and the
transfer is called swap or transaction. The transferred asset is typically an amount of money
expressed in a cryptocurrency or a token, and the transfer requires the payment of a fee.
Currently, there are already a few services that adopt cross-blockchain router protocols [19].
An example is Multichain (www.multichain.org (accessed on 29 January 2023)), formerly
known as Anyswap (www.anyswap.org (accessed on 29 January 2023)), which supports
the transfer of tokens, NFTs and general data across multiple blockchains.

The existing cross-blockchain interoperability solutions certainly implement some
of the desiderata for this kind of system. As the cross-blockchain scenario is becoming
increasingly complex and heterogeneous, the need for new solutions arises. One attempt in
this direction is represented by the Token Atomic Swap Technology research project [16,20].
It aims to build an advanced platform for cross-blockchain interoperability and represents
a generational leap over existing solutions. However, there are still many challenges to
address in this context. These include: (i) the representation of a cross-blockchain scenario
that involves multiple blockchains coexisting and interacting with each other; (ii) the
efficient and effective management and tracking of money and data exchange activities
between wallets in a cross-blockchain context; (iii) the development of new metrics and
methods to capture the centrality and importance of different wallets in a cross-blockchain
scenario; (iv) the possibility of identifying some interesting categories of users, along with
their corresponding “modus operandi”; (v) the discovery of frauds and money washing
activities in such a scenario.

Following such a reasoning, this paper wants to provide a contribution in this setting;
in fact, it aims to define a set of tools that can be used by those researchers that strive to
define and build next-generation cross-blockchain interoperability platforms. In particular,
we first propose a model to represent the scenario of interest, i.e., a cross-blockchain
ecosystem consisting of several blockchains in which wallets perform swaps to transfer
money from one blockchain to another. Then, we propose a multi-dimensional and multi-
view framework to manage a scenario represented through our model. Our framework
starts from the idea that a cross-blockchain ecosystem can be effectively represented through
particular multi-arc social networks. This allows the usage, in this scenario, of all the results
found in the past Social Network Analysis research.

In order to demonstrate the feasibility of this idea, we focus on three typical concepts
of Social Network Analysis, namely walk, path and cycle, and propose an approach for
their detection in a cross-blockchain ecosystem handled by our framework. Then, we
apply our approach to a real dataset derived from Multichain and show how it allows
the detection of insights, through the in-depth investigation of the characteristics of the
paths and cycles found. In turn, these insights allow us to discover and define real “modi
operandi” of wallets operating in a cross-blockchain scenario.

As a final contribution, we propose a new centrality measure specifically tailored to
detect the most important wallets in this context. This centrality takes into account several
factors, each providing a viewpoint regarding the more or less central role played by a
wallet in this ecosystem.

We believe that each of the four contributions mentioned above is already interesting
in itself. For instance, in a DeFi scenario, no wallets should be able to accumulate sufficient
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power to monopolize the scenario and exclude others from participating [21]. An attempt
by a wallet to monopolize the scenario can be easily monitored and highlighted through
the centrality measure we are proposing in this paper. At the same time, collectively our
contributions lay the foundations for a next-generation cross-blockchain interoperability
platform, based on the use of Social Network Analysis, and capable of modeling and
handling a cross-blockchain ecosystem.

In Summary, the main contributions of this paper are:

• A network-based model for representing and managing a cross-blockchain scenario;
• A multi-dimensional and multi-view framework for managing a cross-blockchain

ecosystem;
• An approach that uses the concepts of Social Network Analysis to identify some

particular categories of users and to define the “modus operandi” of each of these
categories;

• A new centrality measure defined specifically to identify the most important wallets
in a cross-blockchain context.

The outline of this paper is as follows. In Section 2, we provide an overview of related
literature. In Section 3, we illustrate our model to represent a cross-blockchain ecosystem.
In Section 4, we describe our social network-based framework and highlight that, thanks to
it, several approaches, solutions and results found in the past Social Network Analysis re-
search can be exploited in this context. In Section 5, we illustrate our approach for detecting
walks, paths and cycles that ultimately allow the detection of “modi operandi” of several
categories of users. In Section 6, we propose our centrality measure. In Section 7, we illus-
trate our experimental campaign and the insights derived from it. In Section 8, we present a
discussion regarding our approach, its contributions, implications, applications, limitations
and possible future developments. Finally, in Section 9, we draw our conclusions.

2. Related Works

Blockchains have been widely investigated and have stimulated a huge interest from
both academia and industry researchers. Indeed, they have found applications both in
classical contexts, such as cryptocurrencies [22,23], and in new ones, such as security [24,25]
and IoT [26–29]. Due to their versatility, blockchains have given rise to several technologies
and paradigms in recent years [30].

The massive diffusion of blockchains and the corresponding approaches and systems
has led to a fragmentation of this scenario, on the one hand, and has made evident the need
to define approaches for blockchain interoperability, on the other hand. This last problem
has started to be investigated very recently, so there are only few approaches addressing
it currently. Our paper falls into this context; specifically, it considers cross-blockchain
interoperability in the case where transactions are performed to exchange tokens (and,
thus, money) from one blockchain to another. This issue is part of the broader concept of
Decentralized Finance (DeFi), which, in the last couple of years, has had, and is having,
enormous growth.

Due to the small number of approaches to blockchain interoperability already pro-
posed in the past literature, only very few papers can be directly compared with ours.
However, if we look at the general blockchain context, we can find some aspects and fea-
tures presenting correlations with our approach also in papers that do not specifically deal
with blockchain interoperability; think, for instance, of the idea of modeling blockchain
transactions using graphs.

For this reason, we thought of splitting this section into two subsections. The first is
dedicated to the general topic of blockchains. In it, we will consider surveys and approaches
that, while not dealing with cross-blockchain interoperability, share some similarities with
ours. The second is specifically devoted to cross-blockchain interoperability.

Before going into detail in our discussion, we consider it necessary to highlight that,
to the best of our knowledge, our approach is the first to use Social Network Analysis and,
more specifically, a multi-arc model and a multi-view and multi-dimensional framework
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for representing and handling a cross-blockchain scenario. As we will see below, while this
representation is more complex than those generally used in cross-blockchain scenarios, it
allows us to extract some knowledge that would be much more difficult to derive through
simpler models.

2.1. Investigations on Blockchains

According to Semantic Scholar (www.semanticscholar.org (accessed on 29 January 2023)),
more than 90,000 blockchain-related studies have been published only in the last five years.
To give an overview, albeit not exhaustive, on this topic and allow a systematization of
these works, several surveys have been proposed. A survey that analyzes blockchains,
along with the corresponding challenges and opportunities, is presented in [31]. In it,
the authors first introduce a taxonomy on blockchains and, then, examine applications,
technical challenges and advancements in tackling such challenges. This survey covers
all the main perspectives that need to be considered when discussing the blockchain
scenario. An interesting context in which blockchains are used extensively is the Internet
of Things (IoT). In [32], the authors propose a survey investigating the role of blockchains
for IoT. They propose what they call “Blockchain of Things” (BCoT), a sort of synthesis
between blockchain and IoT. In [33], the authors propose a survey on blockchain security.
In particular, they present a systematic examination of the security risks existing in some
popular blockchains. They also illustrate an overview of real attacks, along with an in-
depth description of the vulnerabilities exploited by attackers to conduct them. An aspect
orthogonal to that of security in blockchains regards privacy in these systems. A survey on
this issue can be found in [34].

In [35], the authors present a formal model of the transaction semantics that is guar-
anteed by a blockchain-based system. This model exploits on an acyclic directed graph
that represents transactions in the blockchain. The latter are subject to several validation
rules. The authors also define and study several properties of such a graph, with the goal
of defining the valid states in which a blockchain could be found. Although the authors
of [35] also use a network-based model, this study and ours have few similarities. Indeed,
the study of [35] focuses on single-blockchain activities, while we focus on cross-blockchain
transactions. Moreover, the approach of [35] concentrates on a very specific topic, namely
the semantics of the blockchain scenario. Instead, we focus on several aspects and consider
real scenarios, such as those arising from the framework Multichain.

In [36], the authors propose an approach that studies the transaction graph of a
blockchain to learn and predict Bitcoin price dynamics. To this end, they focus on graph-
based learning and topological feature extraction. Specifically, their approach is based on
a combination of persistent homology and machine learning techniques. The approach
described in [36] and ours are very different from each other; however, they can be con-
sidered orthogonal. In fact, the approach of [36] can be extended to transactions in a
cross-blockchain scenario, where several features could be extracted to predict the dynam-
ics of blockchain prices and token values.

In [37], the authors propose an approach to characterize the behavior of specific
malicious activities on a blockchain scenario using time cycles. They first use a Depth First
search algorithm to find such time cycles from the information associated with arcs. Next,
they use such cycles to characterize specific malicious activities, such as gambling, phishing
and money laundering. Both the approach of [37] and ours are graph-based and both of
them search for cycles. However, the cycles detected in [37] are temporal, while the ones
found by our approach have a completely different semantics. Finally, the approach of [37]
works on a single blockchain, while our approach is cross-blockchain.

2.2. Investigations on Cross-Blockchain Interoperability

Along with numerous surveys that address general issues related to blockchains, there
are also specific ones focusing on blockchain interoperability. In [38], the authors provide
an overview on the current landscape concerning blockchain interoperability, from both
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an academic and an industry perspective. They propose a methodological framework
assessing the criteria needed to define a blockchain interoperability solution. Then, based
on it, they present a systematic literature review. Finally, they discuss the challenges and
obstacles that characterize the development of blockchain interoperability solutions and
present several use cases that could benefit from blockchain interoperability. A different
point of view is presented in [39]. Here, the authors investigate the role of smart contracts
in blockchain interoperability solutions. In particular, they organize their review based on
the functionalities offered by smart contracts. Consequently, they address the functional,
rather than the architectural, aspect of the interoperability between blockchains. They also
present a taxonomy of interoperability solutions based on smart contracts and highlight
three different combinations between smart contracts and blockchains.

In [40], the authors focus on the state of the art of cross-blockchain technologies. Here,
they consider some interesting issues and challenges. They also present several open issues
regarding normal and cross-blockchain smart contracts, cross-blockchain data exchange,
and so on. In [41], the authors illustrate leading cross-blockchain technologies and highlight
the differences between them. They also provide several details on the components of
mainstream cross-blockchain technologies, such as hash lock and notary mechanisms.

A seminal work on blockchain interoperability is described in [10]. Here, the authors
present the needs underpinning such an activity. Specifically, they consider two main
aspects, namely cross-blockchain token transfer, and cross-blockchain smart contract invo-
cation and interaction. Finally, they examine potential solutions and approaches for both
levels. Both the work of [10] and ours focus on a cross-blockchain scenario. However, they
have an essential difference in that the former presents the general problem of blockchain
interoperability at a high abstraction level, while the latter discusses some aspects of this
problem in detail.

In [42], the authors propose an approach to handle situations of mispricing in cryp-
tocurrency market networks. It uses a graph whose nodes represent a combination of
currency and blockchain market. Arcs indicate that an exchange between the correspond-
ing pairs of currency and blockchain market is possible. Each arc is associated with a weight
that indicates the rate to perform the corresponding exchange. The approach operates
by searching for cycles in this particular graph. The approach of [42] and ours are both
graph-based and both make use of cycles. However, the structure of graphs and the goals
for which they extract cycles from graphs are completely different.

In [43], the authors present a method to support cross-blockchain interoperability.
This method aims to address cross-communication between blockchains without an inter-
mediary. The lack of an intermediary implies that transactions are verified through the
consensus system of the blockchains involved. This method aims to be light, in the sense
that it aims not to alter the main properties of the blockchains involved. The approach
proposed in [43] and ours share the goal of handling cross-blockchain communication.
However, the concepts and techniques used to achieve this goal are very different in the
two cases.

In [44], the authors propose an approach for modeling and managing a cross-blockchain
scenario. They represent such a scenario through a directed graph, whose nodes correspond
to parties and whose arcs denote asset transfers. The approach presented in [44] and ours
share the general goal, namely the management of a cross-blockchain scenario, and the
use of graphs as a general model to perform such a management. However, there are
several differences between the two approaches. First, the model used in [44] is a single-arc
directed graph. Therefore, there can be at most one arc between two nodes. By contrast, our
model allows the presence of multiple arcs between two nodes because it must represent a
scenario in which a wallet can perform multiple transactions. Moreover, the model of [44]
focuses on transactions where several parties cooperate. Instead, our approach considers
swaps between the same wallet in different blockchains. Finally, the authors of [44] define a
concept called “sequence”, which indicates whether a party transferred the same asset. This
concept has some similarities with our concept of cross-blockchain walk. However, there
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are also significant differences between the concept of sequence in [44] and our concept of
walk. Indeed, sequence was thought for assessing whether a party has the considered asset
as a resource; hence, it is only defined on transactions occurring in the same blockchain. By
contrast, our concept of walk involves two or more blockchains.

3. Modeling the Scenario of Interest

The scenario of interest consists of m blockchains in which p multi-blockchain wallets
operate. These are capable of operating on multiple blockchains with the same address. A
wallet performs a series of transactions called swaps. A swap is a transaction performed by
a wallet for exchanging tokens from a source blockchain to a target one. We assume that in
our ecosystem there are q different tokens. Several information can be associated with each
swap; they can be inferred through bridge services.

We model this scenario starting with a set S = {s1, . . . , sn} of swaps. Each swap si can
be represented as:

si = 〈idi, walleti, bchainsrc
i , bchaintgt

i , tokeni, vali, qnti, f eei, timei, tvali, con fi〉

Here:

• idi is the identifier of si;
• walleti is the identifier of the wallet that executed si;
• bchainsrc

i , bchaintgt
i (bchainsrc

i 6= bchaintgt
i ) are the identifiers of the source and target

blockchains, respectively; this implies that si is carried out from bchainsrc
i to bchaintgt

i ;
• tokeni is the identifier of the token involved in si;
• vali is the average daily price of tokeni;
• qnti is the quantity of tokeni involved in si;
• f eei is the fee paid to perform si;
• timei is the timestamp of si;
• tvali is the time (in seconds) needed to validate si;
• con fi is the number of confirmations needed to validate si.

A further parameter that can be defined starting from the previous ones is the amount
of money moneyi exchanged during the swap si ∈ S . It can be defined as:

moneyi = qnti · vali

Once we have defined S , we can introduce some of its subsets. In particular, let bk
be a blockchain and wj be a wallet. We define the subset BS src

kj of swaps performed by wj
having bk as the source blockchain as:

BS src
kj = {si|si ∈ S , bk = bchainsrc

i , wj = walleti}

Analogously, we define the subset BS tgt
kj of swaps performed by wj having bk as the

target blockchain as:

BS tgt
kj = {si|si ∈ S , bk = bchaintgt

i , wj = walleti}

Afterwards, we define the subset BSkj of swaps performed by wj and involving bk (as
source or target blockchain) as:

BSkj = BS src
kj ∪ BS

tgt
kj
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Then, we define the subsets BS src
j (resp., BS tgt

j ) of swaps performed by wj from (resp.,
to) any blockchain of the scenario:

BS src
j =

m⋃
k=1

BS src
kj BS tgt

j =
m⋃

k=1

BS tgt
kj

Clearly, in our cross-blockchain ecosystem, BS src
j = BS tgt

j = Sj, i.e., the subset of
swaps performed by wj in the cross-blockchain ecosystem.

Continuing with the definition of the subsets of S , let tl be a token and wj be a wallet.
We define the subset T S l j of the swaps performed by wj to exchange money through the
token tl as:

T S l j = {si|si ∈ S , tl = tokeni, wj = walleti}

Next, we define the subset T S j of swaps performed by wj (independently of the
tokens adopted) as:

T S j =
q⋃

l=1

T S l j

Clearly, T S j = Sj.
Now, we can define some other sets. The first of them is the set B = {b1, . . . , bm} of

the blockchains involved in the swaps of S . A blockchain bk belongs to B if there is at least
one swap whose source or target blockchain is bk. Formally speaking, we first define the
set Bsrc of blockchains being the source of at least one swap of S :

Bsrc = {bk|si ∈ S , bk = bchainsrc
i }

Then, we define the set Btgt of blockchains being the target of at least one swap of S :

Btgt = {bk|si ∈ S , bk = bchaintgt
i }

Clearly:
B = Bsrc ∪ Btgt

We can now introduce the setW = {w1, . . . , wp} of the wallets involved in the swaps
of S . A wallet wj belongs toW if it executed at least one swap in S . Formally speaking:

W = {wj|si ∈ S , wj = walleti}

Let bk be a blockchain of Bsrc. We defineW src
k as the subset of wallets that performed

at least one swap of S having bk as source blockchain. W src
k can be formalized as follows:

W src
k = {wj ∈ W|si ∈ S , bk = bchainsrc

i , wj = walleti}

Analogously, let bk be a blockchain of Btgt. We defineW tgt
k as the subset of wallets that

performed at least one swap of S having bk as target blockchain. W tgt
k can be formalized

as follows:
W tgt

k = {wj ∈ W|si ∈ S , bk = bchaintgt
i , wj = walleti}

Finally, we define the subsetWk of wallets that have performed at least one swap of S
involving a blockchain bk of B as source and/or as target:

Wk =W src
k ∪W

tgt
k
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A further set we introduce is the set T = {t1, . . . , tq} of the tokens involved in the
swaps of S . A token tl belongs to T if it is the reference token for at least one swap of S .
Formally speaking:

T = {tl |si ∈ S , tl = tokeni}

Let wj be a wallet ofW . We define the subset Tj of T as the set of tokens that have
been used at least once by wj:

Tj = {tl |si ∈ S , wj = walleti, tl = tokeni}

We conclude this section by introducing some parameters that model the amounts of
money exchanged in the reference context. Specifically, we define:

• The quantityMj of money exchanged by wj as:

Mj = ∑
si∈Sj

moneyi

• The quantity T Ml j of money exchanged by wj using the token tl as:

T Ml j = ∑
si∈T S l j

moneyi

• The quantity BMkj of money exchanged by wj involving bk (as source or target
blockchain) as:

BMkj = ∑
si∈BSkj

moneyi

4. A Framework to Represent and Handle Cross-Blockchain Scenarios

After modeling the scenario of interest, we are able to propose a multi-dimensional
and multi-view framework for representing and analyzing the swaps performed. Our
framework adopts several network-based representations of the swaps involved. It is
multi-dimensional because it represents and analyzes the phenomenon of multi-blockchain
swaps under different dimensions or perspectives (e.g., blockchains, tokens, wallets, etc.).
It is multi-view because it represents the scenario of interest from different points of view
(i.e., abstraction levels). It offers a self-contained way to handle all the data that can be
associated with a set S of swaps represented by means of the model described in Section 3.
Thanks to it, we can perform extensive data analytics activities on these data for extracting
insights and knowledge patterns from them.

Our cross-blockchain framework can be represented as a triplet:

F = 〈S ,H,N〉

Here, S is the set of swaps involved, whileH and N are two network-based views of
the scenario of interest. H is a hypergraph representing wallets and their involvement in
each blockchain. N is a multi-arc n-partite social network representing the cross-blockchain
transactions performed by wallets.

4.1. The ViewH
The viewH aims to represent wallets and their involvement in each blockchain. It can

be defined as:
H = 〈N, E〉

Here, N = {n1, . . . , np} is the set of nodes of H. There is a node nj ∈ N for each
wallet wj ∈ W . E = {E1, . . . , Em} is the set of hyperedges of H. There is a hyperedge
Ek ∈ E for each blockchain bk ∈ B. A hyperedge Ek links the nodes corresponding to
the wallets that made at least one swap in bk, regardless of whether the latter was the
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source or target blockchain. Based on graph theory, Ek also represents the subset of nodes
connected by the hyperedge. Therefore, Ek =Wk. The viewH allows us to easily represent
the meso-structure of the wallets operating within the cross-blockchain scenario. Each
hyperedge is associated with a blockchain and connects the set of wallets operating in it.
The intersection between two or more hyperedges tells us which wallets operate in all the
blockchains corresponding to them.

4.2. The View N
The view N is an n-partite multi-arc social network representing the swaps occurring

in our reference context, along with the wallets performing them. In particular, N is
constructed starting fromH and allows the representation of the transactions performed
by wallets when they swap tokens from a blockchain to another. N has a set of nodes for
each blockchain and, more precisely, for each hyperedge of H, and an arc for each swap.
More formally:

N = 〈E1, · · · , Em, A〉

N has m sets of nodes. Each set Ek of nodes corresponds to a hyperedge of H or, equiv-
alently, a blockchain of B. As a consequence, each node njk ∈ Ek corresponds to a wallet
wj ∈ Wk. A is the set of arcs of N . There exists an arc ai ∈ A for each swap si ∈ S . Recall
that, in our reference context, a swap involves the same wallet in two distinct blockchains.
A wallet can make one or more swaps between the same pair of blockchains; therefore, N
is a multi-arc network. Since a swap involves the same wallet transferring money from a
blockchain bk to a blockchain bh, we have that an arc ai ∈ A connects two nodes njk and njh
corresponding to the same wallet wj in bk and bh.

Observe that there exists a biunivocal correspondence between an arc ai ∈ A and the
corresponding swap si ∈ S . Therefore, in the rest of the paper, we use these two terms
interchangeably. Furthermore, we associate with ai all the information that we can derive
for si and that we described in Section 3.

5. Modelling and Detecting Cross-Blockchain Walks, Paths and Cycles

Thanks to the view N introduced above, we were able to define a biunivocal corre-
spondence between arcs and swaps. Having done such modeling, we are now able to
perform more complex studies by applying concepts typical of graph theory on N .

A first concept that can be extremely interesting to investigate is the one of walk, i.e., a
sequence of arcs such that the target of an arc represents the source of the next one. In our
reference context, the study of walks allows us to investigate contiguous swaps, i.e., a series
of swaps by which a wallet moves a token through a succession of blockchains such that:
(i) the transfer from one blockchain to another occurs through a swap; (ii) two successive
swaps are performed at contiguous times (or, more formally, such that the time interval
between the corresponding timestamps is less than a value ts∗). There might be various
motivations for a user to perform a series of contiguous swaps. We will not deal with this
issue here since it goes beyond the objectives of this paper. The interested reader is referred
to [37,45,46] for an in-depth discussion of this topic. In the following, we will only study
contiguous swaps (and, therefore, cross-blockchain walks) from a technical point of view.

Let r be a positive integer and let ts∗ be a time interval. A cross-blockchain walk
W = (a1, a2, · · · , ar) in N is a succession of arcs such that:

• ai ∈ A, 1 ≤ i ≤ r; this is equivalent to saying that all the arcs of W must belong to N ;
• tokeni = tl , 1 ≤ i ≤ r; this is equivalent to saying that the swaps corresponding to all

the arcs of W must refer to the same token tl ;
• bchaintgt

i = bchainsrc
i+1, 1 ≤ i < r; this is equivalent to saying that the target blockchain

of one arc of W coincides with the source blockchain of the next arc;
• timei+1 − timei ≤ ts∗, 1 ≤ i < r; this is equivalent to saying that the time interval

between the timestamps of the swaps corresponding to two consecutive arcs of W is
less than or equal to a value ts∗.
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After formalizing the concept of cross-blockchain walk, we can define an algorithm
that searches for all cross-blockchain walks of length r made by a wallet wj to exchange a
token tl among different blockchains. It is formalized in Algorithm 1.

Algorithm 1 Algorithm for detecting cross-blockchain walks of length r in a cross-
blockchain ecosystem.
Input

� N : the view representing the cross-blockchain ecosystem
� wj: a wallet
� tl : a token
� r: a positive integer
� ts∗: a time interval

Output

� WSr
jl

: a set of cross-blockchain walks of length r performed by wj to exchange a token tl through
the blockchains of N

Require: Ajl : a set of arcs; Q: a queue of arcs; Visited: a set of arcs; W: an ordered list of arcs
representing a walk

WSr
jl
= ∅

Ajl = selectArcs()
for ai ∈ Ajl do

enqueue(Q, ai)
Visited = {ai}
while not isEmpty(Q) do

au = front(Q)
if length(ai, au) = r then

W = reconstructWalk(ai, au)
WSr

jl
= WSr

jl
∪ {W}

else
for av ∈ selectNextArcs(au) do

if av 6∈ Visited and bchaintgt
u = bchainsrc

v and (timev − timeu) ≤ ts∗ then
Visited = Visited ∪ {av}
label(av, au)
enqueue(Q, av)

end if
end for

end if
end while

end for
return WSr

jl

Our algorithm receives: (i) a view N modeling the reference scenario; (ii) a wallet wj;
(iii) a token tl ; (iv) a positive integer r denoting the length of the desired cross-blockchain
walks; (v) a time interval ts∗ indicating the maximum time interval between two swaps for
considering them contiguous. It returns the set WSr

jl
of cross-blockchain walks of length r

performed by wj in the blockchains of N to exchange a token tl .
The core of our algorithm is a Breadth-First traversal [47] of N through which all the

walks of length r starting from a certain arc ai of N are derived. Our algorithm uses the
following data structures:

• Ajl : it stores the set of arcs of N representing swaps made by the wallet wj to transfer
the token tl across the blockchains of N .

• Q: it is a queue of arcs ofN ; the following primitives are provided for its management:

– enqueue(), which inserts an arc at the end of Q;
– front(), which removes and returns the first element of Q;
– isEmpty(), which returns true if Q is empty, false otherwise.

• Visited: this is a set containing the arcs of N that have already been traversed.
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• WSr
jl

: it stores an ordered list of arcs representing a walk of length r performed by wj
to transfer a token tl through the blockchains of N .

Our algorithm also uses some support functions, namely:

• selectArcs(): it returns the set Ajl of the arcs of N associated with the swaps per-
formed by wj to exchange the token tl across the blockchains of N .

• selectNextArcs(): it receives an arc au corresponding to a swap su and returns all
the arcs of Ajl corresponding to swaps performed after su.

• label(): it receives two arcs av and au, such that av is contiguous with au and timev >
timeu, and assigns au as the label of av.

• reconstructWalk(): it receives two arcs ai and au from Ajl and reconstructs the
minimum walk from ai to au. To perform its task, it uses the labels assigned to the arcs
by the function label().

• length(): it receives two arcs ai and au and returns the length of the minimum walk
between ai and au; if au = ai it returns 1. To perform its task, it uses the labels assigned
to the arcs by the function label().

Our algorithm starts by setting WSr
jl

to empty and calling the function selectArcs()
to construct the set Ajl of arcs corresponding to the swaps made by wj to transfer tl .

For each arc ai of Ajl , it performs an iteration that aims to compute all cross-blockchain
walks of length r starting from ai. To achieve this goal, it first inserts ai into the queue Q
and the set Visited.

Then, until Q is empty, it begins an iteration consisting of the following steps. Initially,
it picks up the first element au of Q and computes the distance between ai and au by
applying the function length().

If this distance is equal to r, it calls the function reconstructWalk() to reconstruct the
walk W from ai to au. Once performed this task, it adds W to the set WSr

jl
.

On the other hand, if the distance between ai and au is less than r, it calls the function
selectNext- Arcs(), which returns all the arcs of Ajl whose timestamps follow that of au.
For each arc av with such characteristics, if it has not already been visited, is contiguous to
au (which implies that bchaintgt

u = bchainsrc
v ) and the time interval between its timestamp

and that of au is less than or equal to ts∗, then it is inserted into Q and Visited. Furthermore,
au is assigned as the label of av.

When all iterations are complete, our algorithm returns the set WSr
jl

. This set contains
all the walks of length r present in N , which were performed by wj to exchange tl . From
graph theory, recall that a walk is open if the first and last nodes are different; otherwise, it
is closed. A walk is simple if no node is crossed twice. A path is an open and simple walk.
A cycle is a closed and simple walk [47]. Algorithm 1, as it is structured, searches only for
simple walks. Consequently, the set WSr

jl
returned by it can be partitioned into two subsets,

namely the set P r
jl

of paths of length r performed by wj to exchange tl in the blockchains of
N , and the set Cr

jl
of cycles of length r performed by wj to exchange tl in the blockchains of

N . Clearly, P r
jl
∪ Cr

jl
= WSr

jl
and P r

jl
∩ Cr

jl
= ∅.

As specified above, we do not analyze the motivations that may lead a user to perform
a succession of swaps that transfer a token across the blockchains of N . In fact, this is
beyond the scope of this paper. Here, we only want to emphasize that there are several
motivations that can drive users to perform such an activity [42,45,48].

6. A Centrality Measure for Wallets

In a cross-blockchain ecosystem, it can be extremely useful to determine the so-called
“power wallets”, which are the most important wallets playing a leading role in the sce-
nario. To reach this objective, a new centrality measure, tailored to the peculiarities of this
ecosystem, could be helpful.

In particular, it should consider the swaps in which a wallet is involved and the tokens
it has swapped. Furthermore, it should reflect the meso-structure of wallets, and thus the
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information stored in the viewH. For example, it should take into account the blockchains
in which a certain wallet operates and the importance of that wallet in them. Having
such guidelines in mind, we can define the wallet centrality wcj of a wallet wj. It can be
represented by the following formula:

wcj = α · sc(wj) + α′ · sdc(wj) + β · tc(wj) + β′ · tdc(wj) + γ ·mc(wj) + γ′ · bmdc(wj) + γ′′ · tmdc(wj)

Here, the function sc(·) receives a wallet wj and returns a value in the real interval
[0, 1] that takes into account the set of swaps made by wj compared to the ones carried out
by the other wallets. A possible implementation of this function is the following:

sc(wj) =
|Sj|
Smax

where Sj has been introduced in Section 3 and Smax is the maximum number of swaps
performed by a single wallet ofW .

The function sdc(·) receives a wallet wj and returns a value in the real interval [0, 1]
that takes into account the distribution of the swaps of wj in the various blockchains. The
rationale underlying sdc(·) is related to the fact that a wallet is more central the more it is
able to uniformly distribute its activity across all the blockchains of the scenario. A possible
implementation of sdc(·) can be obtained by computing the Herfindahl–Hirschman Index
(HHI) [49] of the fractions of swaps that wj made in the blockchains of B. This index has
been widely used in various fields of economics research for several decades. For example,
it has been adopted to evaluate the concentration ratio in a certain market. In this case, it is
defined as HHI = ∑N

i=1 s2
i , where N is the number of firms operating in the market and si

is the market share of the ith firm. HHI ranges in the real interval [ 1
N , 1]; the higher HHI,

the higher the concentration rate in that market. Following this reasoning, sdc(·) can be
defined as follows:

sdc(wj) = 1−
m

∑
k=1

 |BS tgt
kj |
|Sj|

2

= 1− 1
|Sj|2

·
m

∑
k=1
|BS tgt

kj |
2

Here, BS tgt
kj and Sj have been defined in Section 3.

The function tc(·) (resp., mc(·)) receives a wallet wj and returns a value in the real
interval [0, 1] that takes into consideration the set of tokens (resp., the amount of money)
exchanged by wj compared to the ones carried out by the other wallets. Possible implemen-
tations of tc(·) and mc(·) are the following:

tc(wj) =
|Tj|
Tmax

mc(wj) =
Mj

Mmax

where Tj andMj have been introduced in Section 3 and Tmax (resp.,Mmax) is the maximum
number of tokens (resp., the maximum amount of money) exchanged by a single wallet
ofW .

The function tdc(·) receives a wallet wj and returns a value in the real interval
[
0, q−1

q

]
that takes into consideration the distribution of the swaps of wj against the tokens of T . A
possible implementation of tdc(·) can be obtained by computing the Herfindahl–Hirschman
Index of the fraction of swaps that wj made for exchanging the tokens of T .

tdc(wj) = 1−
q

∑
l=1

[
|T S l j|
|Sj|

]2

= 1− 1
|Sj|2

·
q

∑
l=1
|T S l j|2

Here, T S l j and Sj have been defined in Section 3.
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The function bmdc(·) (resp., tmdc(·)) receives a wallet wj and returns a value in the

real interval
[
0, m−1

m

]
(resp.,

[
0, q−1

q

]
) that takes into account the distribution of the amount

of moneyMj exchanged by wj against the blockchains of B (resp., the tokens of T ). Again,
a possible implementation of bmdc(·) (resp., tmdc(·)) can be obtained by computing the
HHI of the amounts of money that wj exchanged through the blockchains of B (resp., the
tokens of T ):

bmdc(wj) = 1−
m

∑
k=1

[
BMkj

Mj

]2

= 1− 1
M2

j
·

m

∑
k=1
BM2

kj

tmdc(wj) = 1−
q

∑
l=1

[
T Ml j

Mj

]2

= 1− 1
M2

j
·

q

∑
l=1
T M2

l j

Here, BMkj, T Ml j andMj have been defined in Section 3.
The reasoning behind the formula of wc(·) is as follows. A wallet is more central: (i) the

greater the number of swaps it makes; (ii) the more such swaps are equally distributed
across the blockchains; (iii) the greater the number of tokens it is able to use; (iv) the more
its swaps are equally distributed across the various tokens; (v) the greater the amount of
money it is able to transfer; (vi) the more such amount of money is distributed across the
various blockchains, and (vii) across the various tokens.

In the definition of wc(·), the parameters α, α′, β, β′, γ, γ′ and γ′′ specify the weights
assumed by the various functions that contribute to the wallet centrality. Their sum must
be equal to 1. We obtained the optimal values of these parameters using an empirical
approach. Specifically, we performed a grid-search [50] considering that each parameter
ranges between 0 and 1. Starting from a combination of the values of parameters, in the
grid-search, we computed the value of wcj for all the wallets in our dataset and obtained
a distribution of wallet centrality. The objective of the grid-search we performed was
to maximize the distance between the minimum and the maximum values of the wallet
centrality distribution. As a consequence, at the end of this task, we were provided with the
optimal values of the parameters capable of maximizing the distance above. Specifically,
these optimal values are the following: α = 0.30, α′ = 0.20, β = 0.15, β′ = 0.10, γ = 0.15,
γ′ = 0.05, γ′′ = 0.05.

7. Experimental Campaign

In this section, we illustrate the experimental campaign we conducted to evaluate the
approach and centrality measure proposed in this paper and to verify how they can support
the extraction of insights and knowledge patterns related to the cross-blockchain scenario
of our interest. To carry out these experiments, we used the model described in Section 3
and the framework introduced in Section 4. This section is organized as follows. First, we
illustrate the dataset at the base of our experiments (Section 7.1). Then, we propose an
Exploratory Data Analysis of it (Section 7.2). Afterwards, we describe our experiments
aimed at evaluating our approach for the extraction of cross-blockchain paths and cycles
(Section 7.3). Finally, we present our tests performed to evaluate our wallet centrality
proposal (Section 7.4).

7.1. Dataset

To support our experiments, we built a dataset by extracting data from Multichain,
an infrastructure (formerly known as AnySwap) developed for arbitrary cross-blockchain
interactions. In particular, we implemented a web scraper in Python, which downloads all
transaction data recorded by the Multichain explorer. The latter keeps track of all the trans-
actions made on Multichain. Each transaction represents a swap of tokens between different
blockchains. Since each transaction records data of a swap and each swap corresponds to a
transaction, in the following we will use these two terms interchangeably.

We downloaded data on all transactions made between 13 February 2022 and 21
February 2022. We obtained data regarding 88,087 transactions between 26 different
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blockchains involving 442 different tokens. The Multichain explorer does not provide any
token pricing data. Since this was essential to us, we had to compute it autonomously.
For this purpose, we used historical price data provided by CoinGecko (www.coingecko.
com (accessed on 29 January 2023)), a service that supplies financial information about
cryptocurrencies.

We performed an ETL activity on the raw data scraped from the Multichain explorer.
Specifically, we first removed all transactions with null or inconsistent values, such as
missing value transferred, missing token and missing blockchain identifier. At the end of
these activities we kept 79,523 transactions. After that, we decided to limit our analysis to
the five blockchains with the highest number of transactions. This choice was motivated by
the fact that many blockchains had a very low number of transactions, which would have
made the analyses on them meaningless. As evidence of this, consider Table 1 showing
the number of transactions for the top six blockchains in our dataset. As we can see from
this table, the sixth blockchain (Moonbeam) has a number of transactions that is 19.92%
of the fifth one (Ethereum) and 5.65% of the first one (Fantom). As further evidence in
support of our decision, we highlight that, with this choice, the transactions kept in the
dataset represent 91.31% of the original ones (Recall that a transaction involves exactly two
blockchains in our ecosystem).

Table 1. First six blockchains ordered by the number of transactions involving them.

Blockchain Number of Transactions

Fantom 51,955
Smart Chain 46,612
Avalanche 29,977
Polygon 17,576
Ethereum 14,736
Moonbeam 2936

At the end of this selection, our dataset consisted of 72,612 transactions related to
313 tokens and 5 blockchains, i.e., Fantom, Smart Chain, Avalanche, Polygon and Ethereum.

The reference dataset, the corresponding algorithms and other information about the
experimental campaign are available at the following address https://github.com/daisy-
univpm/Multichain-Analysis (accessed on 20 February 2023).

7.2. Exploratory Data Analysis

In this section, we present an Exploratory Data Analysis on the dataset described in
Section 7.1. Specifically, we organize our analysis into two macro-areas, the former focused
on the analysis of transactions (Section 7.2.1) and the latter concerning the analysis of
blockchains (Section 7.2.2).

7.2.1. Analysis of Transactions

We start our Exploratory Data Analysis by providing an initial overview of our dataset.
It is shown in Table 2. To quantify the real economic value of the swaps, we report the total
volume of money (in USD) exchanged through them and the total fees (in USD) paid to
make them. For each swap, the volume of money exchanged is obtained by multiplying
the amount of tokens exchanged by its average daily value (expressed in US Dollars)
and adding the fee required for the exchange. Note that even though the time span of
our dataset is one week, the total volume of money exchanged by the wallets in the five
blockchains is considerable.

www.coingecko.com
www.coingecko.com
https://github.com/daisy-univpm/Multichain-Analysis
https://github.com/daisy-univpm/Multichain-Analysis


Electronics 2023, 12, 1086 15 of 34

Table 2. A general overview of our dataset.

Property Description Value

|S| = n Total number of swaps 72,612
|B| = m Total number of blockchains 5
|W| = p Total number of wallets 32,775
|T | = q Total number of tokens 313
∑si∈S vali · qnti + f eei Total volume of swaps (in USD) 1,778,842,387.63
∑si∈S f eei Total volume of fees (in USD) 860,150.52

In Figure 1, we report the variation of the number of swaps in our dataset over time,
with a granularity of one hour. Note that the average number of swaps does not show
significant changes over time, as highlighted by the orange line indicating the value of a
24 h rolling average. This suggests a regular usage of cross-blockchain services by wallets.
We also observe the presence of some positive and negative peaks.

02-14 02-15 02-16 02-17 02-18 02-19 02-20 02-21
Date

0

200

400
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800
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f s
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Figure 1. Variation of the number of swaps in our dataset over time.

In Figure 2, we show the variation of the volume of swaps in our dataset over time.
Again, the granularity is one hour. We observe that, as in the case of the number of swaps
reported in Figure 1, also for volumes there are no substantial variations over the whole
observation period, as shown by the orange line reporting the 24 h rolling average. It
is also possible to notice the presence of some peaks, three of which are very evident.
In particular, the highest peak corresponds to a very consistent single swap from Smart
Chain to Polygon involving the token BANANA. This peak suggests that high volumes are
not always obtained by the sum of the (possibly low) volumes of a considerable number
of swaps.
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Figure 2. Variation of the volume (in USD) of swaps in our dataset over time.

Figure 3 shows the distribution of swaps against the number of wallets in log–log
scale. From the analysis of this figure, we can conclude that, for the performed swaps, the
wallets of our dataset can be partitioned into two categories. In fact, we have a few wallets
(in particular, 47) that performed at least 50 swaps. These are present in the left part of
the figure. On the other hand, in the right part of it, we have most of the wallets, each
of which made a small number of swaps. This behavior highlights an interesting insight
about wallets, namely their heterogeneity. In particular, it is presumable to think that some
of the wallets that made many swaps are associated with smart contracts, which might
encode a systematic behavior, rather than human users.
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Figure 3. Distribution of swaps against the number of wallets.
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Finally, Figure 4 shows the distribution of swaps against the number of tokens. Fur-
thermore, this figure gives us some interesting insights. Indeed, we observe that there
are many tokens (in particular, 54) involved in just one swap. Then, there is a significant
number of tokens (in particular, 129) involved in less than 10 swaps. Furthermore, there are
130 tokens involved in at least 10 swaps. Finally, there is one token, namely USDC (USD
Coin) occurring in 24,202 swaps. The high success of USDC could be motivated by the
fact that USDC is a stable coin pegged to the United States Dollar, and it is claimed that
each USDC is backed by fully reserved assets (https://www.centre.io/usdc-transparency
(accessed on 20 February 2023)). This offers a certain degree of trust in the coin, which
makes it widely used.
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Figure 4. Distribution of swaps against the number of tokens.

7.2.2. Analysis of Blockchains

We start considering the number of swaps made to and from each of the five blockchains
we are interested in; it is reported in Figure 5. This figure reveals that, as for this aspect, the
blockchains show heterogeneous behaviors.

Fantom Smart Chain Avalanche Polygon Ethereum
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Figure 5. Number of incoming and outgoing swaps for each blockchain.

https://www.centre.io/usdc-transparency
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We hypothesized that the reason for this heterogeneity was primarily due to the fee
charged for each swap. Recall that the fee for a swap does not depend on the money
exchanged and is tied to the target blockchain. In order to verify our hypothesis, we
computed the distribution of the values of the fees in USD for each blockchain. They
are shown in Figure 6. The comparison between this figure and Figure 5 shows that our
assumption was correct. In fact, Fantom is the blockchain with the lowest fees and, at the
same time, one of the blockchains with the number of input swaps higher than the number
of output ones. In contrast, Ethereum is the blockchain with the highest fees and, at the
same time, the greatest imbalance between outgoing and incoming swaps.

Fantom Smart Chain Avalanche Polygon Ethereum

Blockchain

10 3

10 1

101

103

Fe
e 
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)

Figure 6. Distribution of fees (in USD) for each target blockchain.

Figure 7 shows the percentage of swaps occurring between each pair of blockchains.
Figure 8 reports the total and average volume (expressed in USD) between each pair of
blockchains. The comparison between this figure and Figure 7 is very interesting. In fact,
the swaps having Fantom as target (i.e., 34.95% of swaps) exchanged a total volume of
USD 462 million (i.e., 26.03% of total volumes) and an average volume per swap of USD
18 thousand. The swaps having Ethereum as target (i.e., 6.25% of swaps) exchanged a
total volume of USD 414 million (i.e., 23.32% of total volumes) and an average volume
per swap of USD 91 thousand. In the same wake as Ethereum we find Polygon. In fact,
it represents the target for 10.87% of the total number of swaps but it exchanged a total
volume of USD 355 million (i.e., 20.00% of total volume) and an average volume per swap
of USD 45 thousand.

Figure 9 illustrates the total and average fees (expressed in USD) paid for swaps
between each pair of blockchains. This figure shows that Ethereum is by far the target
blockchain that charges the highest fees as both total values and average ones. The other
target blockchains have very low values and are essentially comparable to each other. The
only exceptions are Smart Chain, for transactions starting from Polygon, and partially
Avalanche, for transactions starting from Fantom.

Finally, in Figure 10, for each pair of blockchains, we report the average time, expressed
in seconds, needed to perform a swap (on the left) and the average number of confirmations
needed to validate it (on the right). From the analysis of this figure, we can deduce some
interesting insights. In particular, we first observe that the average time required to execute
a swap having Avalanche as a target blockchain is extremely high and not comparable with
that of the other blockchains. If, instead of considering average times, we take into account
the number of confirmations, the scenario changes drastically. In fact, in this case, the target
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blockchain that requires more confirmations by far is Polygon, while those that require
fewer confirmations are Smart Chain and Ethereum.
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Figure 7. Percentage of swaps between blockchains.
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Figure 9. Total (on the left) and average (on the right) fees (in USD) paid for swaps between
blockchains.
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Figure 10. Average time, expressed in seconds, needed to create a swap (on the left) and average
number of confirmations needed to validate it (on the right).

7.3. Mining Cross-Blockchain Paths and Cycles

In this section, we want to test our approach for path and cycle detection and extract
knowledge about the behavior of wallets by analyzing the paths and cycles performed
by them. This knowledge could concern the presence of paths or cycles typical of many
wallets, which define some “modi operandi” of wallets, or, on the contrary, the presence of
particular paths or cycles that can be seen as anomalies and allow us to discover unexpected
behaviors by some wallets.
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To detect cross-blockchain paths and cycles, we need to define the maximum time
interval ts∗ that can elapse between one swap and the next one in the path or cycle. In our
tests, we have considered several values of ts∗. Specifically, we set ts∗ to 0.1, 0.5, 1, 2, 6, 12
and 24 h. We selected this variety of values for ts∗ to detect paths and cycles of different
temporal lengths and to test the extent to which a high value of ts∗ allows for the detection
of more paths and cycles. In our analysis, besides considering different values of ts∗, we
took paths and cycles of different lengths into account (By the length of a path or a cycle
we mean the number of arcs composing it). Specifically, we set the desired length of paths
and cycles equal to 2, 3, 4, 5, 6 and 7.

In Table 3 (resp., Table 4), we report the number of paths (resp., cycles) detected by
our approach as the values of ts∗ and the length of paths increase. A first consideration
that emerges from the comparison of the two tables is that the number of cycles is much
lower than the number of paths for the same parameter values. Moreover, we detected
only cycles of length 2 and 3. The growth in the number of paths and cycles detected as
ts∗ increases is considerable when their length is small, while it is limited as we search for
paths and cycles of greater length. This trend is evident in Figure 11, where we show the
variation of the number of paths detected against the increase of ts∗ for paths consisting of
2, 3 and 4 arcs.

Table 3. Number of paths detected by our approach against the variation of their length and the
value of ts∗.

No. of Arcs | Path Length 0.1 h 0.5 h 1.0 h 2.0 h 6.0 h 12.0 h 18.0 h 24.0 h
2 222 482 622 758 1087 1366 1565 1802
3 18 53 81 107 202 322 437 545
4 1 11 15 24 47 97 140 174
5 0 1 2 4 5 32 48 66
6 0 0 0 0 0 6 8 27
7 0 0 0 0 0 5 7 12

Table 4. Number of cycles detected by our approach against the variation of their length and the
value of ts∗.

No. of Arcs | Cycle Length 0.1 h 0.5 h 1.0 h 2.0 h 6.0 h 12.0 h 18.0 h 24.0 h
2 88 239 337 435 693 900 1050 1226
3 0 3 3 4 7 10 15 17
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Figure 11. Variation of the number of paths against the increase of ts∗.

It is worth noting that there is a high number of cycles, and especially of paths,
consisting of 2 swaps already with ts∗ = 0.1 h. Given the very short maximum time
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interval between the two swaps of the path or cycle (i.e., 6 min), we could be led to think
that there are cases in which the creation of a cycle or a path consisting of two swaps is a
“modus operandi”, perhaps encoded in a suitable smart contract. To better understand this
phenomenon, we first considered the distribution of the paths of length 2 against ts∗ when
the values of the latter range from 0 to 360 s (i.e., 0.1 h). The results obtained are shown in
Figure 12. From the analysis of this figure, we can observe the presence of a peak at 90 s.
This distribution reinforces the idea that: (i) these paths are generally performed by smart
contracts and not by humans; (ii) they encode very precise “modi operandi”.
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Figure 12. Distribution of the paths of length 2 against ts∗ for values ranging from 0 to 0.1 h.

At this point, we carried out a manual investigation on each of the 222 paths involved.
The first result we obtained was that 210 out of 222 paths were determined by smart
contracts. The second result concerned the possibility of partitioning these paths into four
distinct clusters, each of which actually encodes a “modus operandi”. These clusters are
the following:

• Cluster 1: The wallets belonging to this cluster tend to move much more money in the
first swap of the path than in the second one. The overall amount of money moved
in the swaps of these paths is much higher than that moved in the paths of the other
clusters. The times between two swaps are very low (less than one minute), so we
can think that the behavior of these wallets is driven by a very solid strategy. The
execution time of the swaps is very low, which means that the wallets performing them
are willing to pay very high fees. A total of 32 of the 222 wallets under examination
belong to this cluster. Using a technical term typical for investors, we can call these
wallets “whales”.

• Cluster 2: The wallets belonging to this cluster tend to move the same amount of
money in the two swaps. The overall amount of money moved in the swaps of these
paths is much smaller than that moved in the paths of Cluster 1 but higher than
that moved in the paths of Cluster 3. The times between the two swaps are medium
(between 2 and 4 min). The execution time of swaps is average, which leads us to think
that these wallets tried to obtain fees allowing the swap execution in a reasonably
short time without paying an excessive cost. A total of 111 of the 222 wallets under
examination belong to this cluster. The profile described for the wallets performing
them corresponds to that of “experienced users”.

• Cluster 3: The wallets belonging to this cluster tend to move significantly more money
in the second swap than in the first one. The overall amount of money moved in
the swaps of these paths is slightly less than that moved in the paths of Cluster 2
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and much less than that moved in the paths of Cluster 1. The times between the two
swaps are long (between 4 and 6 min) (Clearly, the term “long” is to be intended with
reference to the fact that we are examining paths with very low values of ts∗). This
makes us think that the first swap is only functional for the second one. The execution
time of the swaps is a bit higher than the previous two clusters, leading us to think
that these wallets are trying to pay low fees. A total of 67 out of the 222 wallets under
examination belong to this cluster. The profile described for these wallets corresponds
to that of “normal users”.

• Cluster 4: The wallets belonging to this cluster move much less money in a path
than the wallets in the previous three clusters. The times between the two swaps
are the longest ones (between 5 and 6 min) among the paths under consideration.
The execution time of the swaps is much higher than in the previous three clusters,
which leads us to think that these wallets are willing to pay very low fees. 12 of
the 222 wallets into examination belong to this cluster. The swaps of these paths are
executed by humans and not by smart contracts. All these features lead us to think
that these wallets correspond to “inexperienced users”.

We repeated this process in the case of cycles and obtained that 84 out of the 88 cycles
were determined by smart contracts. Moreover, by partitioning these cycles we obtained
the same distinct clusters we had obtained for paths.

Another interesting aspect to analyze is the relative position of the blockchains in the
paths. In particular, we want to analyze which blockchains the paths originate from or
terminate to the most. In Figure 13 (resp., Figure 14), we show the percentage of paths
of length 2 (on the left) and 3 (on the right) originating from (resp., terminating to) each
blockchain. In these figures, for each blockchain, we report three percentages relative to a
value of ts∗ equal to 0.1, 0.5 and 1.0 h, respectively.
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Figure 13. Percentage of paths of length 2 (on the left) and 3 (on the right) originating from a specific
blockchain.
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Figure 14. Percentage of paths of length 2 (on the left) and 3 (on the right) terminating to a specific
blockchain.

Figure 13 allows us to derive several interesting insights. First, we can observe that
in both cases Polygon is under-represented, suggesting that there is a negligible number
of paths starting from it. One particular behavior is that of Avalanche. Indeed, it is the
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starting blockchain for many paths of length 2 but for few paths of length 3. Figure 13 also
shows that, as the value of ts∗ increases, the percentage of paths of length 2 decreases for
Ethereum, Avalanche and Smart Chain. This does not happen when we consider the paths
of length 3 neither for these blockchains nor for any other. Let us now consider Figure 14.
We can see that the trends characterizing the various blockchains are similar to those in
Figure 13. A noticeable insight is the very small or null representativeness of Polygon as the
blockchain to which a path terminates. In general, the discovered paths have a tendency to
start or end mainly in two blockchains, namely Ethereum and Smart Chain.

After examining the distribution of paths against blockchains, we performed the same
task for cycles of length 2. In Figure 15, we report the results obtained. From the analysis of
this figure, we can see that Ethereum and Smart Chain are the blockchains where cycles are
most involved. Comparing the results with those of Figures 13 and 14 on the left, regarding
paths of length 2, we can observe a lower presence of Avalanche and a higher presence of
Fantom for cycles than for paths.
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Figure 15. Percentage of cycles of length 2.

To date, we have analyzed the main paths and cycles with respect to blockchains.
However, there is another viewpoint, i.e., the token viewpoint, orthogonal to the previous
one, which is worth investigating. Regarding this, in Table 5 we present the top 10 most fre-
quent tokens in the paths of length 2, along with the corresponding number of occurrences,
when ts∗ = 0.1 h. We do not consider other paths and cycles because the number of their
occurrences is too low and the corresponding results would be insignificant. Instead, in
Table 6 (resp., Table 7), we present the top 10 most frequent tokens in paths of length 2, 3
and 4 and in cycles of length 2, along with the corresponding number of occurrences, when
ts∗ = 6 h (resp., 24 h).

Table 5. Top 10 most frequent tokens in paths of length 2 (ts∗ = 0.1 h).

Paths of Length 2

USDC 79
USDT 29
MIM 17
DAI 12
BNB 10
FABRIC 9
ETH 6
AVAX 5
BIFI 5
ALPACA 3
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Table 6. Top 10 most frequent tokens in paths of length 2, 3 and 4 and in cycles of length 2 (ts∗ = 6 h).

Paths of Length 2 Paths of Length 3 Paths of Length 4 Cycles of Length 2

USDC 432 USDC 75 USDC 21 USDC 220
USDT 176 USDT 25 USDT 5 USDT 97
MIM 88 MIM 14 BNB 4 MIM 62
BNB 60 BNB 13 DAI 3 BNB 51
DAI 56 DAI 10 MIM 3 AVAX 49
AVAX 49 ALPACA 8 ALPACA 2 DAI 30
ETH 29 ETH 8 DERC 2 ALPACA 16
ALPACA 16 AVAX 6 ETH 2 ETH 15
BIFI 11 BIFI 4 BANANA 1 DERC 9
DERC 10 DERC 4 MATIC 1 FABRIC 9

Table 7. Top 10 most frequent tokens in paths of length 2, 3 and 4 and in cycles of length 2 (ts∗ = 24 h).

Paths of Length 2 Paths of Length 3 Paths of Length 4 Cycles of Length 2

USDC 715 USDC 194 USDC 67 USDC 392
USDT 298 USDT 87 USDT 29 USDT 195
MIM 147 MIM 46 MIM 18 MIM 110
BNB 111 BNB 34 DAI 14 BNB 97
AVAX 88 AVAX 25 BNB 7 AVAX 87
DAI 82 DAI 25 FABRIC 7 DAI 45
ETH 42 ETH 12 DERC 5 ETH 23
ALPACA 20 ALPACA 10 YOSHI 4 ALPACA 20
BIFI 16 FABRIC 10 ETH 3 FABRIC 14
DERC 16 DERC 8 AVAX 3 DERC 14

From the analysis of these tables, we can see that the distribution of paths and cycles
against tokens follows a power law. In particular, the most frequent token is always USDC
(USD Coin). The second token is always USDT (Tether) and has a number of occurrences
that is generally less than half of USDC. The third token is almost always MIM (Magic
Internet Money), whose number of occurrences is generally a little more than half that
of USDT. It is worth pointing out that all of these tokens are pegged to the United States
Dollar, and this is probably one of the reasons for their success. Another interesting insight
that can be gained by examining Tables 5–7 is the strong overlap between the top 10 most
frequent tokens in the various cases.

7.4. Wallet Centrality

In Section 6, we proposed a new centrality measure specifically suited for evaluating
the importance of a wallet in a cross-blockchain scenario. In this section, we want to
evaluate the goodness of this centrality measure, the role played by the various components,
and focus on the wallets with the highest centrality value.

We begin our study by considering the distribution of wallets against wallet centrality.
It is shown in Figure 16. In this distribution, we computed the centrality of each wallet
using the optimal values of the weights obtained experimentally and reported in Section 6.
From the analysis of this figure we can observe that the wallet centrality is really able to
assign different scores to the various wallets. In other words, it is able to partition the
wallets into many subsets characterized by different values of centrality. In particular,
looking at Figure 16, we can see the presence of two macro-sets of wallets. Both of them
have approximately a Gaussian distribution. However, the distribution on the left is much
wider and lower than the one on the right. Moreover, we can observe the presence of some
outliers associated with values of wallet centrality close to 0.5.
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Figure 16. Distribution of wallets against wallet centrality.

It should be noted that, overall, the wallet centrality assumes medium-low values
since there are no wallets with centrality values close to 1. This leads us to hypothesize
that the various parameters that constitute the wallet centrality are actually able to capture
different aspects of the importance of a wallet in a cross-blockchain context.

To better understand the role of the various parameters involved in the wallet centrality,
we decided to compute the distribution of wallets against them. Specifically, in Figure 17,
we illustrate the distribution of wallets against the components of the formula of wcj taking
into account only the swaps made and their equidistribution with respect to blockchains. It
can be obtained by considering the general formula of wcj and setting α = 0.60, α′ = 0.40,
and all the other weights equal to 0.
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Figure 17. Distribution of wallets against the swaps made and their equidistribution with respect to
blockchains.
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Similarly, in Figure 18, we report the distribution of wallets against the tokens used
and the equidistribution of the corresponding swaps with respect to tokens. It can be
obtained by considering the general formula of wcj and setting β = 0.55, β′ = 0.45, and all
the other weights equal to 0.
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Figure 18. Distribution of wallets against the tokens used and the equidistribution of the correspond-
ing swaps with respect to them.

Finally, in Figure 19, we show the distribution of wallets against the exchanged money
and its equidistribution with respect to blockchains and tokens. It can be obtained by
considering the general formula of wcj and setting γ = 0.55, γ′ = γ′′ = 0.225, and all the
other weights equal to 0.
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Figure 19. Distribution of wallets against the exchanged money and its equidistribution with respect
to blockchains and tokens.
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The distribution in Figure 17 is the most similar to the overall distribution in Figure 16.
The distribution in Figure 18 is quite similar to that of Figure 16, but with some differences.
Finally, the distribution of Figure 19 differs significantly from the others. It is much more
irregular and, at a certain point, decays rapidly. It has outliers too, some of which have
particularly high values. Considering Figures 17–19 on the one hand, and Figure 16 on
the other hand, it is quite evident that the values of the overall wallet centrality actually
represent an average of the three components shown in Figures 17–19. In particular, the
overall distribution does not distort the individual ones but, in a sense, harmonizes them.

After having studied the role played by the three components related to swaps, tokens
and money in the determination of the overall wallet centrality, now we want to investigate
other components, orthogonal to the previous ones. In fact, if we consider the formula
of wcj from another point of view, we can see that it consists of a component related to
quantity (taking the number of swaps, the number of tokens and the amount of money
into consideration) and another one related to equidistribution. In the following, we aim at
investigating how these two components contribute to the overall wallet centrality.

In Figure 20, we show the distribution of wallets against the component of the wallet
centrality related to quantity. It can be obtained by considering the general formula of wcj
and setting α = 0.34, β = 0.33, γ = 0.33, α′ = β′ = γ′ = γ′′ = 0. Instead, in Figure 21,
we show the distribution of wallets against the component of the wallet centrality related
to equidistribution. It can be obtained considering the general formula of wcj and setting
α′ = 0.33, β′ = 0.33, γ′ = γ′′ = 0.17, α = β = γ = 0.
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Figure 20. Distribution of wallets against the component of the wallet centrality related to quantity.

The distribution in Figure 20 is very different from the overall distribution in Figure 16.
In fact, it is very similar to a power law distribution. Moreover, the distribution of Figure 21
is different from that of Figure 16 and totally different from that of Figure 20. Comparing
Figures 20 and 21 on the one hand, and Figure 16 on the other hand, it can be seen that, also
in this case, the values of the overall wallet centrality represent an average of the values of
the component related to the quantity and that related to the equidistribution. However, in
this case, since the two partial distributions are very different from each other, the overall
one “distorts” them and acts, in a sense, as a smoother. In fact, the two partial distributions
are very extreme, although for opposite reasons. Instead, the overall distribution managed
to dampen these extremes by making them smooth each other.
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Figure 21. Distribution of wallets against the component of the wallet centrality related to equidistribution.

After analyzing the role played by the various components of the wallet centrality,
we want to focus on the wallets with the highest values of this measure. More specifically,
we want to analyze the top wallets in terms of both overall centrality and each of its
components identified above. Our goal is to test whether these sets of top wallets are
disjoint or overlapping. In the following, we use the following notations to denote the top
wallets: (i) τω indicates the top wallets obtained considering the overall wallet centrality;
(ii) τα denotes the top wallets obtained considering only the swaps performed: (iii) τβ

indicates the top wallets obtained considering only the token adopted, i.e., the component
associated with the distribution in Figure 18; (iv) τγ denotes the top wallets obtained
considering only the money exchanged, i.e., the component associated with the distribution
in Figure 19; (v) τδ indicates the top wallets obtained considering only the component
related to quantity; (vi) τε denotes the top wallets obtained considering only the component
related to equidistribution.

In our analysis, we considered the top 100, top 1000, top 5000 and top 10,000 wallets
for each set defined above and performed a series of intersections between them. The
values obtained are shown in Table 8.

Table 8. Intersections between different sets of top wallets.

τα ∩ τβ τα ∩ τγ τα ∩ τω τβ ∩ τγ τβ ∩ τω τγ ∩ τω τδ ∩ τε τδ ∩ τω τε ∩ τω

Top 100 2 4 64 0 1 21 1 10 1

Top 1000 14 70 556 40 25 159 1 19 24

Top 5000 652 1127 3372 997 870 1950 8 84 978

Top 10,000 3823 3970 5461 3793 3672 8149 700 2173 3981

From the analysis of this table, we can derive some interesting insights. In fact, if
we consider the sets of the top 100 wallets, we can see that the pairs (τα, τβ), (τα, τγ) and
(τβ, τγ) have negligible intersections. This confirms that the various components of the
wallet centrality are able to capture different aspects of wallet behavior. A similar reasoning
is valid for the pair (τδ, τε). This confirms what we had already observed from examining
the corresponding distributions. Instead, looking at the intersections of each of these sets
with τω, associated with the overall wallet centrality, we note that there is an overlap
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between τα and τω. This trend had already been observed by comparing the distributions
in Figures 16 and 17. In contrast, the overlap, albeit partial, between τγ and τω is surprising.
In fact, the distributions in Figures 16 and 19 are significantly different. Considering the
top 1000, we can see that most of the trends observed for the top 100 are confirmed.

Instead, these trends begin to change when we consider the top 5000 (observe, for
instance, the much greater overlap of the sets τε and τω, compared to what happened for
the top 100 and top 1000) and consolidate towards an equilibrium completely different
from the previous one when we consider the top 10,000. In the latter scenario, all pairs of
sets, except for (τδ, τε), have much more significant overlaps than what happened for the
top 100 and top 1000. By far the highest overlap is observed between τγ and τω, which
overlap by more than 80%, with an enormous growth in this phenomenon compared to
the cases relative to the top 100, top 1000 and top 5000. τα and τω continue to overlap
significantly (more than 54%) but the trend of this overlap has a linear growth compared to
the previous tops. The only exception is represented by the overlaps involving the set τδ.
These remain much smaller than the others, even if, when passing from the top 5000 to the
top 10,000, we observe an enormous growth of them (equal to about 2487% in the case of
(τδ, τω) and about 8650% in the case of (τδ,τε)).

8. Discussion

In this section, we present a discussion on the approach proposed and the activities we
conducted to evaluate it. In particular, we outline the main contributions of this paper with
respect to the existing literature, as well as the implications, applications and limitations of
our approach. The section terminates with a look at possible future developments of the
research proposed in this paper.

8.1. Contributions

The main contribution of our paper is the idea of applying Social Network Analysis to
represent and handle a cross-blockchain ecosystem. This contribution is then declined in
several sub-contributions. The first one concerns the definition of a model for representing
a cross-blockchain ecosystem. This model provides a clear and concise representation of
the various actors involved in the cross-blockchain scenario, including blockchains, wallets
and transactions for transferring money from one blockchain to another. It represents a
crucial first step in analyzing and understanding the complex interactions that can occur in
a cross-blockchain ecosystem.

The second sub-contribution concerns a social network-based framework for managing
a cross-blockchain scenario. This framework allows for multi-dimensional and multi-view
modeling and management of the cross-blockchain ecosystem, enabling the application of a
wide range of concepts and solutions derived from Social Network Analysis research. Due
to this feature, it greatly enhances the ability of researchers and practitioners to analyze
and understand a cross-blockchain scenario.

The third sub-contribution regards the application of our framework to extract walks,
paths and cycles from a cross-blockchain ecosystem. This in turns enables the extraction of
insights and knowledge patterns related to the behavior of various categories of wallets
in the cross-blockchain scenario. Such information can be used to better understand and
improve the cross-blockchain ecosystem, as well as to look for any potentially malicious or
fraudulent behavior.

The fourth sub-contribution is a new centrality measure to identify the most important
wallets in the cross-blockchain ecosystem. This measure takes into account multiple factors,
including the number of transfers made, the number of blockchains involved, and the
amount of money transferred. In this way, it provides a comprehensive view of the
centrality of a wallet in a cross-blockchain scenario.
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8.2. Implications

The approach presented in this paper has several implications for the cross-blockchain
ecosystem. First, it provides a new and innovative way to analyze and understand the
interactions and relationships among the various actors involved in a cross-blockchain
scenario. This can lead to a deeper understanding of the ecosystem and the identification
of potential areas for its improvement.

In addition, our approach can improve the understanding of cross-blockchain trans-
actions by providing a more comprehensive view of the relationships between wallets
and blockchains.

Finally, it can be used to look for potentially malicious and fraudulent behaviors,
helping to improve the overall security of the cross-blockchain ecosystem.

8.3. Applications

The approach proposed in this paper has several possible applications. One of them is
improving the security of the cross-blockchain ecosystem. In this context, it can be used to
search for potentially malicious or fraudulent behavior. In fact, the presence of loops or
paths in the ecosystem can be a red flag for the presence of fraud or money washing.

Another important application is to make swapping recommendations for wallets
in the cross-blockchain ecosystem. In fact, our approach can suggest the optimal trans-
fers for a given wallet. To reach this goal, it uses the wallet us past history and current
situation in the ecosystem, as well as factors like the wallet us current balance, the fees
involved in the transfer, and the time required to complete the transfer. This information
can help wallets make informed decisions about transfers and optimize their use of the
cross-blockchain ecosystem.

Furthermore, our approach can also be extended to perform smart contract profiling
for DeFi. This involves analyzing the transactions in which a smart contract is involved
and the effects it produces, so as to provide a more complete understanding of its impact
on the cross-blockchain ecosystem. This information can be employed to improve the
design and implementation of smart contracts, ensuring that they are effective and efficient
in the cross-blockchain scenario. This in turn can lead to a more efficient and effective
cross-blockchain ecosystem, in which smart contracts play a key role in facilitating cross-
blockchain interoperability.

8.4. Limitations

We think it is also interesting to highlight some limitations of our approach, which may
provide insights for future developments of this research. First, our approach is limited
by the quality and availability of data, because the accuracy of its results depends on the
accuracy and completeness of the data employed to derive them.

Moreover, our approach has been defined taking into consideration the current state
of the cross-blockchain ecosystem. However, the latter is rapidly evolving and changing
over time.

Furthermore, our approach currently uses the structure of the cross-blockchain ecosys-
tem and the behavior of wallets for deriving interesting knowledge patterns. However,
there may be other important factors that could influence the knowledge learned and lead
to additional insights and knowledge about the cross-blockchain ecosystem. Consider,
for example, the contribution that could be obtained by analyzing the role of intermedi-
aries, the impact of regulations and the influence of external events. These are all factors
that should be investigated in order to have a broader and deeper understanding of the
reference scenario.

8.5. Future Work

In the future, we plan to continue this research along several directions. First, we
aim to identify other Social Network Analysis concepts and solutions that can be applied
in a cross-blockchain ecosystem. Then, we plan to integrate all the results found in this
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paper, and others we will possibly find in the future, to build the platform mentioned
above. Afterwards, we would like to extend our approach so that it can perform smart
contract profiling for DeFi. In fact, a smart contract can be easily analyzed a priori, i.e., at
the design level. However, such a static analysis does not allow us to determine its impact
on the cross-blockchain ecosystem at the moment it is actually used. Indeed, the latter is
a dynamic analysis that can only be carried out by examining the transactions in which
the smart contract is involved and the effects produced. We believe that Social Network
Analysis can be a valuable tool to do this and, in the future, we would like to demonstrate
this conjecture by defining an approach to address this issue. Finally, we think of extending
the results of this paper to make swapping recommendations, i.e., to suggest to a wallet the
next swap to make based on its past history and current situation in the cross-blockchain
ecosystem in which it is operating.

9. Conclusions

In this paper, we have seen how Social Network Analysis can be applied to model and
manage a cross-blockchain scenario. First, we have highlighted how the enormous growth
in the number and variety of blockchains makes it urgent to define a new generation of cross-
blockchain platforms. We have mentioned that there are already some attempts to move
in that direction, and our paper aims to provide a contribution in this setting. Indeed, we
believe that Social Network Analysis, coupled with some sophisticated network models, can
enable the efficient and effective modeling of all the actors involved in a cross-blockchain
ecosystem. To demonstrate the veracity of such a conjecture, we first proposed a model
to represent a cross-blockchain ecosystem and then a social network-based framework to
manage it. Our model and framework make it possible to apply to this scenario the huge
number of concepts and solutions that had been defined in the past by Social Network
Analysis researchers. To show the feasibility of this, we proposed an approach for the
extraction of walks, paths and cycles from a cross-blockchain ecosystem. We also showed
that, when this approach is applied to a real case, it allows the extraction of interesting
insights and knowledge patterns, such as the discovery of several “modi operandi” of some
categories of wallets. Finally, we defined a new centrality measure specifically designed to
identify the most important wallets in a given cross-blockchain ecosystem. The four main
results we found in this paper are already important on their own. Moreover, collectively
they can lay the foundation for a next-generation cross-blockchain platform.
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