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Abstract: This paper presents the application of shallow neural networks (SNNs): multi-layer
perceptron (MLP) and self-organizing Kohonen maps (SOMs) to the early detection and classification
of the stator and rotor faults in permanent magnet synchronous motors (PMSMs). The neural
networks were trained based on the vector coming from measurements on a real object. The elements
of the input vector of SNNs constituted the selected amplitudes of the diagnostic signal spectrum. The
stator current and axial flux were used as diagnostic signals. The test object was a 2.5 kW PMSM motor
supplied by a frequency converter operating in a closed-loop control structure. The experimental
verification of the proposed diagnostic system was carried out for variable load conditions and
values of the supply voltage frequency. The obtained results were compared with an approach based
on a deep neural network (DNN). The research presented in the article confirm the possibility of
detection and assessing the individual damage of stator winding and permanent magnets as well as
the simultaneous faults of the PMSM stator and rotor using SNNs with simple signal preprocessing.

Keywords: PMSM; fault diagnosis; inter-turn short circuits; demagnetization; neural networks;
multilayer perceptron; self-organizing map; convolutional neural network

1. Introduction

For many years, shallow neural structures have dominated automatic measurements
and diagnostic systems using artificial intelligence methods [1]. However, recently deep
neural networks (DNNs) have also been used more intensively in the diagnosis of induction
motor (IM) faults, as well as permanent magnet synchronous motors (PMSMs) [2,3]. They
provide very good (nearly 100%) efficiency in detecting and classifying machine winding
faults, but they require very complex structures and a long learning time, and their practical
implementation on available processors is difficult. Moreover, the DNNs require a large set
of training data, and, most importantly, are characterized by a lack of formal rules for the
selection of structures and parameters of the training process. These limitations often result in
a resignation from the practical use of DNN in machine diagnostics, especially for objects that
are not a priority in the context of the entire production line. In this case, a better approach
is to use neural structures characterized by a simple mathematical description (multilayer
perceptron—MLP, self-organizing map—SOM) and, at the same time, high generalization
abilities. It should be noted that shallow networks are a very efficient diagnostic tool if the
number of training data is relatively small and the dynamics of the drive system is well known.
However, they require the preprocessing of diagnostic signals to extract fault symptoms and
supply them to the network input. Therefore, the overwhelming number of applications of
NN in diagnostics includes the use of MLP [3–5] and SOM [6–9]. This is due to the basic tasks
set for diagnostic systems, namely the detection and assessment of the degree of damage to
the machine.

In most cases, the practical implementation involves the use of NN structures in
diagnostic tasks for induction motors [6,7] (and many more, listed in the references of these
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articles). The literature analysis allows us to observe that there are currently a small number
of articles involving the use of shallow NNs in PMSM fault diagnostic applications [4,5,8,9].
However, none of these works showed a comparison of the methods used and, in particular,
the effectiveness of damage-detection and classification was not presented. Furthermore,
the ability to distinguish between mixed failures using a shallow NN was not shown in
the literature. It should be noted that the operation of an NN in diagnostic applications is
related to the inherent cooperation of the neural network with analytical techniques for the
extraction of symptoms.

In most cases, the initial processing of diagnostic signals is connected with the use
of spectral analysis. The fast Fourier transform provides good quality information about
the technical condition of the machine based on information about the amplitudes of
the measured signal spectrum. Normalized amplitudes of the characteristic spectrum of
the considered failures are used as an element of the input vector of the neural network.
However, the FFT has some limitations, primarily related to the need to ensure static
operating conditions of the machine at the time of measuring the diagnostic value. In the
case of fault detection in transient states, FFT analysis cannot be used. The solution is
to use time-frequency analyzes that provide diagnostic information in transients as well.
However, higher-order methods such as wavelet analysis in continuous [10,11] or discrete
form [12,13], as well as the Hilbert–Huang transformation [14,15], the estimation of signal
parameters via rotational invariant techniques (ESPRIT) [16,17], or the short-time Fourier
transform [18,19], most closely related to FFT, require a very large computational effort.
As a result, these methods result in an extension of the response time of the detection
system. It should be noted that the transient states of machines usually cover short periods.
Therefore, the use of higher-order methods with high computational requirements does not
give the desired effect, because the time to calculate and extract symptoms may be longer
than the transient state of the machine itself. Therefore, this article focusses on the use of
FFT analysis, which, despite some limitations, can be successfully used in low-cost systems.
It should be emphasized that the practical implementation of diagnostic systems based on
FFT and supported by classic neural structures is relatively simple.

In connection with the above, in this paper the application of two different shallow
neural network (SNN) structures based on the stator current and axial flux signals is
presented. These SNNs are MLP, which constitutes the most popular data approximator,
and SOM, which is characterized by a high accuracy of data classification even for a small
number of training samples. Due to the difficulties in the process of designing SOM-based
classifiers, the article presents an original approach that enables the automatic separation of
areas characteristic of individual classes. Diagnostic systems based on SOM described in the
literature so far show an analysis of the network response for empirically determined areas
characteristic of individual faults. In our studies, these areas are defined analytically, using
Euclidean distance calculation, due to which the entire process can be fully automated, and
also in terms of developing the classifier for subsequent damage (online learning of the
neural network).

Thus, the purpose of this article is to show the possibility of using the selected SNN
structure as part of the diagnostic procedure to assess and, most of all, distinguish electrical
and magnetic damage to the PMSM stator and rotor. An additional purpose of the article
was to show the advantages and disadvantages of SNN in relation to the DNN network,
which has recently been very popular in the diagnosis of electrical motor damage. The
main contributions of this research are as follows:

(1) The evaluation of the applicability of FFT analysis of the stator current and stray flux
to extract electrical and magnetic damage symptoms in a PMSM drive;

(2) The development of an MLP-based fault detector and fault level classifier for ITSC
and PM faults based on a relatively small dataset;

(3) The development of an SOM-based fault detector and fault level classifier for ITSC
and PM faults based on a relatively small dataset, and proposing a method for the
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analytical determination of areas in a Kohonen map characteristic of individual faults,
which enables the automatization of the fault-type classification;

(4) The comparison of the effectiveness of the fault detectors and classifiers developed
based on MLP and SOM with simple preprocessing of the input signals;

(5) The comparison of the pros and cons of using SNN and CNN in the diagnostic task of
incipient electrical and magnetic faults in a PMSM drive with vector control.

The article consists of five sections. In the next section, the symptoms of PMSM drive
stator and rotor failure are briefly described. Next, the idea of detecting stator winding and
permanent magnet faults of the PMSM drive is presented. The experimental setup that was
used for diagnostic signal assessment and fault detector testing is briefly described. The
method adopted for the physical modelling of the analyzed faults to the stator winding—
interturn short-circuits (ITSCs) and permanent magnet (PM)—is presented. In the fourth
section, the training and testing processes of the SNN-based fault detectors and classifiers
are demonstrated, and their detection accuracy is evaluated. In this section, the advantages
and disadvantages of using analyzed SSNs versus the DNNs that are being increasingly
often applied are discussed. The article ends with a short conclusion.

2. Symptoms of Stator and Rotor Faults in PMSM Drive

The detection of ITSC in the stator winding of a PMSM is most often carried out on the
basis of a spectral analysis of phase currents. Amplitudes with characteristic frequencies
are sought in the current spectrum and stray flux, respectively, as follows [20,21]:

fsh1 = fs

(
2k + 1

pp
± m

)
, (1)

fsh2 = k fs ± m fr, (2)

where: fs—basic frequency of the supplying voltage, fs—rotational frequency, pp—pole
pairs, k = 1, 2, 3, . . . , m = 1, 3, 5, . . . 2 pp -1.

As can be observed in Figure 1, turn-to-turn faults also result in an increase in spectrum
amplitudes with odd harmonics of the fundamental frequency. Diagnostics of stator
winding damage can also be performed based on the information contained in the stray
flux signal. In the case of new undamaged motors, the stray flux signal is of low value. This
is due to the design inaccuracies of the machine and the heterogeneity of the materials used
in the motor construction process. Winding damage disturbs machine symmetry, resulting
in an increase in the value of this flux [22,23].

It is particularly difficult to distinguish between electrical damage to the stator winding
and damage to the magnetic circuit. The limitations of the implementation of analytical
methods of PMSM fault detection compared to IM result directly from the principle of
operation of these motors, namely the lack of slip. As a result of the synchronism of the
stator and rotor fields, the spectra of currents, voltages, and fluxes contain overlapping
components from the power source and interharmonics related to the rotational frequency.
Therefore, distinguishing the symptoms of PMSM rotor and stator damage is extremely
difficult, much more difficult than in the case of IM stator and rotor damage. In the case
of damage to the IM rotor above the load at the level of 20% of the rated torque, the
components characteristic of ITSC faults are already clearly separated from those attributed
to damage to the rotor cage bars [7]. On the other hand, the advantage of PMSM is the
lack of influence of the load on the rotational speed, which means that it does not force the
diagnostic system to the minimum value of the load torque, and the developed detectors
can work in the entire range of load changes with similar precision. PMSM rotor damage
caused by the demagnetization of the permanent magnets results in oscillations of the stator
phase currents. The impact of this damage is visible in the spectrum of phase currents and
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axial flux in the form of an increase in amplitudes (Figure 2) with frequencies described as
follows [1,24]:

fdem = fs

(
1 ± k

pp

)
= fs ± k fr. (3)

Based on (1) and (2), it is clearly visible that the magnitudes of the frequency com-
ponents characteristic of the stator and rotor faults of PMSM can overlap, making the
diagnostic process based on their analysis difficult. Therefore, in this paper the chosen NN
structures were used to support fault detection and differentiation. The efficiency of these
simple NNs in the diagnostic process was evaluated.
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3. Application of Shallow Neural Networks in the Detection of PMSM Damage
3.1. The Idea of PMSM Fault Neural Detectors Based on MLP and SOM

In electrical machine diagnostic systems using a classical (shallow) NN, the path of
signal flow is connected with the necessity to identify the symptoms of failures, enabling
the assessment of the technical condition (Figure 3). The NN is usually the last element of
the diagnostic system, and its role results from the type of neural structure. In diagnostic
applications, shallow NNs can play the role of fault detectors, classifiers of diagnostic data,
and enable the analysis of the future behavior of the tested object. Most of the implemented
structures act as data approximators, in which the multilayer perceptron is mostly used.
However, in recent years, data classifiers based on self-organizing Kohonen networks have
gained importance. Their task is to automatically recognize the features of a heterogeneous
set of input data and assign samples with similar features to appropriate classes. It should
be noted that high precision from NN-based fault detectors is possible only in the case
of a close relationship between the damage and its symptoms. Therefore, it is necessary
to properly select the elements of the NN input vector, which is the result of the selected
preprocessing method of the measured signals.
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3.2. Description of the Experimental Setup and Conducted Tests

The following sections discuss the operation of the systems for detecting damage to
the stator windings and damage to the permanent magnet of the PMSM drive. The test
object was a 2.5 kW PMSM powered by a frequency converter operating in a closed-loop
control structure (Figure 4). The experimental verification of the NN-based diagnostic
systems developed on the basis of training and testing data measured in the drive system
was carried out for various operating conditions of the PMSM drive. The range of changes
in load torque was TL = 0−TLN with a step of 0.2 TLN. Furthermore, the value of the supply
voltage frequency was changed in the range fs = 50−100 Hz. During the studies, three
types of fault were analyzed: incipient ITSCs (1−3 shorted turns of the B phase of the stator
winding), PM fault (5% demagnetization), and mixed faults (simultaneous faults of the
stator winding and the rotor magnets).
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During the research, the cooperation of two programming environments was used.
Measurement of diagnostic signals was possible thanks to the LabVIEW environment.
These signals were subjected to spectral analysis to extract the input vectors of the neural
networks. The development of the neural structure, the training process, and the verifica-
tion of the system operation were carried out using the Matlab environment. The use of



Electronics 2023, 12, 1068 7 of 15

the Matlab environment in neural calculations allowed us to significantly accelerate the
learning process and quickly determine the responses of the neural network.

The classic method of physical modeling of damage to permanent magnets (PMs)
resulting directly from their parameters is the heat treatment of individual rotor magnets.
However, thermal modeling of PM defects by exceeding the Curie temperature makes
it impossible to determine the degree of the analyzed damage. The modeling of the
mechanical damage of the PM does not have the aforementioned disadvantages, and this
approach also ensures the weakening of the resultant flux from the damaged magnet.
Therefore, as part of the research presented in this article, it was decided to remove a piece
of the pole of one magnet to obtain the assumed fault level (Figure 4). The rated parameters
of the motor tested are given in the following (Table 1).

Table 1. Rated parameters of the tested PMSM.

Parameter Symbol Value Units

Power PN 2500 W
Torque TN 16 Nm
Speed nN 1500 r/min

Stator phase voltage UsN 325 V
Stator current IsN 6.6 A

Frequency fsN 100 Hz
Pole pair number pp 4 [-]

4. Experimental Verification of the Tested Fault Detectors
4.1. The MLP-Based Detector of PMSM Stator and Rotor Faults

The popularity of the MLP structure in the diagnostics of electrical machines results
primarily from the simplicity of its implementation and its ability to map any function. The
application of MLP in PMSM damage-detection systems requires the proper selection of
training vector elements, network structure, and training process parameters that ensure
the assumed effectiveness. In the following studies, information from the phase current
spectrum was used to assess the degree of damage to the stator and rotor of the PMSM
motor. The input vector of the network was the current spectrum amplitudes at frequencies
(3fsIsA, 3fsIsB, 5fsIsB) and (fsIsA + 2frIsA, fsIsB + 2frIsB, fsIsC + 2frIsC). The best results were
obtained for NN: {6-12-8-2}, with 6 inputs, 12 and 8 neurons (with sigmoidal activation
functions) in the hidden layers, respectively. The network training process was carried
out following the Levenberg–Marquardt algorithm for 3000 learning epochs. The training
vector was developed based on information from 144 measurements for various types and
degrees of damage with changes in the load torque within the range TL = {0, 0.4, 0.8}TLN
and the supply voltage frequency fs = {50, 60, 70, 80, 90, 100} Hz. The testing vector also
included data from 144 measurements, with different values of the load moment TL = {0.2,
0.6, 1.0} TLN.

The responses of the designed MLP network to the test data presented in Figure 5 con-
firm the high efficiency of the network, both in the case of a single rotor failure (Figure 5b)
or stator failures (Figure 5a) and mixed failures (Figure 5c). The responses of the neural
network marked in Figure 5 with red dots indicate an incorrect classification of the technical
condition of the machine, while the green ones indicate a response consistent with the ac-
tual technical condition of the machine. The estimated efficiency of the evaluation of stator
winding damage for the test vector that included 144 samples was greater than 94%, with
simultaneous short-circuit detection precision at a level close to 99%. Moreover, during the
experimental verification, it was found that the NN provides only correct information about
the technical condition of the rotor magnets, both in the case of single defects (Figure 5b)
and mixed failures (Figure 5c). The reaction of the MLP-based diagnostic system to the
vector containing information about the spectrum components during the occurrence of
mixed faults confirms the lack of influence of demagnetization on the effectiveness of ITSC
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detection. The effectiveness of the evaluation of the degree of defect presented in Figure 5c
was greater than 98%.
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The results of the experimental verification (response to test samples) of the MLP-
based damage detector are presented in Table 2. In Table 2, the two types of accuracy can
be distinguished: detection accuracy, understood as the ability to recognize the difference
between a state of no damage and a defect; and classification effectiveness, defining the
ability to recognize the type and degree of damage, e.g., the number of shorted turns
(Equation (3)).

ηc =
xP
xN

· 100% (4)

where: ηc—classification effectiveness, xP—number of correct neural network responses in
the category considered, xN—number samples in the category considered.

Table 2. The experimental validation of MLP-based PMSM fault detector.

DEM ITSC MIXED

Approximate
efficiency of fault
detection

≈100% ≈99% ≈100%

Approximate
efficiency of fault
level classification

≈100% ≈94% ≈98%

DEM—demagnetization
ITSC—inter-turn short-circuits
MIXED—simultaneous faults of PMSM stator winding and rotor magnets
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4.2. The PMSM Stator and Rotor Fault Detector Based on Self-Organizing Kohonen Maps

Neural data classifiers based on self-organizing Kohonen maps can both act as a
detector and provide a preliminary assessment of the degree of damage. During the
research, information from the voltage spectrum induced in the measuring coils was
used [2,24]. For this purpose, two measuring coils were used, placed on the outer part of
the motor, the first coaxial with the shaft (uC1) and the second radially placed (uC2). The
input vector of the SOM network with 100 neurons (map dimension 10 × 10) consisted of
the spectrum amplitudes at frequencies: fsuc1, fsuc2. The network training process was
carried out according to the “Winner Takes Most” method using the Gaussian neighborhood
function for 500 learning epochs. During network training, a vector of learning data from
144 measurements performed on a real object was used. The application of the Kohonen
network in the PMSM motor diagnostic system discussed in the following included the
detection and assessment of the degree of stator damage, as well as the detection of the
rotor defect (Figure 6a,b). An additional aim of the research was to check the influence of
demagnetization on the possibility of detection of inter-turn short-circuits (Figure 6c).
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Figure 6. Experimental verification of the SOM-based fault detector of the PMSM motor: (a) fault
classification—SOM response for training data; (b) assessment of stator damage degree—SOM
response for training data; (c) simultaneous fault of the PMSM stator and rotor—SOM response
for training dataset: Nsh—number of shorted turns, Ndem—permanent magnet technical condition
(0—unfaulty, 1—partial demagnetization).

Based on the network responses to the training data, approximate zones characteristic
of the damage categories were obtained. To show the classification ability of the SOM,
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in these investigations, the analysis of individual network responses was first replaced
with the mean value of the Euclidean distance measures for all training samples (Figure 6).
Due to this, it was possible to verify the correctness of the network for training data, as
well as to accurately separate zones characteristic of individual forms of PMSM damage.
Characteristic zones can be considered as areas of the minimum distance between input
vectors and neurons of the Kohonen map.

As can be observed in Figure 6a, the area of the map characteristic of no damage
(blue color) is separated from those assigned to the failure states. Moreover, the areas
characteristic of the stator (yellow color) and permanent magnet (red color) faults are
located in the extreme parts of Kohonen’s map.

In most of the known applications of SOM in fault diagnostic applications, Kohonen’s
map analysis consists of observing an active neuron and assigning it to one of the observed
zones (concentration of active neurons with the same characteristic features) [6,7]. Therefore,
the next part of the verification focused on the analysis of neuronal activity in areas of the
Kohonen map specific to individual fault categories (Figure 7). The characteristic areas
presented in Figure 7 are the result of the analysis of the response of the network in the form
of Euclidean distance measures to the given input vectors presented in Figure 6. The SOM
zones marked correspond to the shortest distance to the input vector assigned to one of the
fault categories. On the basis of developed Kohonen maps, it was possible to determine the
affiliation of an active neuron to one of the considered types of PMSM damage.
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The analysis of the Kohonen maps presented in Figure 7 shows that damage to the
stator and rotor of the PMSM motor resulted in the activation of neurons in different
areas of the map. The zones characteristic of the undamaged motor and the defect of the
permanent magnet are separated (Figure 7a). Additionally, as can be seen in Figure 7b,
due to the short-circuit of a small number of turns, neurons located near the zone assigned
to the undamaged motor (Figure 7b) are activated. This fact results in the partial overlap
of the areas for the short-circuit condition and no damage to the PMSM motor. With an
increase in the number of short-circuited turns, active neurons gradually move away from
the area characteristic of the undamaged motor. The next stage of the research concerned
the assessment of the possibility of detecting turn-to-turn shorts during the simultaneous
occurrence of permanent magnet damage (Figure 8).
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The analysis of the responses of the Kohonen network shown in Figure 8 shows that it
is possible to assess the degree of stator damage in the case of mixed damage. With the
increase in the number of short-circuited turns, neurons are activated toward the zone
assigned to short-circuited turns. However, the activity of neurons in the area characteristic
of permanent magnet damage shows that this defect has a predominant influence on
diagnostic signals.

4.3. Comparison of Diagnostic System Based on Neural Networks

The use of shallow neural structures in electrical machine diagnostics is currently the
basic approach to the design of automatic fault detection systems. However, currently
developed systems based on the direct processing of signals by deep neural networks shed
new light on the approach to assessing the technical condition of machines. The possibility
of omitting the stage of symptom extraction using signal-processing methods while main-
taining very high precision speaks to the use of deep learning in diagnostic tasks. On the
other hand, the implementation of such systems is much more difficult, especially in the
case of microprocessor systems with limited computing capacity and without the memory
necessary to store a large number of network parameters (neural connections) [2,25–27].
In connection with the above, the process of designing diagnostic systems should assume
a compromise between the required system tasks (detection/classification/prediction),
drive-system operating characteristics (load and speed changes, dynamic properties), and
hardware capabilities (hardware implementation).

In the case of drive systems with known dynamics, where the only requirement is to
detect a fault state to switch to a redundant system, a good approach is to use classic neural
structures based on known signal-processing methods. They enable easy implementation
of the NN-based fault detector in programmable systems. In addition, they do not require
a very large set of training data. The detection and assessment of the degree of damage
possible in dynamic states force the use of deep structures or the extension of the classical
approach with the extraction of symptoms using higher-order methods of signal analysis.
However, the use of deep structures extends the design time of the systems due to the
difficulties in selecting the parameters of the structure and the training process, and the
long training time associated with a very large dataset [2,26,27]. On the other hand, the use
of higher-order methods for signal preprocessing, due to a large number of calculations,
significantly extends the process of extracting symptoms, which, assuming dynamic states
of drives, does not bring the expected results.
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Based on the research of the authors on the use of artificial neural networks in the
diagnostics of electrical machines, four basic structures are compared in Table 3: SOM,
which is the basic data classifier, is used especially in the tasks of distinguishing the type
of fault (categorization); MLP used to detect and assess the exact technical condition of
the machine (damage level classification); CNN, which is the basic representative of deep
learning in the field of diagnostics [2,25]; and CNN-TL (CNN with transfer learning), which
is the latest approach to fault diagnosis [28].

Table 3. Comparison of the neural network-based methods of PMSM fault diagnostic.

Evaluation Categories SOM MLP CNN TL-CNN

Size of training dataset Small Small Large Large
Training time Short Short Long Medium
Selection of training-process parameters Easy Easy Difficult Medium
Number of neuronal connections Small Small Large Large
Selection of neural structure Easy Easy Difficult Medium
Accuracy of fault classification Low Medium High High
Accuracy of fault detection High High High High
Signal preprocessing Necessary Necessary Not necessary Not necessary
Analysis of neural network response Difficult Medium Easy Easy
Reaction time to fault occurring Seconds Seconds Milliseconds Milliseconds
Technical condition assessment time Seconds Seconds Milliseconds Milliseconds
Hardware implementation Easy Easy Difficult Difficult

The comparison of the characteristics of individual neural structures used in electri-
cal machine diagnostics, presented in Table 3, determines the general nature of systems
based on shallow and deep neural structures. On the basis of the comparison, it can be
unequivocally stated that in terms of the simplicity of designing detection systems, the
classic structures of the multilayer perceptron and Kohonen networks stand out. The
disadvantage of these methods is the low precision of the assessment of the degree of dam-
age, especially in the case of turn-to-turn faults. This fact is related to small quantitative
changes in the input vectors, which can be a serious limitation during the operation of
the diagnostic system for various operating conditions of the machine (changes in load
torque and rotational speed). Additionally, the use of preprocessing for NN input signals
extends the response time of the system to any fault that occurs. Resignation from signal
preprocessing is primarily associated with DNN [2,25,26]. This approach ensures a short
reaction to damage and eliminates the need to empirically determine the symptoms of
damage (developing the input vector of the network). The entire process of the extraction
and inference of symptoms takes place inside the DNN structure. This is possible only due
to a very extensive network architecture and, most of the time, many hours of training
processes involving a large dataset [25,26]. Moreover, DNN networks require excellent
knowledge regarding fine-tuning network hyperparameters. Due to the lack of formal
rules for their selection, the training process and thus designing a diagnostic system are
difficult. A partial solution to the problem of developing diagnostic applications based on
DNN is the use of the idea of transfer learning.

The DNN-structure training process, according to the idea of transfer learning in
its basic version, allows the use of a neural structure previously trained to develop a
diagnostic system for a new task [28]. Thanks to this, the development of seemingly new
structures does not require changing the parameters of the training process and selection
of architecture, but only updating neural connections in a small range of all network
connections. Extending the scope of the analyzed damage can be carried out based on the
ability to extract automatic features acquired by the primary neural structure in the training
process. Such an approach to the learning process, discussed by the authors in [28], allows
for a nearly 50-fold reduction in network training time compared to the standard approach.
In addition, the use of transfer learning is supported by the fact that there is no need to



Electronics 2023, 12, 1068 13 of 15

re-select the values of the hyperparameters of the neural structure, which is presented in
Table 3. However, an analysis of the results of the research presented in [2,25,26,28] allows
us to observe that the precision of the detection system based on classical deep network
convolutional learning and CNN using transfer learning does not differ significantly, and
the amount of agreement is more than 99%. Additionally, the response time of the systems
to an emerging fault was less than 0.06 seconds in both cases. In connection with the above,
the advantage of transfer learning over the classic approach to deep learning of CNN is
mainly due to the ease of designing new systems characterized for neural-network-based
transfer learning, resistance to interference assigned to instance-based transfer learning,
and the ability to freely expand the functions of diagnostic applications.

To summarize the presented comparison, it should be noted that the approach based
on shallow neural structures proposed in the article may be an optimal solution for a small
number of training data (e.g., 144 training samples for the analyzed case) compared to the
CNN (more than 7000 samples) and CNN-TL (5400 samples) used [2,28]. In addition, the
presented approach to the automatic extraction of areas characteristic of individual failures
based on information on Euclidean distance measures provides a much higher level of
automation in the process of designing diagnostic systems. It should be clearly emphasized
that the selection of the neural structure that constitutes the main decision-making element
of the diagnostic system should take into account both the computational capabilities of the
master system, the amount of available diagnostic information (learning vectors), and the
characteristics of the drive operation. Only then is it possible to select the neural structure
for the task performed without overloading the computing systems and maintaining high
precision in detection and classification.

5. Conclusions

These tests have demonstrated the effectiveness of the use of shallow neural network
structures in the detection process of the electric and magnetic faults of a PMSM motor.
Among the two NN structures presented in the paper, including distinguishing between
the damaged/undamaged state of the motor (fault detection) and the assessment of fault
levels of the PMSM stator winding (fault classification), the most effective is the multilayer
perceptron. The self-organizing Kohonen network used in the PMSM diagnostic system is
characterized by high precision in the detection and assessment of the degree of stator dam-
age. It should be noted that the experimental results presented in this article also confirm
the possibility of assessing the mixed damage of the stator winding and demagnetization
faults based on a simple spectral analysis of the stator phase current, which has not been
mentioned in the literature so far. However, it should be noted that the assessment of
the degree of the incipient inter-turn short-circuits is difficult due to the small changes of
the value of input vector elements (fault symptoms) due to the short-circuits on an early
stage. However, taking into account the results of the experimental tests, as well as the
advantages of the presented neural structures, such as ease of implementation, a simple
mathematical description of the training process and, very importantly, the small size of
the training vector, ensuring high efficiency of data classification, the proposed shallow
neural networks could constitute very good tools supporting PMSM diagnostic systems.
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