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Abstract: This paper presents a new sinusoidal position-tracking control scheme with a resonant
controller for linear motor drive systems. The sinusoidal tracking controller is designed without any
added algorithm for system identification and requires only approximate values of the mechanical
parameters. Therefore, the controller is simple and robust to parameter variations. The proposed
sinusoidal tracking resonant-based controller (STRC) is designed to track reference positions using a
cascade control structure with an inner current/force control with hysteresis current control followed
by a speed control loop with a resonant controller, and an outer position loop with a proportional
and velocity-feedforward controller. The stability of the cascade feedback scheme and its parameter
tuning are analyzed using the Routh–Hurwitz criterion. The performance of the proposed control
scheme is validated using simulations and experiments on a voice-coil linear stage. The proposed
STRC strategy is characterized by ease of implementation and shows excellent performance with fast
response and high accuracy at different frequencies with a maximum error of 0.58% at 0.25 Hz.

Keywords: cascade control; linear servomotor; nonlinear friction; resonant controller; sinusoidal
tracking; voice-coil motor

1. Introduction

The motion control industry requires high-performance servomotor drives with linear
torque or force control as well as high acceleration and frequency actuation. Voice-coil
actuators (VCAs) are therefore ideal for this industry primarily due to their special structure,
which offers a high amount of power per unit of volume, quiet operation, and smooth
motion without backlash. Additionally, VCAs are fairly inexpensive compared to other
linear actuators and are simpler to operate and control, making them advantageous for
many motion-control applications [1–5]. The rotary VCA is, for example, commonly used in
hard-disk drives to position the read/write head over the disk side [1,2]. On the other hand,
linear VCAs are used for low-cost ultrasound scanners or in optical disk drives for the radial
positioning of the objective lens [4,5]. The use of VCA in fast-steering mirrors is described
in [6]. These mirrors require precise positioning to correct images captured by satellites.
This is achieved using magnetic suspension and VCAs for low friction and responsive
movement. The authors of [7] propose a method for real-time monitoring and compensation
of motion coupling in a UAV multi-gimbal electro-optical pod using ultrasonic motors and
VCAs, resulting in improved stability compared to traditional methods. The authors of [8]
present a design of a 4-DOF VCA aimed at reducing laser geometrical fluctuations in the
fast-steering mirror laser compensation system. Furthermore, [9] proposes a novel 3-DOF
spherical VCA to address issues such as reduced efficiency, volume, response speed, and
positioning accuracy compared to using multiple 1-DOF motors.

Although linear VCAs display low friction as a characteristic, their inherent nonlin-
earity can impact the performance of their positioning system when additional nonlinear
friction is involved. Moreover, in most servomechanisms, a moving stage is always coupled
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to the VCA through a linear bearing system. Additional sensors are also integrated for posi-
tion feedback. This adds to the complexity of the overall system assembly. The integration
of multiple discrete components will therefore be crucial, as it affects the reliability and the
overall performance of the drive system.

In a linear servomechanism, there are two classes of friction, the first being static (be-
tween two surfaces not in relative motion) and the second being dynamic. The conventional
method to represent static friction is a constant Coulomb friction force represented by a
signum function that depends on the velocity direction. The disadvantage of this model
is that friction is undefined at the velocity zero-crossing. Many improved models have
been suggested in the literature to overcome this problem. This includes, for example, the
Karnopp model and the Armstrong model [10]. More complex dynamic models have also
been introduced to describe the dynamic behavior of friction such as the Stribeck effect and
stick-slip limit cycles [11–13].

Force ripple due to cogging is another known disturbance force within linear drives.
This is in addition to friction and reluctance forces [11]. Force ripple is usually described as a
sinusoidal function of load position and is far more complex in shape as a result of variations
in magnet dimensions in reality. This therein adds to the complexity of developing control
algorithms that estimate and compensate for friction and force ripple. The problem of
tracking sinusoidal and periodic disturbances and their cancellation has been addressed in
many applications such as CD players and disk drives. The adopted technique known as
“repetitive control” is usually used successfully to cancel such disturbances [14,15].

In the literature, researchers usually adopt frequency response or time response anal-
ysis for determination of mechanical as well as frictional parameters. There are various
published models for the modeling and identification of friction [16–18], each carrying
both advantages and disadvantages. Models are proposed based on physical insights, with
some reporting extensive physical modeling yielding fixed structures accompanied by
parameters of uncertain and unknown numerical values.

Friction compensation can be achieved by following two general techniques. The first
approach relies on the determination of an accurate dynamic model of friction combined
with its parameters’ identification procedure. This model is next combined with the motor
drive model to design the adequate friction compensation scheme [2,11,12]. On the other
hand, the second approach does not need to establish any friction model and treats friction
as a system disturbance. Robust and adaptive control structures are then designed and
optimized to counteract the disturbance effects [11–13,19,20].

Several researchers also propose adaptive disturbance rejection control (ADRC) for fric-
tion and disturbance compensation. ADRC was developed by modeling all the unknown
dynamics and external disturbances to the given system as a one-equivalent disturbance.
This total disturbance is next estimated by an extended-state observer in real time, and
then used by the control law for disturbance rejection [21–25]. In [21], the authors proposed
a nonlinear position-tracking controller with a disturbance observer to trace the required
position despite a manifested disturbance in electrohydraulic actuators. The nonlinear
controller has a cascade structure with an inner-load pressure control loop and an outer
position loop with a backstepping controller. In [22], the authors propose an ADRC-based
control method with a single position feedback loop to improve the dynamic performance
of the voice-coil motor. The proposed control scheme is validated by simulation and experi-
ments and is shown to perform much better than traditional cascaded-loop PI controllers.
In [23], the authors use ADRC for the speed control of a VCM servo-drive system. The
controller parameters were tuned using a neural network with a radial basis function.
The proposed algorithm was compared to a PID controller to highlight the achieved high
performance. In [24], an improved ADRC controller is proposed. Simulation results show
that the improved ADRC has a fast response, high precision, and strong robustness to
disturbances. Another improved method based on sliding-mode ADRC is presented in [25].
Internal and external perturbations are estimated, along with position and velocity, and
used for disturbance compensation.
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Moreover, resonant controllers have been commonly used for sinusoidal tracking
in power systems, active power filters, and active power factor correction, among other
applications [26–34]. Nevertheless, a stable and robust realization of a perfect resonant
controller is difficult to accomplish practically. Accordingly, quasi-resonant controllers are
typically utilized in practical applications. Model predictive control has also been used for
sinusoidal reference tracking in combination with resonant control [35,36].

All these approaches have their respective advantages addressing some specific problems
for the studied systems. However, they are model-based control techniques and require
accurate knowledge of the system or an additional identification algorithm for identifying
model parameters. In addition, there is hardly one method which can tackle the precise signal
tracking issue for a wide frequency range, especially at low frequencies where the influence of
nonlinear disturbances such as static and Coulomb friction are dominant.

Model reference adaptive control (MRAC) has also been used in the literature to control
servo-drive systems without prior knowledge about the system parameters [37–39]. MRAC
is a control method that uses a reference model to generate a desired response, and the
control action is adjusted in real time based on the difference between the actual response
and the desired response. The parameters of the reference model are updated using adaptive
algorithms that continuously learn the system dynamics based on the plant’s response. This
allows MRAC to handle changes in plant dynamics over time, making it a powerful tool
for controlling systems without prior knowledge of their parameters. MRAC can result in
improved control performance compared to traditional controllers and is well-suited for
applications in which the system parameters are difficult or expensive to measure.

The suggested model-free approach provides many advantages over model-based
methods, particularly the ease of implementation across various systems. The model-
free approach also relieves the user of the requirement to be an expert on the model,
unlike the extensive friction models that require a time-consuming identification-based
modeling phase for each run. Furthermore, linear VCA stages are characterized by
position-dependent friction, a feature that is not simple to include in currently available
friction models.

The main contribution of this paper is the design and implementation of a sinusoidal
position-tracking control scheme with a new resonant controller for use in linear motor
drive systems. This paper follows the same approach used in model-based controls, where
all the nonlinearities such as friction are represented as external system disturbances.
The sinusoidal resonant tracking controller is designed without any added algorithm for
system identification and requires only approximate values of the mechanical parameters.
Therefore, the controller is simple and robust to parameter variations. The aim is to
enhance the accuracy of positioning by rectifying the nonlinear behavior of velocity during
zero-crossing caused by Coulomb and static friction.

The proposed sinusoidal tracking resonant-based controller (STRC) shows excellent
dynamic performance with fast transient response, high accuracy, and good disturbance
rejection compared to existing control methods. A new resonant controller combined
with an optimal cascade control structure is proposed. The corresponding parameter-
tuning method is characterized by ease of implementation without the need for the exact
knowledge of the mechanical system parameters. The performance of the proposed method
is validated via simulations and experiments.

The paper is organized as follows: Section 2 outlines the mathematical model of the
linear voice-coil actuator. Section 3 presents the proposed STRC control scheme. Section 4
introduces the ADRC method. Section 5 discusses the experimental setup and results.
Finally, Section 6 concludes the paper with a summary of the conclusions.

2. System Modeling

The linear servomotor used in this study is a linear voice coil-actuator (VCA), as
illustrated in Figure 1. The VCA is an electromechanical device, which can be described by
the following equations of motion [40]:



Electronics 2023, 12, 977 4 of 24

Laiaia

va

Ra

H-Bridge

Hysteresis 
Controller

PWM

iref

+

-

+

-

x

M

Fm

em

Fc

B . v

+
-

Figure 1. Equivalent model of a voice-coil DC motor.

La
dia

dt
= Va − Raia − em, (1)

em = Kbv, (2)

M
dv
dt

= Fm − Fcsign(v)− Bv, (3)

v =
dx
dt

, (4)

Fm = K f ia, (5)

where v and ia are the motor linear velocity and coil current; Ra and La, are the resistance
and inductance of the coil; Va, em, and Kb are the applied voltage, back electromotive force
(EMF), and back EMF constant; M and B are the mass and viscous friction coefficient; Fm
and K f are the actuator force and force constant; and Fc is the Coulomb friction force.

The linear VCM has a cascade control structure with an internal hysteresis current-
controller. The hysteresis current control loop allows for decoupling of the electrical
dynamics from the mechanical dynamics. When the current hysteresis band is sufficiently
small, the current/force control loop can be represented by an equivalent first order system
with a transfer function given by:

Gc(s) =
Fm(s)
Ire f (s)

=
K f

1 + τcs
, (6)

where τc is the equivalent time constant of the current control loop in (sec). The equivalent
motor transfer function is therefore reduced to:

Gm(s) =
v(s)
F(s)

=
Km

1 + τms
, (7)

where

Km =
1
B

, (8)

τm =
M
B

. (9)

3. Controller Design

The proposed STRC controller is designed to track the reference position using a
cascade control structure with an inner current/force control with hysteresis current control
followed by a speed control loop with a resonant controller, and an outer position loop
with a proportional and velocity-feedforward controller. The proposed control scheme is
illustrated in Figure 2. The linear motor drive system is represented by its equivalent block
diagram with the internal current control loop. The main disturbance consists of Coulomb
and sticktion frictions. Any additional load torque is represented as a disturbance to the
linear system.
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Figure 2. Block diagram of sinusoidal tracking with a resonant-based controller (STRC).

For the velocity control loop, we propose a new particular structure of a resonant
controller. Its transfer function is given by:

Krc(s) = Kv
(s + α)2

s2 + ω2
0

, (10)

where Kv and α are the controller parameters to be tuned and ω0 is the reference signal
frequency in (rad/s).

According to the internal model principle, the resonant control system will asymp-
totically track sinusoidal references and reject disturbances at the given frequency. The
primary task of a resonant controller is achieved through the following control action:

Cr(s) =
s

s2 + ω2
0

. (11)

Similar to the integral action in the case of a constant reference, this resonant control
action is able to provide the required stability and zero steady-state tracking error. Using
the same principle as in a PID control, added control actions can be incorporated to achieve
suitable performance. Taking the derivative and integral of the main (resonant) control
action yields:

Cd(s) = sCr(s), (12)

Ci(s) =
1
s

Cr(s). (13)

The resonant controller given by (10) can be therefore written as a linear combination
of the additional control actions:

Krc(s) = KvCd(s) + 2αKvCr(s) + Kvα2Ci(s). (14)

Only two parameters need to be selected for the resonant controller, which simplifies
the design procedure. The design procedure can be summarized as follows. Kv and α are
selected such that fast transient response and stability are achieved. Kv should be set to a
value high enough to guarantee the stability of the internal velocity loop. The advantage of
this resonant controller is that the stability margin is not compromised when Kv is increased.
The boundary condition on Kv is defined by using Routh’s stability criterion and the root
locus method.

Let K = KvK f Km and assume the disturbance to be zero. Then, the internal velocity
open-loop transfer function is given by:

Golv(s) = Krc(s) · Gc(s) · Gm(s) =
K(s + α)2(

s2 + ω2
0
)
(1 + τcs)(1 + τms)

. (15)

The closed loop transfer function for the internal velocity loop is given by:
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Gclv(s) =
K(s + α)2

denclv
, (16)

where

denclv = τcτms4 + (τc + τm)s3 + (1 + ω2
0τcτm + K)s2 + (ω2

0(τc + τm) + 2αK)s + Kα2 + ω2
0. (17)

The outer position loop includes a proportional controller and a velocity-feedforward
controller. The position controller is given by:

Gp(s) = Kp. (18)

The open loop transfer function for the whole system is given by:

Golp(s) = Gclv(s) ·
Kp

s
=

KpK(s + α)2

s denclv
. (19)

The closed loop transfer function for the system is given by:

Gclp(s) =
KpK(s + α)2

s denclv + KpK(s + α)2 . (20)

The overall control scheme parameterization makes the STRC controller a function of
three parameters, namely the position loop-gain Kp, the resonant controller gain Kv, and
the zero α. The flexible range of these variables greatly simplifies the tuning process as
described in the following section.

3.1. Velocity Controller Design

Velocity controller gains are designed by deriving the upper and lower bounds using
the stability analysis of the velocity control with the Routh–Hurwitz criteria [41]. Given
the denominator of the closed loop transfer function in Equation (16), the Routh table is
derived as shown in Table 1.

Table 1. Routh table for the velocity control loop.

s4 τcτm 1 + ω2
0τcτm + K Kα2 + ω2

0

s3 τc + τm ω2
0(τc + τm) + 2αK 0

s2 Av Bv

s1 Cv 0

s0 Dv = Bv 0

To simplify the calculations, let:

τsum = τm + τc, (21)

τprd = τm × τc, (22)

1
τeq

=
1

τm
+

1
τc

=
τsum

τprd
. (23)

Then, the terms Av, Bv, Cv, and Dv in Table 1 can be found to be:

Av = −2 K τeq α + K + 1, (24)

Bv = K α2 + w0
2, (25)

Cv =
Av
(
ω2

0τsum + 2αK
)
− Bvτsum

Av
, (26)
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Dv = Bv = K α2 + w0
2. (27)

For the system to be stable, the terms Av, Cv, and Dv must be greater than zero. For
condition Av > 0, α can be found as:

α <
1

2 τeq

(
1
K
+ 1
)

. (28)

A conservative boundary condition for α can be used which allows for α to be chosen
independently of Kv as follows:

α <
1

2 τeq
. (29)

Rearranging the condition, Cv > 0 leads to the boundary conditions:

Kv > 0, (30)

and

Kv >
1

2K f Km

[
2− τsum α

2 α τeq − 1
− w0

2 τsum

α

]
. (31)

A conservative condition for Kv can be used which allows for Kv to be chosen inde-
pendently of ω0 as follows:

Kv >
1

2K f Km

[
2− τsum α

2 α τeq − 1

]
. (32)

On the other hand, the condition Dv > 0 is always satisfied when Kv > 0.
The resonant controller-tuning procedure can be summarized as follows:

• The variable α is selected to satisfy the condition given in (29).
• The gain Kv is selected to satisfy the condition given in (32).
• The above two conditions can be achieved without the exact knowledge of the mechanical

system parameters K f , Km, τc, and τm. Only approximate values of these parameters are
needed to select the appropriate controller variables and assure system stability.

• The current control loop time constant τc is usually very small compared to the
mechanical time constant τm. Therefore, 1

τeq
' 1

τc
. This gives more flexibility in the

selection on the variable α.

Figure 3 shows the root locus plot for the velocity loop as a function of the gain Kv for
α = 100. It can be shown that, for different values of α, the system is always stable if Kv is
bigger than the lower bound set by Equation (32). This lower bound corresponds to the
crossing of the imaginary axis on the root locus as Kv is increased. Therefore, as the gain Kv
is increased, a higher stability margin is achieved.
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(a) (b)

Figure 3. (a) Root locus plot for the internal velocity loop as a function of the gain Kv; (b) zoomed
view of the root locus. For small values of Kv, the closed-loop system poles move to the right-hand
s-plane. To guarantee stability, Kv should be increased beyond a lower-bound value.

3.2. Position Controller Design

The position controller gain is designed by deriving the upper bound using the closed-
loop transfer function given by (20) along with the Routh–Hurwitz stability criteria. The
Routh table is shown in Table 2.

Table 2. Routh table for the position-control loop.

s5 τcτm 1 + ω2
0τcτm + K (2αKp + α2)K + ω2

0

s4 τc + τm ω2
0(τc + τm) + (Kp + 2α)K α2KpK

s3 Ap Bp 0

s2 Cp Dp

s1 Ep 0

s0 Fp = Dp 0

The terms Ap, Bp, Cp, Dp, Ep, and Fp in Table 2 can be found to be:

Ap = K− K τeq
(
2 α + Kp

)
+ 1, (33)

Bp = w0
2 + K α2 + Kp K α

(
2 − α τeq

)
, (34)

Cp =
Ap
(
ω2

0 τsum + (Kp + 2α)K
)
− Bp τsum

Ap
, (35)

Dp = K α2 Kp, (36)

Ep =
BpCp − ApDp

Cp
, (37)

Fp = Dp = K α2 Kp. (38)

For the system to be stable, the gain Kp should satisfy the following four conditions.
The variables Kv and α are assumed to be given and have been selected based on the
velocity-loop stability criteria.
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Ap > 0,

Cp > 0,

Ep > 0,

Fp > 0.

(39)

The Ap condition is: (
−K τeq

)
Kp + K− 2 K α τeq + 1 > 0, (40)

Kp <
K− 2 K α τeq + 1

K τeq
. (41)

The Fp condition is:

K α2 Kp > 0, (42)

Kp > 0. (43)

The Cp condition is:

c1 Kp
2 + c2 Kp + c3 > 0, (44)

where

c1 = −K τeq, (45)

c2 = −
(

w0
2 − α2

)
τprd − 4 α K τeq − 2 α τsum + K + 1, (46)

c3 = −
(

α2 − w0
2
)

τsum − 2 α w0
2 τprd − 4 α2 K τeq + 2 α(1 + K). (47)

Equation (44) can be solved by calculating the roots Kp1 and Kp2 of the equation and
setting Kp to be between the roots Kp1 < Kp < Kp2.

The Ep condition results in a third order inequality for the gain Kp:

e1 Kp
3 + e2 Kp

2 + e3 Kp + e4 > 0, (48)

where

e1 = −2 K3 α τeq, (49)

e2 = K2 (2 α + 2 K α + α2 τeq − 4 α2 τsum − τeq w0
2 + 4 α3 τeq τsum − α4 τeq

2 τsum

− 8 K α2 τeq + α2 τeq
2 τsum w0

2 − σ2),
(50)

e3 = K σ1

(
−τeq τsum w0

2 + K− 4 K α τeq + 1
)
− K α2 σ3

2 + 2 K α τsum
(
α τeq − 2

)
σ1

− K α
(

τsum w0
2 + 2 K α

) (
α τeq − 2

)
σ3,

(51)

e4 = K σ1 (2 α + 2 K α− α2 τsum + w0
2 τsum − 4 K α2 τeq − σ2), (52)

and

σ1 = K α2 + w0
2,

σ2 = 2 α τeq τsum w0
2,

σ3 = K− 2 K α τeq + 1.

(53)
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Equation (48) can be solved graphically using the Matlab Symbolic Toolbox to find the
upper bound on Kp for given values of Kv, α, and ω0. The Matlab Symbolic Toolbox utilized
in our work was version 2021b provided in the MATLAB software suite developed by ©
MathWorks, Inc. (Natick, MA, USA). The Matlab Symbolic Toolbox is a tool in MATLAB for
symbolic math computations, including solving mathematical equations and performing
calculus operations.

Figure 4 shows the root locus plot for the outer position loop as a function of the gain
Kp for Kv = 10, α = 100, and f0 = 10Hz. Figure 5 shows the upper boundary curves
obtained from the conditions in (39). It can be observed that boundary condition Ep > 0 is
the dominant curve to limit the value of Kp. For a large value of the gain Kv, the curves for
Ep > 0 and Ap > 0 get close to each other. It was also observed that the variable ω0 has
little effect on the second and third boundary conditions. Since the analytical expression
of condition 1 (Ap > 0) is relatively simple, it can be used to find the upper boundary
condition for Kp when Kv is relatively large.

(a) (b)

Figure 4. (a) Root locus plot for the outer position loop as a function of the gain Kp; (b) zoomed view
of the root locus. The system is stable as the gain Kp is increased up to the upper boundary value
given by (39).
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Figure 5. Maximum boundary conditions for the gain Kp as a function of α for f0 = 1.0 Hz and
(a) Kv = 100, (b) Kv = 10.
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4. Active Disturbance Rejection Controller

The active disturbance rejection controller (ADRC) is one of the highly effective
controllers that have been shown to be superior to classical PID controllers. The ADRC was
first proposed by Prof. Han Jing-Qing in 1995, and it has been used in various applications
in much of the relevant literature [23,42].

The ADRC is a nonlinear controller with an error-driven scheme that can effectively
control a dynamic system without requiring an accurate model [42]. Figure 6 shows the
configuration of the controller, consisting of three main components: a tracking profile
generator (TPG), a nonlinear weighted sum (NWS), and an extended state observer (ESO).

In reference tracking systems, it is desired to design reference signal xre f (t) in a physi-
cally feasible way to minimize tracking and initial errors. The TPG, introduced by Han, is a
reference generator used in ADRC to smooth sudden changes in the reference signal. It
helps to track the output of the TPG during sudden overshoot, reducing unexpected over-
shoot and rapidity of the PID controller while preserving the system response speed [42].
The TPG can be designed in the discrete-time domain as follows:

r1(t + 1) = r1(t) + h r2(t),

r2(t + 1) = r2(t) + h f han(r1(t)− xre f , r2(t), κ, h0),
(54)

where r1(t) is the control target, r2(t) is the derivative of the desired trajectory at t, and h
is the sampling time. Han’s function, f han(·), represents Han’s function with parameters
κ, the tracking speed factor, and h0, the tracking filtering factor. κ controls the speed of
transition and h0 affects the smoothness of the output response [42,43]. The Han’s function
f han(ε1, ε2, κ, h0) is defined as follows [42,43]:

d = κ h0, d0 = h0 d, g = ε1 + h0 ε2, (55)

a0 =
√

d2 + 8 κ |g|, (56)

a =

{
ε2(k) +

g
h0

, |g| < d0

ε2(k) +
sign(g)(a0−d)

2 , |g| ≥ d0
, (57)

f han =

{
κ a

d , |a| ≤ d
−κ sgn(a), |a| > d

. (58)

The parameters κ and h0 are adjusted individually to match the desired tracking speed
and smoothness of the system’s output response, but there is no constructive technique for
tuning them, as per [43]. The NWS uses a nonlinear function that relies on error signals to
produce the control signal. It calculates state variable errors by taking the difference between
the TPG output and ESO state variables. Then, the control signal u(t) is derived, as per [43].

u(t) =
−z3(t) + ϕ1 f al(e1(t), λ1, ψ1) + ϕ2 f al(e2(t), λ2, ψ2)

b0
, (59)

where e1 = r1 − z1 and e2 = r2 − z2, b0 = K f /M, ϕ1 and ϕ2 are controller gains, and λ1, λ2,
ψ1 and ψ2 are the parameters of the function f al(·). Substituting (59) in (64), if the ESO is
very accurate, the result of F(y(t), u(t), d(t))− z3 can be negligible. Therefore, (59) can be
written as,

ÿ(t) = ϕ1 f al(e1, λ1, ψ1) + ϕ2 f al(e2, λ2, ψ2). (60)

The controller’s tuning is simplified by setting ϕ1 = 3ωc
2 and ϕ2 = 3ωc, where ωc is

the closed-loop control bandwidth [24,25,43]. The larger ωc is, the faster the response. Both
ω0 and ωc are limited by hardware constraints, and ω0 is commonly set to 3 ∼ 5ωc.

The ESO uses dynamic functions to estimate unmeasurable variables, such as errors and
disturbances. It outputs 3 signals: z1(t) approximates y(t), z2(t) approximates y(t)′, and z3(t)
approximates disturbances. The control signal is adjusted based on the ESO estimates’ accuracy.
Equation (61) defines the observer design, and observer gains are tuned by ω0 in Equation (63).
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e(t) = z1(t)− y(t),

z1(t + 1) = z1(t) + h[z2(t)− χ1 e(t)],

z2(t + 1) = z2(t) + h[z3(t)− χ2 f al(e(t), ε1, η1) + b u(t)],

z3(t + 1) = z3(t)− h[χ3 f al(e(t), ε2, η2)],

(61)

where χ1, χ2, and χ3 are observer gains, and ε1, ε2, η1, and η2 are parameters for the
function f al(·) in Equation (62):

f al =

{
e

η1−ε |e| ≤ η

|e|ε sign(e), |e| > η
, (62)

where ε is specified in the range (0, 1) and η is a multiple of the sampling time h.

χ1 = 3 ω0,

χ2 = 3 ω0
2,

χ3 = ω0
3.

(63)

A greater value for ω0 means the observer runs faster.
As seen in Figure 6, the ESO takes system output y(t) and control signal u(t) as

inputs. It generates 3 signals: z1(t) approximates y(t), z2(t) approximates y(t)′, and z3(t)
approximates disturbances. The ADRC adjusts control based on the ESO’s accuracy in
estimating uncertainties, including model errors [24,42,43].

Transient 
Profile 

Generator

Nonlinear 
Weighted 

Sum 

Extended 
State 

Observer

Figure 6. Block diagram of active disturbance rejection controller.

Consider a dynamic system represented by the following equation [23,42,43]:

ÿ(t) = F(y(t), u(t), d(t)) + b0 u(t), (64)

where y(t) is the system’s output, u(t) is the control signal, d(t) is an external disturbance,
and b0 is an approximate estimate of the control signal gain. F(t) is the generalized
disturbance that is estimated in real time and compensated by the control signal, u(t) [44].

Let x1(t) = x = y(t), x2(t) = ẋ1(t) and x3(t) = F(t). Assuming the unknown function
F(t) is differentiable, then δ(t) = Ḟ(t), and the system can be expressed in the state-space
model as follows:

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + b0 u(t),

ẋ3(t) = δ(t),

(65)

with the system state x(t) = [x1(t), x2(t), x3(t)]T .
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For the voice-coil motor, the mechanical system equations with current control reduce
to only Equations (3)–(5), which can be expressed as:

dv
dt

=
1
M

(K f ia)−
1
M

Fc sign(v)− B
M

v. (66)

If the Coulomb friction is considered as a disturbance d, Equation (66) can be written as:

dv
dt

=
K f

M
ia −

1
M

d− B
M

v. (67)

Both viscous and Coulomb frictions can be combined as the generalized disturbance
F(y(t), u(t), d(t)). Equation (66) can now be written as:

dv
dt

= b0 ia + F(y(t), u(t), d(t)), (68)

where

b0 =
K f

M
. (69)

If the current control loop is assumed to be very fast, then:

ia = ire f . (70)

5. Results and Discussion
5.1. Experimental Setup

The linear voice-coil DC motor VCDS-051- 089-01-13 from MotiCont is adopted for
the experimental setup [45]. The linear stage has a 55.9 mm range of motion and a built-
in incremental encoder with 500 pulse/inch resolution. Another high-resolution analog
encoder is fitted to the moving stage to evaluate the linear position with a higher resolution
of 0.078125 µm. The actuator force is controlled through a hysteresis current-controller,
which is implemented in the dSPACE 1103 control board with a 10 µs sampling period.
Figure 7 shows the different components of the VCM positioning system.

Figure 7. Signals interfaced to the dSPACE 1103 controller board along with their corresponding
hardware components.

The VCM parameters (M, B, and Fc) are found using the parameter estimation toolbox
in Matlab. The VCM is operated in current-control mode with a square-wave reference cur-
rent signal, and the measured velocity is used for parameter identification. The equivalent
time constant of the current control loop τc is found using Matlab by finding the first order
transfer function of the digital hysteresis current-controller. The motor force constant K f is
given in the manufacturer datasheet. The nominal system parameters are listed in Table 3.
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Table 3. Nominal parameters of the voice-coil motor.

Parameter Value

M (Kg) 0.9232
B (N.s/m) 7.9124

Fc (N) 0.5035
K f (N/A) 10.1

Km (m/N.s) 0.1264
τm (s) 0.1167
τc (s) 0.002

Figure 8 shows the experimental results of the open-loop response to a sinusoidal
reference current/force at 1 Hz. The results clearly show the highly nonlinear behavior of
the VCM, which is mainly due to high nonlinear static and Coulomb friction. The velocity
dead-zone during zero-crossing induces flat peaks in displacement and result in a highly
distorted sinusoidal displacement curve.

Figure 8. Experimental results of the open-loop response to a sinusoidal reference current/force at 1.0 Hz.

5.2. STRC Response at Different Frequencies

Different experiments are next performed to test the closed-loop system and track sinu-
soidal references at different frequencies. The controller parameters are selected to satisfy the
stability constraints derived in Section 3. To allow a smooth transient, the position and speed
references are generated to start both from zero initial conditions as follows:

xre f (t) = Xm [1− cos(ω0 t)], (71)

vre f (t) = ω0 Xm sin(ω0 t). (72)

Figures 9–11 show the motor current, speed, position reference, actual position, as
well as the position error for three experimental tests with f0 = 1.0 Hz, 0.5 Hz, and 0.25 Hz
for α = 5, Kv = 20, Kp = 40. The maximum error is about 1.81e−4m, which corresponds to
0.72% of the reference signal amplitude at 0.25Hz. The corresponding settling time is about
0.12 s, which is very small and much less than a quarter of a cycle. Increasing the gain Kp
further within the maximum limit will lead to a shorter settling time.
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Figure 12 shows the system response at 0.25 Hz with a different gain setting for α.
The higher value of α = 50 is within the design constraint given by (29) and gives a better
system-tracking performance with a lower maximum error of about 0.58%. The position
distortion due to friction is greatly reduced.

(a) (b)

Figure 9. Experimental waveforms for sinusoidal position tracking at 1.0 Hz with α = 5, Kv = 20,
Kp = 40. (a) Current and velocity; (b) displacement and displacement error.

(a) (b)

Figure 10. Experimental waveforms for sinusoidal position tracking at 0.5 Hz with α = 5, Kv = 20,
Kp = 40. (a) Current and velocity; (b) displacement and displacement error.
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(a) (b)

Figure 11. Experimental waveforms for sinusoidal position tracking at 0.25 Hz with α = 5, Kv = 20,
Kp = 40. (a) Current and velocity; (b) displacement and displacement error.

Figure 12. Experimental waveforms for sinusoidal position tracking at 0.25 Hz with α = 50, Kv = 20,
Kp = 40.
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The effect of changing Kp is also studied. Figure 13 shows the zoomed view of the
transient response for three sinusoidal position-tracking experiments at 0.5 Hz with Kv = 20
and α = 5, and with Kp = 10, 20, and 40. It can be observed that as Kp is increased, the
transient and settling time are reduced.

Figure 13. Zoomed view of the transient response for three sinusoidal position-tracking experiments
at 0.25 Hz with Kv = 20 and α = 5.

5.3. Comparative Analysis of STRC with ADRC

The sinusoidal tracker has been further tuned and compared with the ADRC method
at three different frequencies with the same amplitude. The new STRC gains are α = 5,
Kv = 39.2, and Kp = 100, which still meet the design criteria presented in Section 3.1.

The ADRC parameters are selected using the design methodology presented in
Section 4 and are given as follows: wc = 30, wo = 150, κ = 9, ε1 = ε2 = 0.5, η1 = η2 = 0.1,
λ1 = 0.9, λ2 = 0.25, ψ1 = ψ2 = 0.1 and the sampling time h0 = 1 ms.

Figures 14–16 show the motor speed, position reference ,and actual position for three
experimental tests comparing the STRC and the ADRC methods at f0 = 1.0 Hz, 0.5 Hz,
and 0.25 Hz, respectively. The root mean square error (RMSE) for each full period at these
three frequencies is given in Table 4. It can be noticed that the RMSE at 1.0 Hz is an order
of magnitude better than the ADRC for both the position and the velocity.

It can be observed in Figure 14 that there is a noticeable phase shift for the ADRC
response. This phase shift is reduced as the frequency is reduced. At the lowest frequency,
the position and the velocity RMSEs for the STRC are still lower than the ADRC RMSE
values and with fewer oscillations around the zero-crossing region, as can be seen in
Figure 16.

Table 4. Root mean square error for one full period at three different frequencies comparing STRC
and ADRC methods.

Frequency
RMSE Position RMSE Velocity

STRC ADRC STRC ADRC

1.00 Hz 2.25× 10−5 3.48× 10−4 6.31× 10−4 2.53× 10−3

0.50 Hz 2.79× 10−5 6.90× 10−5 4.62× 10−4 1.00× 10−3

0.25 Hz 3.31× 10−5 4.51× 10−5 3.46× 10−4 5.30× 10−4
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(a) (b)

Figure 14. Experimental waveform comparison at 1.0 Hz. (a) Velocity; (b) displacement.

(a) (b)

Figure 15. Experimental waveform comparison at 0.5 Hz. (a) Velocity; (b) displacement.

(a) (b)

Figure 16. Experimental waveform comparison at 0.25 Hz. (a) Velocity; (b) displacement.
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It can be observed that for different frequencies, the STRC tracking is excellent, with
almost indistinguishable reference and output signals. It is also clear that the selection
of the controller gains is flexible while achieving the desired tracking performance. Only
approximate values of the nominal system parameters are needed to find the upper and
lower bounds of the controller gains. This confirms that position-tracking errors are
significantly decreased with the proposed STRC controller.

5.4. Response to System Parameters Variation

An extra mass of 100g has been added to the linear stage while it is moving, to compare
the response of both controllers. This extra mass represents about 10% of the linear stage
moving mass. Figures 17 and 18 show a comparison between the STRC and the ADRC
methods at f0 = 0.25 Hz, respectively, and using the same controllers’ parameters listed
in Section 5.3 when an extra mass is introduced to the system. For both controllers, two
periods are captured. The first period shows the transient response error when the system
starts from zero. In the second period, the extra mass is added to the moving stage, and it
shows the system response reacting to this disturbance.

In this experiment, the reference position is chosen to have an amplitude of 35 mm
rather than 25 mm, as in all previous experiments, to show the effect of adding the extra
mass to the system. From Figures 17 and 18, it can be observed that the maximum absolute
displacement error for the STRC method is about 0.6× 10−4 m, while the ADRC method is
about 2× 10−4 m. This experiment shows that while both methods are effective at canceling
the disturbance effect, the STRC is still superior in terms of tracking the reference input.

(a) (b)

Figure 17. Experimental waveforms for sinusoidal position-tracking using the STRC method for
two consecutive periods at 0.25 Hz showing the effect of extra mass when introduced in the second
period. (a) Current and velocity; (b) displacement and displacement error.
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(a) (b)

Figure 18. Experimental waveforms for sinusoidal position-tracking using the ADRC method for
two consecutive periods at 0.25 Hz showing the effect of extra mass when introduced in the second
period. (a) Current and velocity; (b) displacement and displacement error.

5.5. STRC Performance with Higher-Order Dynamics

The performance of the proposed STRC controller is further validated with a more
complex system by adding high-order dynamics to the VCM linear stage. The motor
assembly is assumed to include a flexible spacer between the slider and the load mass.
This elastic coupling results in a two-mass model (2MM) structure with a spring constant k
parallel to a viscous damping coefficient b, as shown in Figure 19.

Laia

va

Ra

+

-

+

-

x y

k

b

m2m1

Fm

em

Fc

B . v
FL

FL

Figure 19. Two-mass model of a voice-coil DC motor.

The spring constant k can be found as follows:

k =
m1m2wn

2

m1 + m2
, (73)

where wn is the resonant frequency of the elastic system in (rad/s).
The STRC controller is designed in this case by replacing the 2MM system with the

equivalent rigid system given in Figure 1, where M = m1 + m2. Without any tuning to the
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STRC controller’s parameters, the STRC gains which are used in Section 5.3 are used for
this experiment, i.e., α = 5, Kv = 39.2, and Kp = 100. The simulation results are obtained
at a frequency of f0 = 0.25Hz using Matlab/Simulink for the single mass model and the
2MM system with m1 = m2 = 0.5, M = 0.4616 kg, k = 22, 779 N/m, b = 10 N.s/m, and
ωn = (2π × 50) rad/s.

Figure 20 shows the hysteresis current-control signals for a simulation test comparing
the STRC with the single mass and the STRC with the 2MM system. Figure 21 shows the
motor speed and position signals for this simulation test. The root mean square error for a
full period is given in Table 5.

It can be observed that STRC tracking is excellent regardless of whether the system
is relatively simple or whether it includes higher-order dynamics. It can be noticed that
the velocity RMSE for the STRC is still better than that for the 2MM at this frequency. This
can be related to the higher oscillations in the reference current signal for the 2MM, as can
be seen in Figure 20b. It should be noted that the gains are not fine-tuned for the 2MM
and that a good performance can still be achieved. This shows the flexibility of choosing
the controller gains while achieving the desired tracking performance. Only approximate
values of the nominal system parameters are needed to find the upper and lower bounds
of the controller gains.

Table 5. Root mean square error for one full period at a frequency of 0.25 Hz comparing STRC and
STRC-2MM models.

Frequency
RMSE Position RMSE Velocity

STRC STRC-2MM STRC STRC-2MM

0.25 Hz 3.47× 10−6 3.50× 10−6 9.40× 10−5 1.23× 10−4

(a) (b)

Figure 20. Simulation waveform comparison at 0.25 Hz. (a) STRC hysteresis current-control signals;
(b) STRC-2MM hysteresis current-control signals.
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(a) (b)

Figure 21. Simulation waveform comparison at 0.25 Hz. (a) Velocity; (b) displacement.

6. Conclusions

In this paper, we proposed a new sinusoidal position-tracking control scheme with a
resonant controller for linear motor drive systems. The STRC controller is designed without
any added algorithm for system identification and requires only approximate values of
the mechanical parameters. Therefore, the controller is simple and robust in parameter
variations. An optimal feedback principle and corresponding parameter-tuning based on
the Routh–Hurwitz stability criterion are proposed, which are characterized by an ease of
design and implementation. Nonlinear friction and external disturbance were successfully
canceled by the proposed method. Experimental validations show that the proposed STRC
strategy shows superior dynamic performance in terms of tracking speed and steady-state
error at different frequencies with a maximum error of 0.58% at 0.25 Hz.

The proposed STRC controller is compared with the ADRC controller. The STRC
method requires the tuning of only 3 parameters compared to 11 parameters for the ADRC
method. Nevertheless, the STRC shows a huge performance improvement in terms of
tracking speed and steady-state error at different frequencies when compared to the ADRC
method. Even when an extra mass is introduced to the system, and while both methods are
good in canceling the disturbance effect, the STRC is still superior in terms of tracking the
reference input. The proposed STRC controller is further validated by simulating a more
complex system which adds high-order dynamics to the VCM linear stage. Future work
may include comparing the proposed STRC method with other state-of-the-art schemes.
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STRC Sinusoidal Tracking Resonant-based Controller
VCA Voice-Coil Actuator
VCM Voice-Coil Motor
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ADRC Adaptive Disturbance Rejection Control
EMF Back Electromotive Force
TPG Tracking Profile Generator
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ESO Extended State Observer
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