
Citation: Xu, C.; Yu, H.; Xi, W.; Zhu,

J.; Chen, C.; Jiang, X. A Polynomial

Multiplication Accelerator for Faster

Lattice Cipher Algorithm in Security

Chip. Electronics 2023, 12, 951.

https://doi.org/10.3390/

electronics12040951

Academic Editors: Leandros

Maglaras, Helge Janicke and

Mohamed Amine Ferrag

Received: 2 January 2023

Revised: 2 February 2023

Accepted: 6 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Polynomial Multiplication Accelerator for Faster Lattice
Cipher Algorithm in Security Chip
Changbao Xu 1, Hongzhou Yu 2, Wei Xi 3, Jianyang Zhu 1, Chen Chen 4 and Xiaowen Jiang 4,*

1 Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China
2 College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 311200, China
3 Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510670, China
4 School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200, China
* Correspondence: xiaowen_jiang@zju.edu.cn

Abstract: Polynomial multiplication is the most computationally expensive part of the lattice-based
cryptography algorithm. However, the existing acceleration schemes have problems, such as low
performance and high hardware resource overhead. Based on the polynomial multiplication of
number theoretic transformation (NTT), this paper proposed a simple element of Montgomery
module reduction with pipeline structure to realize fast module multiplication. In order to improve
the throughput of the NTT module, the block storage technology is used in the NTT hardware
module to enable the computing unit to read and write data alternately. Based on the NTT hardware
module, a precalculated parameter storage and real-time calculation method suitable for the hardware
architecture of this paper is also proposed. Finally, the hardware of polynomial multiplier based on
NTT module is implemented, and its function simulation and performance evaluation are carried out.
The results show that the proposed hardware accelerator can have excellent computing performance
while using fewer hardware resources, thus meeting the requirements of lattice cipher algorithms in
security chips. Compared with the existing studies, the computing performance of the polynomial
multiplier designed in this paper is improved by approximately 1 to 3 times, and the slice resources
and storage resources used are reduced by approximately 60% and 17%, respectively.

Keywords: lattice-based cryptographic algorithms; polynomial multiplier; number theoretic trans-
form; hardware design; security chip

1. Introduction

In the era of widespread application of information technology, the importance of
information security is also increasing day by day. As the cornerstone of information
security, cryptographic algorithms play an important role in various industries. For ex-
ample, public key cryptographic algorithms and symmetric cryptographic algorithms are
deployed in power security chips for data encryption. However, the rapid development
of quantum computing has brought huge security challenges to current cryptography [1].
Many cryptography problems seem to be no longer reliable in the face of quantum comput-
ing technology, such as Shor’s algorithm [2] and Grove’s algorithm [3]. Shor’s algorithm
can solve large integer factorization problems and discrete logarithm problems, which
are the foundations of the most widely used public key cryptography algorithms, RSA
and ECC [4,5]. Grove’s algorithm solves the problem of unstructured database search,
which can be used to attack traditional symmetric cryptographic algorithms (such as AES,
TDES) [3].

Moreover, traditional cryptography technologies are also suffering from more and
more side-channel attacks in real-world applications [6–10]. With the further development
of quantum computers and quantum algorithms, the information security system based on
the existing cryptography technology will be in jeopardy. Therefore, a new generation of
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cryptographic algorithms, called postquantum cryptography(PQC), is deployed to resist
potential security risks [11].

The mainstream PQC algorithms can be divided into four categories according to the
construct method [12]: multivariate cryptography [13], code-based cryptography [14], hash-
based signatures [15], and lattice-based cryptography [16]. In order to promote the practical
application of these algorithms, the efficient and reliable hardware implementation of PQC
has become a concerned research direction. References [17,18], respectively, propose high
performance and high-speed FPGA implementation of SIKE algorithm. Ferozpuri et al.
implement a high-speed hardware of the rainbow signature scheme [19]. Reference [20]
introduces a FPGA hardware framework of fault detection for inverted binary ring learning
with errors (RLWE).

Among the PQC algorithms, lattice-based cryptography algorithms are popular due
to their relatively simple structure and the fact that they can provide good security even
in the worst cases [21]. Moreover, the majority lattice cryptography algorithm is based
on the learning with errors (LWE) and RLWE problem [22], which are still unsolved by
quantum computing, so the security is guaranteed. However, the RLWE-based lattice
cryptographic algorithms have high computational complexity and low computational
efficiency, which can’t meet the real-time and security computing requirements of the
security chip. Therefore, the research on fast algorithms and hardware accelerators for
polynomial multiplication is of great significance.

Polynomial multiplication is the main bottleneck in the RLWE problem. The number
theoretic transform (NTT) is often used to calculate the polynomial multiplication because
of its linear time complexity O (nlogn) [23]. Some researchers start with the core unit
NTT to improve the efficiency [24–26]. Another part of the researchers is to optimize the
polynomial multiplication operation in the lattice cipher algorithm [27–29]. However, the
existing acceleration schemes have problems such as low computing performance and high
hardware resource overhead. Further research is needed to optimize NTT to improve the
performance of polynomial multipliers.

In order to effectively deploy the lattice cipher algorithm in the security chip and
realize the real-time encryption of information, this paper proposes a polynomial multi-
plier hardware architecture suitable for the lattice cipher algorithm and the corresponding
hardware architecture of the NTT module. The polynomial multiplier adopts polyno-
mial multiplication based on NTT, and reduces the overhead of hardware resources by
multiplexing the NTT hardware module. The main contributions of this paper are as
follows.

(1) We propose two NTT module hardware architectures based on the performance
and resource requirements of the NTT algorithm, which has the characteristics of high
parallelism in operation, and improves the NTT module’s performance by increasing the
number of parallel butterfly computing units.

(2) We propose an optimized modular multiplication operation unit based on the
Montgomery modular multiplication algorithm. The module has a pipeline structure and
can realize fast modular multiplication calculation.

(3) We propose a parameter storage and precalculation scheme based on the existing
hardware resources, which effectively reduces the storage resources occupied by the scaling
factor introduced by the negative packet convolution theory and the twiddle factor in the
NTT operation.

(4) This paper implements a polynomial multiplication accelerator based on the NTT
hardware module. In order to save hardware resources, this paper uses the similarities
between NTT operation and INTT operation to reuse the core computing units and storage
resources of NTT operation and INTT operation in the polynomial multiplier architec-
ture and saves additional hardware overhead without affecting the overall computing
performance.

The rest of this article is organized as follows. Section 2 introduces the related work.
Section 3 introduces the hardware architecture of the core operator NTT module of polyno-
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mial multiplication. Section 4 introduces a polynomial multiplication accelerator for lattice
cryptographic algorithms applied in security chips. Section 5 evaluates the performance
and hardware resources designed in this paper through simulation experiments. Finally,
Section 6 summarizes the full text.

2. Ralated Work

In order to improve the computational efficiency of lattice-based cryptographic algo-
rithms, researchers focus on the core unit NTT and polynomial multiplication. In [30], Kim
et al. optimized the implementation of NFT on GPU, and proposed to alleviate the main
memory bandwidth bottleneck in NTT computation by dynamically generating twiddle
factors. Mohsen et al. [31] analyzed the performance of NTT from various software imple-
mentation methods of the algorithm, evaluated the implementation of the NTT algorithm
on a processor with SIMD function, and compared the software implementation perfor-
mance of the radix-2 and radix-4 NTT algorithms in the literature. The results show that
the performance of the NTT algorithm based on radix-2 is better. In terms of algorithm
research, Xu et al. [32] proposed a general NTT algorithm, which uses the Cooley–Tukey
butterfly to calculate the forward NTT operation and the Gentleman–Sande butterfly to
calculate the reverse NTT operation. This scheme effectively eliminates the bit reversal
operation. At the same time, the literature precomputes a short list of intermediate values
related to parameters, so as to reduce the memory occupied by a large number of prestored
parameters in exchange for short-term parameter calculation. In [30], Kim et al. analyzed
the differences between NTT and DFT algorithms, optimized for the implementation of
NTT on GPU, and proposed to alleviate the main memory bandwidth bottleneck in NTT
computation by dynamically generating twiddle factors. For the butterfly computation
of the core operator in the NTT algorithm, a configurable butterfly computation unit is
proposed in [33]. The butterfly computation unit can be configured for both Cooley–Tukey
and Gentleman–Sande algorithms. At the same time, three different NTT hardware architec-
tures are proposed based on the butterfly unit to meet different performance requirements
by increasing the number of parallel computing units. Reference [34] uses HLS to imple-
ment an NTT hardware architecture, in which the K-RED reduction method is used to
optimize the modulo operation process, and a primitive memory write-back scheme is
proposed to reduce the memory resources occupied by parameters. Reference [35] added a
multichannel and reconfigurable design to the NTT architecture. The parallel four-channel
butterfly calculation in the architecture greatly improves the computing speed, but it also
generates a lot of hardware overhead.

In the study of polynomial multiplication, the literature [27] applied the FFT algo-
rithm to the lattice cipher algorithm and firstly applied it to the reconfigurable lattice
cipher hardware design, which made the calculation speed of polynomial multiplication
significantly improved, but the performance was still difficult to meet the needs. Based
on the FFT algorithm, [28] proposed a polynomial multiplier architecture that supports
multiparameter configuration, making the design suitable for homomorphic encryption
algorithms with different parameters. Reference [29] implements a polynomial multiplier
with low resource overhead on FPGA for specific parameters, and reduces the use of DSP
by multiplexing a single hardware computing unit.

3. NTT Hardware Architecture
3.1. NTT Algorithm

In the fast algorithm of polynomial multiplication, using the FFT algorithm to speed
up polynomial multiplication is a common method. The NTT algorithm is an extension of
the FFT algorithm in finite fields. Compared with the FFT algorithm, the NTT algorithm
replaces the complex number operation in the FFT algorithm with the integer operation in
the finite field, thereby avoiding the calculation precision error caused by the floating-point
number operation. At the same time, the unit root on the finite field in the NTT algorithm
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replaces the unit root on the complex plane of the FFT algorithm. The definition of the NTT
algorithm is as follows:

X(K) =
n−1

∑
n=0

x(n)e−i 2nπ
N k, (k = 0, 1, 2, ..., N − 1). (1)

Similarly, the calculation formula of the inverse transform INTT algorithm of the
number theoretic transformation is as follows:

x(n) =
1
N

N−1

∑
k=0

X(k)W−nk
N (mod p), (n = 0, 1, 2, ..., N − 1), (2)

where W−nk
N represents the root of unity e−i 2nπ

N k.
Because the NTT algorithm is defined in a finite field, the operation results of NTT/INTT

all need to take the modulo of p. 1/N in INTT is the inverse N-1 of order N in a finite field,
and its relationship with N satisfies N−1 · N ≡ 1(mod p). The computational efficiency and
time complexity of the NTT algorithm are similar to those of the FFT algorithm, but all its
operations are integer operations, which are smaller than those involving trigonometric
functions and floating-point numbers.

The NTT algorithm, like the FFT algorithm, is also divided into decimation in time
(DIT) and decimation in frequency (DIF). These two extraction methods correspond to
two kinds of butterfly calculations. The time extraction method NTT corresponds to the
Cooley–Tukey butterfly calculation, and the frequency extraction method NTT corresponds
to the Gentleman–Sande butterfly calculation. The complete Cooley–Tukey NTT algorithm
is shown in Algorithm 1.

Algorithm 1: Cooley–Tukey NTT algorithm

Input: Polynomial A(x) ∈ Rq, WN ∈ R;
Output: Â(x) = NTT(A(x));

1 A = Reν(A(x));
2 for (m = 2; m < n; m = 2m;) do
3 W = 1; Wm = Wn/m

n ; // initiate the rotation factor
4 for (j = 0; j < m/2; j = j + 1) do
5 for (k = 0; k < n; k = k + m) do
6 u = A[k + j];
7 t = A[k + j + m/2] ·W;
8 A[k + j] = (u + t)mod q;
9 A[k + j + m/2] = (u− t)mod q; // butterfly calculations

10 end
11 W = W ·Wm mod q; // update the rotation factor
12 end
13 end
14 return A

In the algorithm, the Rev() function in the first line performs the bit-reversal operation.
After the parity split and rearrangement in the time domain order, the order number
of the polynomial coefficients is exactly the same as the original number, showing the
phenomenon of bit reversal on the binary code, and after the NTT calculation, the serial
number of the output result returns to the original serial number. Therefore, Cooley–Tukey
NTT is input in reverse order, output in sequence, and data input requires bit-reversal
operation.

The NTT and INTT operations are the core operators of polynomial multiplication,
which determine the operational efficiency of polynomial multiplication. Therefore, the
NTT module and the INTT module are the most important hardware units in the polyno-
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mial multiplier. The NTT and INTT operation formulas are very similar. When designing
the NTT and INTT hardware modules, it is necessary to fully consider the characteristics
and similarities and differences of the two operations. The core operators in NTT operation
and INTT operation are butterfly calculations. In order to save hardware resource over-
head, this paper considers the reuse of some hardware units based on the characteristics of
NTT and INTT algorithms. The following will analyze the similarities and differences of
the two algorithms. (1) This paper adopts the NTT and INTT algorithms based on time
extraction, so the butterfly calculation structure in the two algorithms is the same. (2) The
twiddle factors involved in the calculation in the NTT operation and the INTT operation
are different. The twiddle factor is W−i

N . (3) In the INTT operation formula, the coefficient
of each result polynomial needs to be multiplied by the inverse N-1 of the order N. (4)
Before performing the NTT operation, the polynomial coefficient needs to be multiplied by
the scaling factor ϕi to complete the preprocessing; after performing the INTT operation,
the polynomial coefficients need to be multiplied by ϕ−i to complete the postprocessing.

Because DIT-NTT is used in this paper, according to the Cooley–Tukey butterfly
calculation described in the previous algorithm, the coefficient data order of the polynomial
needs to be bit-reversed before input. For the bit reverse operation function Rev mentioned
in the algorithm, its implementation in hardware only requires the reverse combination of
address lines, and does not require additional hardware design and resources, so it can be
ignored. We carefully distinguish the data that needs to be selected.

We take eight-point DIT-NTT as an example to analyze its operation characteristics.
The Figure 1 below shows the eight-point DIT-NTT operation data flow. The eight-point
DIT-NTT can be divided into three stages for radix-2 Cooley–Tukey butterfly calculation
processing. Each intersection point in the middle in the figure represents a butterfly
calculation process. It can be seen that each stage of the eight-point NTT operation requires
four butterfly calculations, and the input and output data of different butterfly calculations
in each stage are unrelated to each other, so different butterfly calculations can be design for
parallel processing. Taking advantage of the high parallelism of NTT operation, in order to
improve the computing speed of NTT module, butterfly computing units can be added to
improve the parallelism of computing. At the same time, the operation structure can also
be designed serially to form multilevel butterfly computing units to run sequentially, so
as to realize the pipeline structure of butterfly computing units in the NTT module and
improve the data throughput of the NTT module.

Figure 1. Eight-point DIT-NTT data flow diagram.

3.2. Hardware Architecture

According to the above analysis of NTT/INTT algorithm, this paper proposes two
hardware architectures of NTT operation modules based on the characteristics of the algo-
rithm, which are the low-cost L-NTT module and the high-performance H-NTT module.
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3.2.1. L-NTT Hardware Architecture

The Figure 2 below shows the overall architecture of the L-NTT module. The hardware
resources in the L-NTT module are shown in the figure. The operation part includes a
butterfly calculation unit and a modular multiplication calculation unit. The storage part
consists of three dual-port RAMs, including two RAM 0 and RAM 1 that store polynomial
coefficients, a RAM_F that stores the twiddle factor WNi and the scaling factor ϕi. In order
to reduce the hardware resources used by the low-cost L-NTT module, this paper chooses to
add a modular multiplication unit to the L-NTT module to calculate the twiddle factor Wi

N
in real time, so as to save the hardware resources required to store all the twiddle factors.

Figure 2. L-NTT module hardware architecture.

In the preparation stage of NTT operation, the coefficients of the input polynomial
A are stored in RAM 0 and RAM 1 at the same time, which means that the data stored
in RAM 0 and RAM 1 are the same before starting the NTT operation. When the NTT
operation is performed, the pipeline operation starts in the butterfly computing unit after
a certain computing cycle. At this time, the butterfly computing unit needs to read two
polynomial coefficients and twiddle factors from the RAM as input in each cycle, and
output two calculation results and store them in the RAM at the same time. In order to
ensure that the access to RAM does not conflict during data reading and writing, and to
ensure that the butterfly computing unit can continue to operate, the target RAM needs
to be rotated during data reading and writing, and the data will be stored in RAM 0 and
RAM 1 in turn. Because the L-NTT architecture only contains one butterfly computing unit,
using the L-NTT module to perform a complete NTT operation needs to go through rounds
of butterflies, calling a total of two butterfly computing units.

3.2.2. H-NTT Hardware Architecture

This paper also proposes a high-performance H-NTT hardware architecture. Accord-
ing to the characteristics of the NTT operation described above, each stage of the NTT
operation can perform butterfly calculations in parallel. In this paper, a butterfly comput-
ing unit is added to the H-NTT module hardware architecture to take advantage of this
parallelism. The hardware architecture diagram of the module is shown in the Figure 3. In
the high-performance H-NTT module, the operation part includes two parallel butterfly
computing units BU 0 and BU 1, and a modular multiplication unit; the storage part consists
of five dual-port RAMs. In order to effectively reduce the storage resource overhead in
hardware design, this paper adopts a data block storage scheme. In this scheme, data that
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does not have dependencies in computing is stored in blocks, so as to ensure that multiple
computing units do not conflict when reading and writing data, and at the same time, the
overall storage resource occupation is not increased. Among them, RAM 0 and RAM 1,
respectively, store the first N/2 coefficients and the last N/2 coefficients of the polynomial,
and RAM 2 and RAM 3 serve as temporary storage RAMs corresponding to RAM 0 and
RAM 1.

Figure 3. H-NTT module hardware architecture.

In the preparation stage of the NTT operation, the coefficients of the polynomial A
involved in the calculation need to be stored in RAM 0–3 after being processed in reverse
order. The original even term of the polynomial A sequence is stored in RAM 0, and the
original odd term of the sequence is stored in RAM 1. Taking the eight-point NTT as an
example, after the coefficient terms of the eight-point NTT are processed in reverse order,
the input of the butterfly calculation in the upper half is an even term, and the input of the
butterfly calculation in the lower half is an odd term. Groups of coefficients are stored in
RAM 0 and RAM 1. Meanwhile, the polynomial coefficient data is not stored in RAM 2
and RAM 3 at this time. Because each dual-port RAM supports reading two data at the
same time, and two butterfly units need to read four data at the same time, conflicts will
occur when the input data of the two butterfly units are read from the same RAM. In order
to avoid the above situation, when performing butterfly calculation, let butterfly unit BU
0 calculate the butterfly calculation of the upper half, and butterfly unit BU 1 calculate
the butterfly calculation of the lower half, so that the two butterfly units are calculating.
At most, two pieces of data can be read from a piece of RAM at the same time. After the
computation in the butterfly unit is completed, the resulting data will be restored in RAM.
Because the butterfly computing unit is pipelined, it will read data from RAM 0 or RAM
1 in each cycle, and the butterfly computing result cannot be written back to the original
RAM, so two temporary RAMs are needed to store the NTT operation.

In the first stage of NTT operation, the two butterfly calculation units BU 0 and BU 1,
respectively, read four coefficient data from RAM 0 and RAM 1 and read the twiddle factor
from RAM_F. The four resulting data are stored in the corresponding address positions in
RAM 2 and RAM 3, respectively; when performing the second stage of NTT operation, BU
0 and BU 1 read four intermediate data from RAM 2, RAM 3, and RAM_F respectively and
After calculating the rotation factor, the four resulting data are stored in the corresponding
address positions in RAM 0 and RAM 1, respectively, and so on. RAM 0-1 and RAM 2-3
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alternately read and write in different butterfly stages. It is ensured that there is no conflict
between reading and writing the storage during the NTT operation.

In order to ensure the high-performance computing of H-NTT, all twiddle factors
involved in butterfly calculation are prestored in dual-port RAM_F, and BU 0 and BU 1
can read two twiddle factors from RAM_F at the same time in each cycle. The modular
multiplication unit in the H-NTT architecture is used to calculate the scaling factor in real
time during the preprocessing and postprocessing stages of polynomial multiplication,
which will be described later. If the H-NTT module is not used for preprocessing and
postprocessing operations, the modular multiplication unit can be moved outside the
H-NTT module and deployed.

3.2.3. Butterfly Unit

Butterfly calculation is a key step for NTT algorithm to accelerate polynomial multipli-
cation, and it is also the core operator of NTT algorithm. The butterfly calculation of the
NTT algorithm is divided into Cooley–Tukey butterfly calculation based on time extraction
and Gentleman–Sande butterfly calculation based on frequency extraction. The internal
operation order of the two butterfly calculations is different, but the amount of calculation
is the same; that is, a butterfly calculation is completed. The shape calculation requires
performing one modular multiplication and two modular additions and subtractions. In
this paper, DIT-NTT based on Cooley–Tukey butterfly computing is used as the basic
algorithm of hardware design. The hardware block diagram of the butterfly computing
unit is as follows. Figure 4 represents the hardware architecture of the butterfly unit.

Figure 4. Butterfly unit hardware architecture.

As shown above, the green area in the Figure 4 represents the modulo multiplication
unit, which consists of a multiplier and a modulo module; the two yellow areas represent the
modulo addition unit and the modulo subtraction unit, which are, respectively, composed
of an adder/subtracter and a modulo module. Although the modulo multiplication unit in
the green area and the modulo addition and subtraction unit in the yellow area both contain
modulo modules, because the range of the result value after the multiplication operation
may be much larger than the result value after the addition and subtraction operation, the
corresponding modulo operation The complexity is also different. Therefore, this paper
will carry out the targeted design of the modulo module in the modulo multiplication unit
and the modulo addition and subtraction unit.

The butterfly unit has registers inserted on both the Input 1 and Input 2 branches.
Before the data enters the modulo addition and subtraction unit, the data on the Input 2
branch will be subjected to a modular multiplication operation, but no operation occurs on
the Input 1 branch. Therefore, some registers are inserted in the Input 1 branch to balance
the delay, so that the two branches are connected. The data reaches the modulo addition
and subtraction unit in the same clock cycle, and the number of registers inserted in the
Input 1 branch is determined by the delay of the modulo multiplication unit. The function
of the register after the modulo multiplication unit is to register the output.

According to the Cooley–Tukey butterfly calculation formula, in addition to inputting
X0(k) and X1(k), the butterfly computing unit also needs to input a twiddle factor WN as
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a multiplication coefficient. The butterfly computing unit proposed in this paper adds a
selector before the multiplier. The selector can select the input twiddle factor WN when
performing the NTT operation according to the control signal, or select the input twiddle
factor W−1

N when performing the INTT operation, so that the NTT and the INTT operation
can realize the multiplexing of the butterfly computing unit to save hardware resources.

3.2.4. Modular Multiplication Unit

In the NTT operation, the input data of each butterfly calculation needs to be multiplied
by the corresponding twiddle factor, so an efficient modular multiplication operation unit
is required in the butterfly calculation unit. Generally speaking, the performance bottleneck
of the modulo multiplication operation is the modulo operation. The modulo operation
is defined as the remainder obtained by dividing a number by the modulo. In number
theory, the modulo operation is often involved. For example, in a finite field, in order to
ensure that the result of the field elements is still in the field after the operation, the modulo
operation is performed with the feature p of the field as the modulo after the operation.
NTT is an operation defined on a finite field, and the multiplication in its algorithm will
also be replaced by modular multiplication.

There are two commonly used fast modular multiplication algorithms: Montgomery
modular multiplication and Barrett modular multiplication. In order to realize efficient
modular multiplication operation, this paper adopts Montgomery modular multiplication
as the basic algorithm of hardware design. The Montgomery modular multiplication
algorithm is a commonly used fast modular multiplication algorithm that consists of
multiplication and Montgomery modular reduction.

The Montgomery modular reduction used in this paper is shown in Algorithm 2.
Among them, for the multiplication result of z to be modulo taken, z is divided into high
and low m bits, which are represented by zh and zl , respectively. Here, m is the bit width of
the modulus q and the parameter R. This paper adopts m = 16, and R = 216 at this time.
Here, q′ is the inverse of q in the case of modulo R. Generally, in the Montgomery modular
reduction operation, the overhead of real-time calculation is relatively large, because this
paper designs a modular multiplication unit with fixed parameters, which is calculated in
advance and stored in storage. If there is a parameter change, it is necessary to reconfigure
the modulus q and q′.

It can be found from Algorithm 2 that in the process of Montgomery modular reduc-
tion, there is no operation of taking the modulo of q, and it has become the operation of
taking the modulo of R and shifting. This is because the Montgomery modular reduction
uses the properties of the aforementioned parameter R to convert the modulo operation
in the algorithm from modulo q to modulo R or division R, and because R is a power of
2, both modulo R and division R can be achieved by shifting, the calculation is greatly
simplified. Therefore, even if the Montgomery modular multiplication algorithm needs to
preprocess the input data, the efficiency is still higher than the simple modulo operation.

This paper designs the Montgomery modular multiplication hardware unit according
to Algorithm 2, which consists of a 16-bit multiplier and a Montgomery modular simple
element serially connected. The hardware architecture of the Montgomery modular simple
element is shown in the Figure 5. After the 32-bit product result z of the multiplier is
registered and output, the output data is divided into high 16-bit and low 16-bit, and
divided into two data paths. According to lines 2 to 3 of Algorithm 2, the lower 16-bit data
zl is first multiplied by q′ and then modulo R (the result is 16-bit lower), then multiplied by
q and then shifted right by 16 bits (the result is higher 16-bit), and finally take the modulo q
of the result of the subtraction from zh to get the final result. Because the data is already
similar in size to q in the last modulo operation, the result can also be quickly obtained by
taking modulo by subtraction.



Electronics 2023, 12, 951 10 of 21

Algorithm 2: Montgomery modular reduction algorithm
Input: z = zh, zl ; Int R = 2m, R > q
Modules q, Int q′ = q−1(mod R)
Output: r = zR−1mod q

1 zl = z mod R;
2 T = zl ×q′ mod R; // find the parameter T that makes z + Tq an integer

multiple of R
3 Th = (T × q)� m;
4 r = zh - Th; // obtain the modulo result (z + Tq)/R(mod q)
5 if r > q then
6 r = r− q
7 end
8 return r

Figure 5. Montgomery modular multiplication hardware diagram.

On the upper data path, zh does not participate in the operation. In order to balance the
delay of the two data paths, so that the data can reach the subtractor at the same time, this
paper inserts two-level registers on the zh path of the modular simple element. The two’s
complement at the input of the adder in the figure means taking the two’s complement of
q, adding r and the complement of q and selecting the final output through the carry signal.
The entire Montgomery module reduction architecture implements a pipeline design.

4. Polynomial Multiplier Hardware Architecture

In the existing hardware research of polynomial multiplication accelerator, there is a
lack of effective solutions to reduce storage resources. The storage of polynomial data and
related parameters will generate more hardware resource overhead. It is obviously unwise
to double the hardware overhead in order to improve the computing performance. Aiming
at this problem, we propose a storage and precalculation method for twiddle factors,
which can effectively reduce the hardware resource overhead. Based on this scheme, this
paper completes the design and implementation of polynomial multiplier, and describes its
overall hardware structure and modules.

4.1. Polynomial Multiplication Based on NTT Algorithm

The operation flow of the polynomial multiplication based on NTT used in this paper is
shown in the Figure 6. In the figure, Coeff(a) and Coeff(b) are the coefficient representations
of the polynomials A(x) and B(x), respectively, and Point(a) and Point(b) are the point
value representations of the polynomials. After applying the negative packet convolution
theorem, the coefficients Coeff(a) and Coeff(b) need to be precalculated with ϕ before
the NTT operation. The coefficients of the resulting polynomial mean that the coefficient
Coeff(c) needs to be calculated with ϕ after the INTT operation for postcalculation.

As shown in the Figure 6, in a polynomial multiplication operation, the two polynomial
coefficients Coeff(a) and Coeff(b) involved in the calculation can perform NTT operations in
parallel. In order to effectively utilize the characteristics of parallel computing in polynomial
multiplication, this paper deploys two independent NTT modules in the polynomial
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multiplier, and processes Coeff(a) and Coeff(b) at the same time to double the efficiency of
the polynomial evaluation stage.

In the point value multiplication stage of the polynomial, in the point values Point(a)
and Point(b) of the polynomial, the point values in the corresponding order will be sub-
jected to the modular multiplication operation. For two n-dimensional polynomials, the
n times modular multiplication operation will be performed. Each butterfly computing
unit includes a Montgomery modular multiplication unit. In order to reduce hardware
resource overhead, this paper does not deploy additional modular multiplication units in
the polynomial multiplier, but reuses the butterfly computing unit when multiplying point
values. At this time, the input terminal Input 1 of the butterfly computing unit needs to be
set to 0, Input 2 inputs the point value Point(ai), and the multiplexer MUX needs to select
and input the corresponding point value Point(bi).

Figure 6. The flow of NTT based polynomial multiplication.

4.2. Parameter Storage and Precomputation Method

The twiddle factor is an important parameter in the butterfly calculation process. The
polynomial multiplication is calculated by using the NTT algorithm, and the twiddle factor
occurs when the polynomial coefficients are decomposed according to parity from a long
sequence into a series of short sequences. In addition to the twiddle factor, there is an
important parameter in the polynomial multiplication algorithm that applies the negative
packet convolution theorem, the scaling factor ϕi. The scaling factor is a primitive root
of order 2N defined on the ring R whose relation to the twiddle factor satisfies ϕ2 = WN
mod q. The negative packet convolution theorem effectively avoids the increase in the
amount of computation caused by the addition of 0 to the polynomial, but increases the
preprocessing steps before the NTT operation and the postprocessing steps after the INTT
operation. The so-called preprocessing and postprocessing operations are the polynomial
coefficients. It is multiplied by the scaling factor or the corresponding, so it can be seen
that the number of terms of the scaling factor and the number of terms of the polynomial
coefficient are the same, and both are N.

The number of twiddle factors is not fixed. Because the twiddle factors are generated
during the decomposition of the sequence of polynomial coefficients, the number of twiddle
factors is related to the way the sequence is decomposed. The NTT algorithm used in this
paper is the radix-2 DIT-NTT algorithm, which divides the sequence into two equal parts
each time until it is decomposed into two coefficients per group. The twiddle factor in the
base 2 DIT-NTT of N points has the following rules: the number of NTT points is N = 2l ,
the number of butterfly stages where the twiddle factor is located is s, and the maximum s
is l = log2N. Then, the twiddle factors involved in the butterfly calculation at this stage are
Wk×2l−s

N , where k is an integer satisfying 0 ≤ k ≤ 2s−1 − 1. It can be found that there are
2s−1 twiddle factors for the existence of the butterfly in the sth stage. Therefore, the total
number of twiddle factors in an N-point radix-2 DIT-NTT operation is 2l−1, which is N/2.
The law of the twiddle factor in the inverse transform INTT operation is the same, and the
number of twiddle factors is also N/2. Therefore, in a complete NTT-based polynomial
multiplication, there are a total of N twiddle factors of Wi

N and W−i
N .

We propose a parameter storage and precomputation scheme of twiddle factors and
scaling factors suitable for the polynomial multiplication hardware architecture proposed
in this paper. First, analyze the use process of twiddle factor and scaling factor. In the pre-
processing stage before the NTT operation, the polynomial coefficients ai, bi are multiplied
by the corresponding scaling factors, respectively. In this process, there is no dependency
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between the data of each multiplication operation, which is completely parallel. For but-
terfly calculations in NTT, the polynomial coefficients are also butterfly-calculated with
the corresponding twiddle factors. Although the butterfly calculations in each operation
stage can also be performed in parallel (that is, there is no dependency between the input
and output data, but the input data of the butterfly calculation in the next operation stage
is the output of the butterfly calculation in the previous operation stage), the butterfly
computation within the NTT operation is not completely parallel.

Because the NTT hardware module proposed in this paper contains two butterfly
computing units and a modular multiplication unit, if the twiddle factor is calculated in real
time, the calculation delay of the two butterfly computing units will be different. Therefore,
this paper chooses to prestore the rotation factor and calculate the scaling factor in real
time. Because the Wi

N and ϕi satisfy the following formula,

Wi
N = ϕ2i mod q, i = 0, 1, 2, ...,

N
2
− 1. (3)

The prestored twiddle factor also contains all the even-numbered power terms of the
scaling factor ϕ2i and for the odd-numbered power terms ϕ2i+1, it needs to be generated
by the precalculation performed ϕ2i+1 × ϕ by the modular multiplication unit before the
operation. Based on the above method, the prestored parameters in the forward NTT
operation process are only N/2 = 256 twiddle factors and a scaling factor, and the memory
occupied is about 0.5 KB.

The prestored parameters in the INTT operation process are slightly different from
NTT. According to the above description, the calculation parameters required for INTT
operation and postprocessing operation are twiddle factors W−i

N and n−1 ϕ−1. If the same
scheme as in the NTT operation is adopted, which is prestored W−i

N in memory and
calculated n−1 ϕ−1 in real time, it will be found that when two multiply n−1 ϕ−1 calculations
need to be performed in parallel during the postprocessing operation, the twiddle factor
W−i

N needs to be calculated twice as follows:{
W−i

N × n−1 → n−1 ϕ−2i

W−i
N × n−1 ϕ−1 → n−1 ϕ−2i+1

. (4)

It can be seen that the hardware architecture of the polynomial multiplier proposed
in this paper contains two parallel NTT/INTT modules, and each NTT/INTT module
contains an independent modular multiplication unit. Only one INTT operation needs
to be performed in a polynomial multiplication operation. Therefore, when the INTT
operation stage is reached, one NTT module is in an idle state. At this time, the idle
modular multiplication unit can be called. The multiplication unit satisfies exactly two
calculations in Equation 4. Before postprocessing, read the twiddle factor from RAM, input
the two modulo multiplication units to multiply by, and then multiply the two calculation
results with the corresponding terms of the result polynomial coefficients. Similarly, the
prestored parameters required for the reverse INTT operation process and postprocessing
process are N/2 = 256 twiddle factors, occupying approximately 0.5 KB of memory.

The parameter storage and precomputation of scaling factors proposed in this section
fully combine the proposed NTT module architecture, which can reduce the memory
occupied by the prestored parameters required by the entire polynomial multiplier to about
1 KB without adding additional hardware resources and reducing the overall computing
performance. Compared with the 2.5 KB memory required by the combined parameters, it
reduces by approximately 60%, significantly saving the hardware resource overhead.
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4.3. Polynomial Multiplication Accelerator
4.3.1. Overall Architecture

The lattice cipher algorithm polynomial multiplier proposed in this paper adopts the
parameters commonly used in lattice cipher algorithms based on RLWE: modulus q =
12,289, polynomial points N = 512, and the bit width of the hardware unit is 16 bits.

The hardware architecture of the polynomial multiplier based on NTT proposed in
this paper is shown in the Figure 7. The polynomial multiplier architecture includes four
parts, namely the operation unit part, the storage part, the storage control part and the
polynomial multiplication flow control part.

Figure 7. Polynomial multiplier overall architecture.

The core part of the polynomial multiplier is the operation unit part, which is mainly
composed of NTT/INTT modules. In order to satisfy the two input polynomials that can
perform NTT operations at the same time, this paper deploys two parallel NTT modules
in the polynomial multiplier hardware architecture, NTT 0 and NTT 1. At the same time,
in order to meet the fast calculation requirements of polynomial multiplication, the NTT
module deployed in the polynomial multiplier in this paper adopts the high-performance
H-NTT module in 3.2. Each NTT module contains two parallel butterfly computing units
and a modular multiplication unit. When performing NTT operation, each H-NTT needs
to use four blocks of RAM to store polynomial coefficients, NTT 0 corresponds to RAM0-3,
and NTT 1 corresponds to RAM 4-7.

The storage part is used to store the polynomial coefficients involved in the polynomial
multiplication operation, the prestored twiddle factors and the intermediate data generated
in the calculation. The storage part includes eight blocks of RAM0-7 for storing polynomial
coefficients and point values, and two blocks of RAM_F0-1 for storing parameters, such as
twiddle factors.

The storage control part is used to control the reading and writing of data. In the
NTT operation process, each butterfly computing unit calculates different point groups
in different NTT operation stages, and the output results are stored in different locations.
Because there are two H-NTT modules in the polynomial multiplier, there are four butterfly
computing units in total, corresponding to eight blocks of RAM. The storage module in
the polynomial multiplier in this paper includes eight RAMs, 0–7, that store polynomial
coefficients, and two RAM_F 0-1 that store twiddle factors. Each memory is a dual-port
RAM with a size of bits. The total storage resources required by the entire polynomial
multiplier are 40,960 bits, or 5 KB.
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4.3.2. Preprocessing and Postprocessing

• Preprocessing operations for polynomial multiplier

The preprocessing process is to multiply the polynomial coefficients by the correspond-
ing scaling factors ϕi in turn. In the polynomial multiplier proposed in this paper, two
H-NTT modules NTT 0 and NTT 1 deployed in parallel precompute the input polynomials
A and B, respectively. The following uses NTT 0 as an example to perform preprocessing
on polynomial coefficients.

In the storage module of the polynomial multiplier, the scaling factor ϕi involved in the
preprocessing is not prestored in the memory RAM_F 0-1, but needs to be calculated in real
time. In the process of preprocessing, in order to reduce the overhead of hardware resources,
this paper chooses to reuse the arithmetic units in the NTT module for calculation. In the H-
NTT module, it contains two butterfly computing units and a modular multiplication unit.
Each butterfly computing unit also contains a modular multiplication unit, can calculate
ϕi × αi by using the modular multiplication unit in the two butterfly computing units.
When using the butterfly computing unit to calculate the modular multiplication, it is
necessary to set the input of Input 1 to 0, and input the polynomial coefficient and scaling
factor from Input 2 and the multiplexer, respectively. The twiddle factor Wi

N prestored in
RAM_F can be used as the even-numbered power term of the scaling factor ϕ2i, and the
odd-numbered power term ϕ2i+1 is calculated ϕ2i × ϕ by using the remaining modular
multiplication units in the NTT module. Therefore, when calling the NTT module for
preprocessing, the NTT module reads the scaling factor ϕ2i and ϕ from RAM_F0, and then
inputs ϕ2i into butterfly computing unit BU 0 and modular multiplication unit, respectively,
and inputs the polynomial coefficients of the corresponding sequence in the butterfly
computing unit. Multiplication is obtained by multiplying the ϕ and ϕ2i in the input
modular multiplication unit, and then inputting another butterfly computing unit BU 1
to multiply the polynomial coefficients of the corresponding sequence. It can be seen that
compared with the data path of calculation ϕ2i × α2i and ϕ2i+1 × α2i+1 , there is a delay
of the modulo multiplication operation, which is about four cycles. However, it can be
seen from the foregoing that the butterfly computing unit and the modular multiplication
unit in the H-NTT module have a pipelined linear structure. Therefore, after beginning
to call the NTT module for preprocessing, after a delay of a modular multiplication unit
and a butterfly computing unit, the NTT module enters the pipeline operation. At this
time, the NTT module has two polynomial coefficients input and two calculation results
per cycle. Similarly, another NTT block NTT 1 in the polynomial multiplier preprocesses
the polynomial coefficients B in the same way.

• Postprocessing operations for polynomial multiplier

The postprocessing process is to multiply the resulting polynomial coefficients ci by
the corresponding scaling factors ϕ−i in turn. Because this paper moves the multiply n−1 in
the INTT operation to the postprocessing process, the postprocessing process refers to mul-
tiplying the coefficients ci with the corresponding ones n−1 ϕ−i in turn. The postprocessing
in the polynomial multiplication only needs to be performed on the result polynomial, so
the postprocessing operation stage only needs to call an NTT module NTT 0 for calculation.
The following is an example of postprocessing performed by NTT 0 on the polynomial
coefficients C.

Similar to the preprocessing stage, the scaling factor n−1 ϕ−i involved in the postpro-
cessing is not prestored in the memory RAM_F 0-1, and also needs to be calculated in real
time by the twiddle factor. According to the calculation process of the preprocessing above,
it can be known that the two butterfly computing units in the NTT module can be used for
postprocessing at the same time, and two scaling factors n−1 ϕ−2i and n−1 ϕ−2i−1 need to be
input for two calculations. It can be seen that it is slightly different from the preprocessing
stage. The two scaling factors in the postprocessing stage need to be calculated by modular
multiplication, and can be calculated by using the modular multiplication unit MMU1 in
the idle NTT 1. At the beginning of postprocessing, NTT 0 reads the resulting polynomial
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coefficients c2i and c2i+1 from RAM where the polynomial coefficients are stored, and
n−1 and n−1 ϕ−i from RAM_F0, and twiddle factors W−i

N from RAM_F1. Then input the
twiddle factors W−i

N into the modular multiplication units MMU0 and MMU1 in NTT 0 and
NTT 1 at the same time, and input n−1 and n−1 ϕ−i into the two modular multiplication
units, respectively, to obtain the scaling factors n−1 ϕ−2i and n−1 ϕ−2i−1 required for the
postprocessing operation. Then separate the scaling factors into Input 2 butterfly comput-
ing units, and multiply with c2i and c2i+1 to get the final postprocessing result. It can be
seen that in the postprocessing stage, the two data paths for calculating c2i × n−1 ϕ−2i and
c2i+1 × n−1 ϕ−2i−1 need to go through the delay of a modular multiplication unit and a
butterfly calculation unit, and the input and output times are the same. After the above
delay, the NTT module will also enter the pipeline operation.

Figure 8 shows the operation flow of the polynomial multiplier. It can be seen that
NTT0 and NTT1 unit in multiplier can execute preprocessing, NTT and pointwise multi-
plication operation in parallel, and INTT operation and postprocessing are operated by
NTT0 alone.

Figure 8. Polynomial multiplier operation flow.

Figure 9 shows the pre/postprocessing operation flow of NTT module. BU0-1 means
the first calculation performed by butterfly unit 0 in the H-NTT unit, and Mmult means
the modular multiplication operation performed by Modmult unit in the H-NTT unit. It
can be seen that in the NTT unit, BU0, and BU1 can be calculated in parallel, whereas
BU1 needs to calculate the corresponding scaling factor ϕ2i+1 and ϕ−2i−1 through modular
multiplication unit before calculation. In addition, it can also be seen that in a butterfly
unit, the computing task is pipelined.

Figure 9. Pre/postprocessing operation flow of NTT module.
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5. Experiments and Results
5.1. Experimental Setup

In this paper, the proposed H-NTT module-based polynomial multiplier is imple-
mented on FPGA and the performance and hardware resource overhead of the design
are evaluated on FPGA. After the polynomial multiplier is synthesized by the Synplify
Premier tool and implemented by the Vivado tool, the hardware resource overhead report
generated by the implementation of the polynomial multiplier and NTT module on the
FPGA. To facilitate comparison, the FPGA platform used in this paper is the same as the
existing design, which is the Xilinx Kintex 7 series development board.

In order to more clearly compare the comprehensive performance of the proposed
polynomial multiplier and other designs in terms of hardware resource overhead and
performance, it is necessary to integrate hardware resources and performance into the same
parameter for further comparison. This paper will use the resource equivalent comparison
method in the literature [36], which considers the replacement relationship of resources on
the Xilinx K7 series FPGA board, and obtains the equivalent number of slices (ENS) shown
in Table 1.

Table 1. Equivalent slice number of FPGA hardware resources.

Resource ENS

Slice 1
DSP 102

BRAM 56

For fair comparison, the computing performance in each design is normalized accord-
ing to the settings, in which the computing time T and parameter N are normalized based
on the experimental results. Because the modulo parameter q of the selected compara-
tive literature is all 12,289, the parameter N can be used to represent the data size of the
calculation.

The performance resource ratio(PRR) is a composite indicator of performance and
hardware resources. The calculation formula of PRR is as follows:

PPR = ENS · T/N. (5)

5.2. Experimental Results

The FPGA implementation hardware resource overhead of the two NTT modules
proposed in this paper is shown in Table 2. As can be seen from the table, the hardware
resource overhead of the H-NTT module is larger than that of the L-NTT module. One
H-NTT module consumes 241 slices, and one L-NTT module consumes 145 slices, which is
because there are more computational units and memory blocks in the H-NTT module than
in the L-NTT module. The internal RAM of H-NTT is three more blocks than that of L-NTT,
but the overall usage of BRAM is not more than doubled. This is because the depth of each
block of RAM in H-NTT is only half of that of RAM in L-NTT. This not only facilitates the
collision between the two butterfly computing units in H-NTT when computing in parallel,
but also greatly reduces the amount of BRAM used.

Table 2. FPGA implementation resource comparison of NTT modules.

N LUT/FF Slice BRAM DSP Freq (MHz) Cycle Time (µs)

H-NTT 512 696/403 241 2.5 9 246 1224 4.97
L-NTT 512 440/275 145 2 6 248 2412 9.72

[37] 512 1536/953 - 3 1 278 3443 12.3
[38] 256 875/486 - - 4 248 3072 12.38
[34] 1024 898/1117 357 10 4 188 2032 10.81
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According to Table 2, the proposed two NTT architectures use less LUT, FF, and slice
resources, but use more DSP resources. This is because the arithmetic units in the H-NTT
and L-NTT architectures are mostly implemented by DSP. Moreover, the BRAM used
by the two NTT modules is less than that of other designs, because the scaling factor in
this paper is precalculated, which saves the RAM required for prestorage. The H-NTT
module has a significantly shorter operation cycle when the frequency is similar to other
designs. Therefore, compared with other NTT modules, the H-NTT module has the shortest
operation time. In order to facilitate comparison, the computational performance of each
design is normalized according to the settings in this paper. Due to the lack of slice resource
and BRAM resource cost data in literature [38], normalized comparison cannot be carried
out. The final calculated PPR results of the NTT module are shown in Table 3.

Table 3. PRR comparison of NTT’s FPGA implementation.

N Slice BRAM DSP Time (µs) PRR

H-NTT 512 241 2.5 9 4.97 1.00
L-NTT 512 145 2 6 9.72 1.31

[37] 512 549 3 1 12.30 1.56
[38] 256 - - 4 12.38 -
[34] 1024 811 10 4 10.81 1.49

The proposed polynomial multiplier based on H-NTT module is implemented on
FPGA and the performance and hardware resource cost of the design are evaluated. Ac-
cording to the Table 4, our implementation consumes a total of 485 slices, 18 DSPs, and five
BRAMs, and the highest frequency achieved is 234.1 MHz. Compared with the Table 2, it
can be seen that the main hardware resource overhead of the polynomial multiplier in this
paper is about twice that of the H-NTT module. This is because the core operation unit of
the polynomial multiplier consists of two parallel H-NTT modules. In addition to NTT
operations, other operations in polynomial multiplication such as preprocessing, postpro-
cessing, and INTT operations are multiplexed through H-NTT modules. The calculation
unit and storage unit in the polynomial multiplier are completed, and no additional core
operation unit is added to the polynomial multiplier, only the related control logic of the
polynomial multiplier operation is added, and this part of the logic uses less hardware
resources. Therefore, this paper effectively reduces the hardware resource overhead in the
polynomial multiplier by multiplexing the computing units of the NTT module.

Furthermore, comparing with [28], in the case of the same parameter N, the slice
occupancy and BRAM designed in this paper are much smaller, and the DSP occupancy
is slightly more. From the perspective of computing performance, the frequency of our
design is slightly lower, but the total number of calculation cycles is less; therefore, the
calculation time to complete a 512-point NTT is less. The result indicates that in the case
of slightly higher performance, the design of this paper reduces the resource occupation
significantly. In addition, our design is compared with the other two designs with the same
parameter N. The resource overhead of LUT, FF, slice, etc. in [27] is greater, but the DSP
resources are much smaller than our design, because they use a single core. Although the
work in [27] has less resource overhead, the number of computing cycles is more than three
times, and the time to complete a polynomial multiplication operation is four times that of
the design in our work, and the overall performance is low. The highest frequency in [39]
is similar to our work, the number of calculation cycles and the overall calculation time are
about 1/2, but its slice resource overhead is three times that of our design, the use of BRAM
is also greater, and the overall hardware resources overhead is greater than in our work.
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Table 4. FPGA implementation resource comparison of polynomial multipliers.

N LUT/FF Slice BRAM DSP Freq(MHz) Cycle Time(µs)

This paper 512 1390/873 485 5 18 234.1 3120 13.32
[27] 512 1585/1205 615 4 1 196 10014 51.09
[28] 512 -/- 870 8.5 16 253.1 3630 14.32
[38] 256 1986/753 698 4 4 225.3 6900 25.74
[35] 512 4780/- 1744 24 16 232 5251 22.58
[40] 1024 1208/- 556 14 14 211.6 - 37.674
[39] 512 -/- 1246 6 16 249.3 1690 6.78

The performance resource ratio (PRR) of each design is shown in the Table 5. According
to the comparison results, the polynomial multiplier we proposed is better than most
designs; only the PRR of the literature [39] is better than ours. However, compared with
the literature [39], the slice and storage of our paper is less, thus being more appropriate
for application situations that are sensitive to hardware resources. In addition, compared
with other hardware designs with the same operation scale (parameter N is the same),
the storage resource BRAM consumed by the design in this paper is significantly smaller.
The BRAM resource overhead of the literature [27] is somewhat smaller than our design
because its hardware is in the operation process. The parameters are all calculated in real
time, which also causes the much longer calculation time. The comparison results prove
that the storage and precomputing technology of the twiddle factor proposed in this paper
can effectively reduce the storage resource overhead.

Table 5. PRR comparison of polynomial multiplier’s FPGA implementation.

N Slice BRAM DSP Time (µs) PRR

This paper 512 485 5 18 13.32 1.00
[27] 512 615 4 1 51.09 1.39
[28] 512 870 8.5 16 14.32 1.22
[38] 256 698 4 4 25.74 1.98
[35] 512 1744 24 16 12.03 1.64
[40] 1024 556 14 14 37.674 1.50
[39] 512 1246 6 16 6.78 0.63

5.3. Discussion

In summary, the proposed hardware implementation has good overall performance.
Compared with the modulo multiplication units in other designs, the Montgomery modulo
multiplication unit we adopted not only optimizes the difficulty of modulo calculation in
the process of modulo multiplication calculation, but also effectively uses the potential
parallelism in the calculation process.

In addition, the parameter preprocessing schemepaper, which we proposed after in-
depth analysis of the characteristics of parameters such as rotation factor, can significantly
reduce the cost of storage resources. Compared with the work [28,35], although the calcu-
lation time is similar to the results of this paper, the RAM resources stored in parameters
are more than twice of that in our paper. The hardware design scheme of polynomial
multiplier proposed in this paper provides a novel design idea for ASIC implementation in
security chip application scenarios. Compared to the FPGA, the implementation of ASIC
pays more attention to the effective use of hardware resource in embedded application
scenarios. In contrast with ARM RISC-V implementation, ASIC is able to obtain polynomial
multiplication operation effect with higher performance at lower cost. In ASIC design, the
comprehensive evaluation of performance and cost are the focus of attention. The PRR of
the literature [39] is better than ours. However, the resource cost of our paper is less, which
is still more appropriate for the ASIC implementation.
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6. Conclusions

In order to solve the problem of low computational performance of current lattice
cipher algorithms, the polynomial multiplier of its core operator is studied and designed in
this paper. Two NTT module hardware architectures and an optimized modular multipli-
cation unit are proposed. The hardware unit has a pipelined structure which can realize
fast modular multiplication calculation and enable the computational units in the NTT
module to read data alternately. Then we propose a parameter storage and precomputation
scheme, which effectively reduces the memory. Finally, this paper implements a polynomial
multiplier hardware based on NTT. The experimental results show that the polynomial
multiplier proposed in this paper has good computing performance while using fewer
hardware resources, which can effectively improve the computing efficiency of the lattice
cipher algorithm and meet the application requirements in security chips.

As the future work, we are focusing on the real performance requirements in special
application scenarios. By adjusting the number of butterfly computations deployed in
parallel in the NTT module, the polynomial multiplier can address the requirements of
speed and resource cost in different scenes. Moreover, the design in this paper is the
underlying operator of lattice cipher algorithm, our future research will design a complete
hardware accelerator, which is expected to further improve the computational performance
of algorithm.
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33. Yaman, F.; Mert, A.C.; Öztürk, E.; Savaş, E. A hardware accelerator for polynomial multiplication operation of CRYSTALS-KYBER
PQC scheme. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 1–5 February 2021; pp. 1020–1025.

34. Nguyen, D.T.; Dang, V.B.; Gaj, K. A high-level synthesis approach to the software/hardware codesign of NTT-based post-quantum
cryptography algorithms. In Proceedings of the 2019 International Conference on Field-Programmable Technology (ICFPT),
Tianjin, China, 9–13 December 2019; pp. 371–374.

http://dx.doi.org/10.1109/ACCESS.2020.3019345
http://dx.doi.org/10.1109/MSP.2017.3151345
http://dx.doi.org/10.1109/TVLSI.2022.3152011
http://dx.doi.org/10.1109/TCSI.2021.3094889
http://dx.doi.org/10.1109/TCSII.2020.3025857
http://dx.doi.org/10.1007/s10623-015-0067-5
http://www.ncbi.nlm.nih.gov/pubmed/32226228
http://dx.doi.org/10.1145/2535925
http://dx.doi.org/10.1109/TCSI.2014.2350431


Electronics 2023, 12, 951 21 of 21

35. Liu, D.; Zhao, W.; Liu, Z.; Zhang, C.; Liu, X. Reconfigurable Hardware Design of Multi-lanes Number Theoretic Transform for
Lattice-based Cryptography. J. Electron. Inf. Technol. 2022, 44, 566–572.

36. Liu, W.; Fan, S.; Khalid, A.; Rafferty, C.; O’Neill, M. Optimized schoolbook polynomial multiplication for compact lattice-based
cryptography on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2459–2463. [CrossRef]

37. Roy, S.S.; Vercauteren, F.; Mentens, N.; Chen, D.D.; Verbauwhede, I. Compact ring-LWE cryptoprocessor. In Proceedings of the
Cryptographic Hardware and Embedded Systems–CHES 2014: 16th International Workshop, Busan, Republic of Korea, 23–26
September 2014; Proceedings 16; Springer: Berlin/Heidelberg, Germany, 2014; pp. 371–391.

38. Li, B. Design and Implementation of a High-Performance Fully Homomorphic Encryption Processor; Hefei University of Technology:
Hefei, China, 2021.

39. Du, C.; Bai, G.; Wu, X. High-speed polynomial multiplier architecture for ring-LWE based public key cryptosystems. In
Proceedings of the 2016 International Great Lakes Symposium on VLSI (GLSVLSI), Boston, MA, USA, 18–20 May 2016; pp. 9–14.

40. Mert, A.C.; Öztürk, E.; Savaş, E. Design and implementation of a fast and scalable NTT-based polynomial multiplier architecture.
In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019;
pp. 253–260.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVLSI.2019.2922999

	Introduction
	Ralated Work 
	NTT Hardware Architecture 
	NTT Algorithm
	Hardware Architecture
	L-NTT Hardware Architecture
	H-NTT Hardware Architecture
	Butterfly Unit
	Modular Multiplication Unit


	Polynomial Multiplier Hardware Architecture 
	Polynomial Multiplication Based on NTT Algorithm
	Parameter Storage and Precomputation Method
	Polynomial Multiplication Accelerator
	Overall Architecture
	Preprocessing and Postprocessing


	Experiments and Results 
	Experimental Setup
	Experimental Results
	Discussion

	Conclusions 
	References

