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Abstract: Automatic target detection of remote sensing images (RSI) plays an important role in
military surveillance and disaster monitoring. The core task of RSI target detection is to judge the
target categories and precise location. However, the existing target detection algorithms have limited
accuracy and weak generalization capability for RSI with complex backgrounds. This study presents
a novel feature enhancement single shot multibox detector (FESSD) algorithm for remote sensing
target detection to achieve accurate detection of different categories targets. The FESSD introduces
feature enhancement module and attention mechanism into the convolution neural networks (CNN)
model, which can effectively enhance the feature extraction ability and nonlinear relationship between
different convolution features. Specifically, the feature enhancement module is used to extract the
multi-scale feature information and enhance the model nonlinear learning ability; the self-learning
attention mechanism (SAM) is used to expand the convolution kernel local receptive field, which
makes the model extract more valuable features. In addition, the nonlinear relationship between
different convolution features is enhanced using the feature pyramid attention mechanism (PAM).
The experimental results show that the mAP value of the proposed method reaches 81.9% and 81.2%
on SD-RSI and DIOR datasets, which is superior to other compared state-of-the-art methods.

Keywords: remote sensing image (RSI); target detection; convolution neural networks (CNN); FESSD;
feature enhancement

1. Introduction

Remote sensing image (RSI) target detection is one of the hot-research problems in the
(RSI) interpretation field, which relates to many essential and fundamental applications in
both military and civilian areas [1–3]. In the specific applications, remote sensing target
detection can be applied in ship location [4], vehicle counting [5], disaster rescue [6], target
attacks [7], warfare analysis [8], and so on. However, compared with the optical images,
RSI has the characteristics of complex background, high target density, small target size,
and large feature similarity between different categories targets [9,10].

In recent years, many RSI target detection methods have been proposed and widely
used in different fields. The existing RSI target detection methods can be classified into
traditional machine learning (ML) methods and deep learning (DL)-based methods [11].
In the process of using ML-based methods, the extracted features are specific to the target
characteristics, such as colour, texture, shape, angle, and so on [12]. The commonly used
feature extraction methods include scale-invariant feature transform (SIFT) [13], histogram
of oriented gradient (HOG) [14], and deformable part model (DPM) [15]. In addition, many
multi-feature combination methods have been proposed, which can effectively enhance the
feature extraction effect [16–19]. To accurately classify the target category, the commonly
used classifiers include support vector machine (SVM) [20], random forest (RF) [21], deci-
sion tree model (DTM) [22], and naive bayes classifier (NBC) [23]. However, the ML-based
methods are dependent on prior knowledge, resulting in poor adaptability and gener-
alization capabilities [24]. Currently, deep learning (DL) has achieved more significant
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breakthroughs and success in many application fields on image processing and computer
vision [25–28]. The DL-based target detection methods can be divided into regression-based
single-stage detection methods [29], and region proposal-based two-stage target detection
methods [30]. The single-stage detection methods include DSSD [31], RetinaNet [32], Re-
fineDet [33], and so on. The currently proposed two-stage target detection methods include
Faster R-CNN [34], Mask R-CNN [35], FPN [36], and Cascade RCNN [37]. The DL-based
target detection methods use the convolution neural network (CNN) structure for im-
age feature extraction [38], which presents encouraging performances on target detection.
However, due to the significant difference between the RSI and optical images, single
convolution cannot fully extract the target region features.

In this study, we propose a feature enhancement single shot multibox detector al-
gorithm (FESSD), where the feature enhancement module, self-attention mechanism
(SAM) [39], and feature pyramid attention mechanism (FPA) are combined with the orig-
inal (single shot multibox detector) SSD algorithm. In FESSD, the feature enhancement
module is used to enhance the shallow features and deep features extracted by different
convolution layers, and the SAM is used to expand the local and global receptive fields
while enhancing the correlation between different features. Moreover, the FPA is used for
multi-scale feature fusion and improving the model nonlinear learning ability. In summary,
the main contributions of this study are as follows,

• To improve the accuracy of remote sensing target detection, this study proposed a
feature enhancement single shot multibox detector algorithm (FESSD). Different from
previous DL-based methods, the FESSD can effectively extract multi-scale feature
information of remote sensing images.

• Feature enhancement structures that including feature enhancement module, self-
attention mechanism, and feature pyramid attention mechanism are proposed for
extracting meaningful features of remote sensing targets and suppressing background
feature information interference.

• To assess the performance of the proposed FESSD, we perform a wide range of
comparisons between different target detection methods on SD-RSI and DIOR dataset.
The experiments results show that the proposed method is far more efficient than the
other state-of-art methods.

2. Related Work

The related works are reviewed in this section, including the traditional machine
learning (ML)-based methods and deep learning (DL)-based methods for target detection.

2.1. ML-Based Remote Sensing Target Detection Method

Many ML-based methods have been proposed for remote sensing target detection
in the past decades. The main steps of ML-based methods include feature extraction,
feature selection, and category classification. Specifically, Dong et al. [40] extract multi-scale
features of remote sensing images and uses random forest metric learning (RFML) as a
classifier for remote sensing target detection. Li et al. [41] proposed an automatic target
detection using contour spatial model, which uses dynamic programming to calculate the
similarity between contour information and target templates to achieve target detection.
In [42], the sparse representation and hough transform (HT) are combined for target detec-
tion, the learned target and background dictionaries are used to represent sparse images
specific classes, and the hough voting is used for spatial feature integration. The multi-
feature fusion method is an effective way to achieve accurate target detection. In [43],
multiple features, including colour, texture, shape, density, orientation, etc., are combined
to realize target detection. Zhu et al. [44] present a novel target detection method based on
both bottom-up and top-down saliency, where the scale-invariant features transform and
SVM are used to detect the target regions. In [45], it combined the target information and
first-order Markov model to train the nonlinear support vector data description (SVDD) and
conduct target classification. Yang et al. [46] propose a novel target detection framework
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sparse CEM and sparse ACE based on the constrained energy minimization (CEM) and the
adaptive coherence estimator (ACE). Zhang et al. [47] proposed a regularization framework
for the measurement matrices, which adds a scaled identity matrix to strengthen the inverse
matrices stability and improve the detection accuracy. However, the ML-based methods are
susceptible to interference from complex scenes and background information, thus limiting
its robustness and generalization.

2.2. DL-Based Remote sensing Target Detection Method

Benefiting from the feature extraction ability of CNN, it has been widely used in RSI
target detection. Lei et al. [48] proposed a region-enhanced CNN (RECNN) for RSI target
detection. In RECNN, it uses saliency constraint and multilayer feature fusion strategy
to enhance the CNN model detection performance. Lu et al. [49] proposed a novel target
detection model, which uses the channel attention mechanism to learn the global and local
features of the target. To obtain a suitable ROI scale, Dong et al. [50] carried out the statistical
analysis on the target, and designed a better target detection model based on the suitable
ROI scale. In [51], Sun et al. proposed a novel method for designing loss function, called
adaptive saliency biased loss (ASBL), which can train target detectors model to achieve
better performance. Bai et al. [52] use the dense residual network (DRNet) and ROI pooling
to enhance the original Faster R-CNN detection performance. YOLOv3 is a commonly used
single-stage target detection method, Ma et al. [53] use the ShuffleNet to enhance the feature
extraction capability of YOLOv3. To alleviate the influence of illumination transformation
and complex background, Li et al. [54] proposed a novel Global-Local Saliency Constraint
Network (GLS-Net), which can make full use of global semantic feature information and
achieve more accurate oriented bounding boxes. Sun et al. [55] proposed a part-based
convolutional neural network (PBNet) for complex composite object detection, using the
context refinement module to obtain multi-scale and global context features. To improve
the model feature extraction ability, He et al. [56] proposed a deformable contextual feature
pyramid for adaptive extraction the multi-scale features contained in RSI. Wang et al. [57]
proposed a feature-merged single-shot detection (FMSSD) for multi-scale objects detection
in RSI, which uses the atrous spatial feature pyramid (ASFP) module to extract and fuse
the multi-scale features, and the area-weighted loss function is used for improving the
detection accuracy.

3. Proposed Method
3.1. Overall Architecture

Single shot multibox detector (SSD) as a single-stage target detection algorithm has
achieved better results in ordinary optical image detection [58]. However, limited by
the ability to obtain deep features and global context information, SSD cannot achieve
accurate detection of small and dense targets. To improve the detection accuracy of small
and dense target in RSI, the FESSD is proposed based on the SSD algorithm. In FESSD,
the shallow feature enhancement (SFE) module, deep feature enhancement (DFE) module,
self-attention mechanism (SAM), and feature pyramid attention mechanism (PAM) are
introduced into SSD algorithm to improve the detection accuracy of remote sensing image
targets. The overall framework of FESSD is shown in Figure 1, where the SFE module
and DFE module are used to perform shallow and deep feature enhancement; the SAM is
introduced into the backbone network to enhance the correlation of the extracted features
by different convolution layer; and the PAM is used to fully extract local and global features.
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Figure 1. The structure of feature enhancement single shot multiBox detector (FESSD), including
the Shallow Feature Enhancement (SFE) Module, Deep Feature Enhancement (DFE) Module, Self-
Attention Mechanism (SAM), and Feature Pyramid Attention Mechanism (PAM).

3.2. Feature Enhancement Module

To enhance the model feature extraction ability and relationships between different
features, inspired by Inception [59], ResNet [60], and dual-path network (DPN) [61], we
proposed shallow feature enhancement (SFE) module and deep feature enhancement (DFE)
module. The structure of the feature enhancement module is shown in Figure 2.

Figure 2. The structure of feature enhancement module, including the Shallow Feature Enhancement
(SFE) Module and Deep Feature Enhancement (DFE) Module.

Shallow Feature Enhancement (SFE) Module. The SFE module contains four different
branches, the first branch uses 1× 1 convolution and 3× 3 dilated convolution to enhance
the model global receptive field range and nonlinear learning ability. the second and third
branches use group convolution to improve the feature extraction ability without increasing
calculation parameters; the fourth branch uses 1× 1 convolution to obtain original primary
features and uses the residual connection for feature transfer. Specifically, the SFE module
uses group convolution to decompose the k× k convolution kernel into 1× k and k× 1 ,
which saves training time while ensure the local receptive field unchanged, and the Concat
function and Add fusion operation are used to fuse the different branch feature maps.
The formal description is as follows,

(1) The convolution layer is defined as follows,

xl = f
(

W l xl−1 + bl
)

(1)
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where, l represents the number of layers, W represents the convolution weight, b
represents the bias value, and f represents activation function.

(2) The definition of dilated convolution is as follows,

(F ~ l)(p) = ∑s+lt F(s)k(t) (2)

where, ~ represents the dilated convolution, F represents the input image, k represents
kernel function, and p , s , and t represent the corresponding domains, respectively.

(3) The calculation process of residual learning is as follows,

xl+1 = xl + F(xl , Wl) (3)

where, xl represents the current layer, xl+1 represents the next layer, Wl represents the
weight of l layer, and F represents residual function.

(4) The calculation formula of Concat function and Add fusion operation are as follows,

Zconcat = ∑c
i=1 xi ∗ ki + ∑c

i=1 yi ∗ ki+c (4)

Zadd = ∑c
i=1 (xi + yi) ∗ ki (5)

where, xi and yi represent the input of different channels, c represents the number of
channels, k represents the kernel function, and ∗ represents the convolution operation.

Deep Feature Enhancement (DFE) Module. The DFE module combined the advantages
of ResNet [60] and DenseNet [62] for feature extraction, which can not only deepen the
model structure, but also realize the progressive fusion of different layer feature information.
The DFE module uses the group convolution and dense connection operation to enhance
the feature information of different convolution layers and channels. The calculation
process of DFF module is as follows,

(1) The dense connection calculation formal is as follows,

xl = Hl([x0, x1, ..., xl−1]) (6)

where, Hl(·) denotes the transformation function, and l denotes convolution layers.
(2) Group convolution. The input of group convolution is H×W×C1, C2 is its filter, and the

output by convolution is H ×W × C2. Therefore, the number of calculation parameters
for group convolution is half of the corresponding origibal convolution operation.

(3) The calculation formula of Concat functions and Add fusion as Equations (4) and (5).

3.3. Self-Attention Mechanism

In the operation process of CNN, since the limited and fixed size of the convolution
kernel, each convolution operation can only cover the area calculated by the convolution
kernel, so the global feature and multi-scale feature contained in the image are not easily
obtained. To make the features extracted by the convolution layer more relevant, the self-
attention mechanism (SAM) is introduced in FESSD, and the structure of self-attention is
shown in Figure 3. The SAM is mainly used to perform multi-scale transformation and fu-
sion of input feature maps. The SAM module includes convolution, feature transformation,
feature scaling, and feature fusion. The convolution operation can normalize the channel
of the input feature map; the feature transformation and scaling are used to enhance the
correlation between different feature points in the feature map; and the feature fusion
output the final self-attention feature map.



Electronics 2023, 12, 946 6 of 20

Figure 3. The structure of self-attention mechanism (SAM), including the convolution module, matrix
multiplication, and SoftMax function.

As shown in Figure 3, assuming that the size of input feature map N is c×w× h, where
c represents the number of feature map channels, w represents the width, h represents the
height. The overall calculation process of SAM is as follows,

(1) Perform three convolution operations on the input feature map, where the first and
second convolution modules uses the 1× 1 convolution kernel to compress the number
of feature map channels, and then expand and transform the width and height of the
feature map into matrix Q and K; the third convolution module continues to uses 1× 1
convolution, but maintains the number of feature channels unchanged, and expands
the width and height of the input feature map into matrix V; then the 3× 3 and 5× 5
convolution operations are performed to further extract the feature information.

(2) The matrix Q is transposed, and the transpose matrix QT and matrix K are multiplied
to obtain the scale feature map matrix E = QTK.

(3) The scale feature matrix E is is normalized in the column direction using SoftMax
function, and the relationship between different feature points of the feature map is
obtained, that is the attention matrix feature map, and the matrix elements is calculated
as follows,

β j,i = exp
(
Eij
)
/ ∑N

i exp
(
Eij
)

(7)

where, β j,i represents each element in the attention matrix feature map, Eij represents
each element in the scale feature map matrix, N represents the number of elements in
the scale feature map matrix.

3.4. Feature Pyramid Attention Mechanism

The feature pyramid network (FPN) can extract feature of different scales from the
pixel-level and calculates the multiple receptive field information in parallel [36]. However,
in the traditional feature pyramid network, the information fusion between different
scales feature maps is completed by simple linear superposition, ignoring the nonlinear
relationship between different levels branches. The feature pyramid attention mechanism
(FPAM) uses the modified feature pyramid structure to obtain the multi-scale features of
different objects and increases the model nonlinear feature extraction ability.

As shown in Figure 4, FPAM includes pyramid feature extraction (PFE) module and
attention feature fusion (AFF) module, where the PFE module is used to obtain multi-
scale features of different feature map; AFF module is used for multi-scale fusion of
different scale attention feature maps. Specially, the PFE module includes four layers
of convolution structure, in which 3× 3, 5× 5, 7× 7, and 9× 9 convolution operation
are used for multi-scale feature extraction, and the down-sampling is used to reduce the
feature map resolution size; the AFF module is constructed with a hierarchical manner,
the multi-scale feature extraction is performed by using different size convolution kernels,
and the up-sampling operation is used to generate the attention weight map. Moreover,
to avoid the misjudgment of the original input feature map in the process of PFE and
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AFF module, the original feature map is linearly superimposed with the result of AFF
module. The FPAM can mapping the feature into different sub-regions, it by aggregating
the semantic content of different sub-regions to make the final output feature have global
semantic information.

Figure 4. The structure of feature pyramid attention mechanism (FPAM), including the Attention
Feature Fusion (AFF) Module and Pyramid Feature Extraction (AFF) Module.

The formal description of FPAM is as follows,

S = Conv1×1(I) + f pam(N) (8)

where, S represents the output, I represents the input, and N represents the number of
layers in the FPAM.

f pam(N) = Convm×n(Ii) + U( f pam(i− 1)) (9)

where, m× n represents the size of convolution kernel, U represents up-sampling operation,
f pam(i− 1) represents the output of the (i− 1)th layer.

Ii = Conv3×3(D(Ii−1)) (10)

where, D represents down-sampling operation, Ii represents the input of the ith layer.

3.5. Bounding Boxes Selection and Loss Function

To accurately detect remote sensing objects of different categories, the bounding boxes
with different aspect ratios are designed to match the size of different object categories.
Assuming that the convolution feature of m convolution layers are selected for the object
detection, the size of candidate bounding boxes for the feature of ith layer is calculated as

Si = Smin +
Smax − Smin

m− 1
(i− 1) i ∈ [1, m] (11)

where, Smin and Smax represent the scale coefficients of candidate bounding boxes.
Assuming that the ratio of width to height of the candidate bounding boxes is ar,

the width is wi = Si ×
√

ar, and height is hi = Si/
√

ar, the center coordinate is calculated as

(x, y) =
(

i + 0.5
| fk|

,
j + 0.5
| fk|

)
i, j ∈ [0, | fk|] (12)

where, | fk| represents the size of kth layer features.
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To solve the problem of model degradation caused by the imbalance of the positive
and negative samples of the remote sensing image during the model training process,
the FESSD is optimized and trained based on the SSD algorithm loss function combined
with the focal classification loss, which is expressed as follows,

L(x, c, p, l, p) =
1
N

[
L f 1(x, c, p) + aLloc(x, l, g)

]
(13)

where, N denotes the number of bounding boxes that match the ground truth, x denotes
the input image, c is the object category, p is the predicted category probability, l denotes
the bounding boxes, and a denotes the weight of bounding boxes and ground truth box.

The L f 1(x, c, p) and Lloc(x, l, g) are focus classification loss and bounding box regres-
sion loss, where the bounding box regression loss is inspired by the position regression
function of Faster R-CNN, which is calculated as follows,

Lloc(x, l, g) = ∑N
i∈Pos ∑m∈{cx ,cy ,w,h} xk

ijsmoothL1

(
lm
i − gm

j

)
(14)

where, xk
ij represents the comparison between ith candidate boxes and jth ground truth

boxes for kth category, lm
i represents the candidate box value, and gm

i represents the ground
truth box value. The cross entropy function is sued to calculate the loss of focus classification
loss function L f 1(x, c, p), which is calculated as follows,

L f 1(x, c, p) = −∑N
i∈Pos xk

ij p log
(

ck
i

)
−∑i∈Neg (1− p) log

(
c0

i

)
(15)

where, c0
i represents the predict category corrects probalility, and ck

i is the probability
calcualted by SoftMax function.

4. Experiments
4.1. Dataset

To evaluate the detection performance of the proposed FESSD algorithm, a total of
1972 optical remote sensing images with a size of 500 × 375 pixels containing seven kinds
of targets in different scenes are collected from Google Earth, and the spatial resolution
varies from 0.5 to 2 m.

The dataset is named SD-RSI, and the original image and annotation is available at
https://drive.google.com/drive/rs-drive (accessed on 5 December 2022). The specific
target categories include airplane, ship, bridge, vehicle, storage tank (ST), baseball diamond
(BD), and tennis court (TC), which contain 10,550 instance samples, 7558 targets are used as
the train dataset, and 2992 targets are used as test dataset. The train samples are separately
rotated with the angle of ϕ= {10

◦
, 20

◦
,..., 350

◦}, which extend the number of train samples
by 40 times. In addition, according to the criterion, the collected optical remote sensing
images are divided into four classes (i.e. small target: area < 322 m; medium target:
322 m < area < 962 m; Large target: area > 962 m) for split the target size, the target data
distribution is shown in Table 1. Compared with the existing dataset NWPU VHR-10 [63]
and AID [64] dataset, the constructed dataset mainly focuses on small size and medium
size targets, and the target distribution is denser.

Figure 5 shows sample examples of the constructed dataset, which are 19 airplanes,
29 storage tanks, 8 ships, 5 vehicles with a resolution of 1m, and 2 bridges with a resolution
of 2m. Because some airplane and ship targets only contain a small number of pixels under
the condition of low resolution, it is difficult to manually judge whether it is an airplane or
ship. Therefore, only targets with more than 5 pixels are labeled. The images annotations
process is shown in Figure 6, in which the LabelImg software used for target annotation.
In the obtained parameters, (x, y) represent the coordinates of the upper left corner in the
rectangle box where the target is located, w denotes the width, and h denotes the height.

https://drive.google.com/drive/rs-drive
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Table 1. The sample statistics of constructed dataset.

Dataset Class Image Instance Small Medium Large

Train Dataset

Airplane 320 2382 1491 890 1
Ship 400 1317 659 588 70

Bridge 140 143 25 43 75
Vehicle 140 956 842 114 0

Storage tank (ST) 220 1735 884 845 6
Baseball diamond (BD) 165 543 442 75 26

Tennis court (TC) 95 482 318 95 69

Test Dataset

Airplane 101 970 471 398 1
Ship 70 415 210 195 10

Bridge 36 40 7 0 33
Vehicle 49 318 295 23 0

Storage tank (ST) 78 759 374 385 0
Baseball diamond (BD) 74 158 212 42 4

Tennis court (TC) 84 232 195 20 17

Figure 5. Samples of the constructed dataset.

Figure 6. Dataset image annotation process.

4.2. Evaluation Metrics

To evaluate the proposed MFENet, intersection over ratio (IoU), precision, recall,
average precision (AP), and mean AP (mAP) are used to assess the performance of object
detection. The IoU is defined as

IoU =
area(Dpre ∩ Dgt)

area(Dpre ∪ Dgt)
(16)

where, area(Dpre ∩ Dgt) represents the area of the intersection of Dpre and Dgt; area(Dpre ∪ Dgt)
is the area of union of Dpre and Dgt. In the object detection process, the overlap threshold εiou
is given, if IoU ≥ εiou, the predicted bounding box is considered to be true positive.
The precision is defined as

Precision =
TP

TP + FP
(17)
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where, TP represents the number of true positive predicted bounding box; FP represents
the number of false positive predicted bounding box. The recall is defined as

Recall =
TP

TP + FN
(18)

where, FN represents the number of objects that are not detected. The area under the
precision-recall curve (PRC) obtained by plotting precision and recall. F1_score is an
equilibrium value of target detection accuracy, which is defined as

F1_score = 2× Precision× Recall
Precision + Recall

(19)

The AP is commonly used in object detection evaluation, which is defined as the
average accuracy of object detection model at different recall levels. The mAP is the mean
value of detection accuracy for different object categories, which is defined as

mAP = ∑N
n=0 APn/N (20)

where, N represents the number of object categories.

4.3. Implementation Details

The experiments are conducted on a PC with 11 GB NVIDIA 2080Ti, the operating
system is Ubuntu 16.04, and the programming environment is Keras with CUDA kernels.
The RSI dataset is divided into train, validation, and test datasets. The train dataset
includes 934 images, and each validation and test dataset include 310 remote sensing
images. The FESSD use the batch train method for experiment on the dataset, each batch
contains 32 images, and the number of iterations is set to 10,000 in the experiment process.
The initial learning rate of this stage is set to 0.0001, and it decays 0.1 after 3000 iterations.

4.4. Parameter Optimization

The IoU threshold is an important indicator that affects mAP. The higher thresholds
of IoU, the more accurate the regression of the corresponding bounding boxes. Since the
target detection in the remote sensing image is a two-class problem, that is, the image
includes target area and backbone area.

Therefore, when the predict value exceeds 0.5, it can be determined that the pre-
dict class is correct. Under the same experimental parameter settings, the IoU threshold
is set to 0.2, 0.35, 0.5, 0.65 and 0.8. To select the appropriate IoU, the precision, recall,
F1_score, and mAP indicators are calculated for different IoU thresholds on the test dataset,
and the experimental results are shown in Table 2. It can be seen from the experiment
results, with the IoU threshold increases, the evaluation indicators of the model changed.
The F1_score and mAP indicators first increase then decrease, and the optimal value is
obtained when IoU reaches 0.5; From the Equation (17), we can know that precision is
determined by TP and FP, so with IoU increases, FP increases accordingly, which leads to
the precision value decrease; From the Equation (18), we can know that recall is determined
by TP and FN, so with IoU increases, the TP value gradually increases, and the recall also
increases; Equation (19) shows that the F1_score depends on precision and recall, so the
change trend of F1_score is consistent with precision.
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Table 2. The impact of different IoU thresholds on model performance.

Method IoU Threshold Precision Recall F1_Score mAP

FESSD

0.2 95.18% 79.82% 84.63% 79.25
0.35 93.45% 81.26% 86.75% 81.26
0.5 92.86% 82.51% 88.45% 83.51
0.65 87.53% 83.14% 81.42% 80.65
0.8 80.24% 85.52% 76.53% 78.32

4.5. Performance Evaluation and Comparison

In this experiment, we evaluated the performance of FESSD algorithm, and compared
it with multiple target detection algorithms, i.e., Contour-Based Spatial (CBS) Model [41],
Partial Intensity Invariant Feature (PIIF) Descriptor [65], ASBL-RetinaNet [51], RECNN [48],
GLS-Net [54], SSD [55], YOLOV3 [66], and FFESSD [67]. The results of nine target detec-
tion algorithms under the same experimental settings are shown in Table 3. Moreover,
to evaluation the detection accuracy, the parameter IoU of all compared model is set to 0.5.

Table 3. The performance comparisons of different methods on the SD-RSI dataset.

Methods Airplane Vehicle Ship Bridge ST BD TC mAP FPS

CBS-Model 0.697 0.518 0.658 0.689 0.795 0.763 0.803 0.703 5.3
PIIF 0.602 0.486 0.621 0.714 0.768 0.751 0.824 0.680 8.4

ASBL-RetinaNet 0.702 0.593 0.665 0.781 0.812 0.795 0.843 0.741 28.6
RECNN 0.757 0.635 0.645 0.771 0.835 0.821 0.828 0.770 21.5
GLS-Net 0.791 0.674 0.683 0.765 0.824 0.842 0.819 0.771 30.3

SSD 0.742 0.702 0.712 0.774 0.846 0.856 0.855 0.783 34.5
YOLOV3 0.758 0.683 0.724 0.769 0.793 0.803 0.798 0.761 31.8
FFESSD 0.795 0.713 0.732 0.752 0.784 0.826 0.835 0.776 30.2
FESSD 0.819 0.725 0.758 0.783 0.879 0.884 0.891 0.819 35.6

Table 3 shows the detection performance of each algorithm for different target cate-
gories, and the evaluation indicators used include AP value, mAP, and FPS. Compared
with the SSD algorithm, the mAP of FESSD is boosted from 0.783 to 0.819, which indicates
the effectiveness of the proposed improved scheme. In terms of mAP, FESSD is better other
compared state-of-the-art algorithms. Specifically, compared with the ML-based methods
CBS-Model and PIIF Descriptor, the mAP is 0.116 and 0.139 higher respectively; compared
with DL-based detection methods ASBL-RetinaNet, RECNN, and CLS-Net, the mAP of
FESSD is 0.078, 0.049, and 0.048 higher respectively; compared with the one-stage detection
method YOLOV3 and two-stage detection method FFESSD, the mAP of the proposed
method is 0.058 and 0.043 higher respectively. In terms of seven different target detection
categories, the AP value of FESSD is better than other detection methods. Specifically,
for small targets airplane, vehicle, ship, and storage tank, the AP value of FESSD out-
performs the second-best by 0.028, 0.023, 0.034, and 0.033; for medium targets bridge,
baseball diamond, and tennis court, the AP of FESSD outperforms the second-best by 0.002,
0.082, and 0.036. In addition, the FPS of FESSD reaches 35.6, which is better than other
compared methods, indicating that FESSD has strong real-time performance. However,
for small target of airplane, vehicle, and ship, although the FESSD achieved the best AP
value, the results are not very satisfactory. The reason may be the small target has fewer
pixels, the number of targets is dense, and has the target overlap phenomenon. To further
demonstrate the effectiveness of FESSD for target detection, the visual detection results
of different target classic are shown in Figure 7. It can be observed from Figure 7, FESSD
has better detection results for multiple targets classic under different scenarios, even the
remote sensing image with the large variations in orientations and sizes. Particularly,
for small targets, the FESSD can achieve accurate detection and location.
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Figure 7. Visual detection results of FESSD on the SD-RSI dataset.

To further verify the performance of FESSD, we conducted experimental analysis on
the DIOR dataset. The DIOR dataset contains more than 23 k images and 192 k instances,
covering 20 object categories [68]. In the experimental process, we selected small and dense
target categories such as airplane, harbor, ship, vehicle, baseball field (BF), and storage tank
(ST) as detection objects, and the performance quantitative analysis of different methods
is shown in Table 4. It can be seen from Table 4 that the mAP of FESSD on the DIOR
dataset reaches 0.812, which is higher than other compared methods. The mAP of ML-
based methods CBS-Model and PIIF are 0.659 and 0.620, indicating that these methods
cannot accurately detect small and dense targets. DL-Based remote sensing target detection
methods ASBL-RetinaNet, RECNN, and GLS-Net achieve better detection results, but the
detection accuracy is relatively poor for small targets such as airplane, ship, and vehicle.
The mAP of generic target detection methods SSD, YOLOV3, and FFESSD are 0.669, 0.693,
and 0.755, although better than the ML-based methods, but cannot satisfy the requirements
for accurate detection of remote sensing targets. In term of detection speed, the FPS of
FESSD reaches 36.5, indicating that it can achieve fast detection of remote sensing targets.
Figure 8 shows the visual detection results of FESSD on the DIOR dataset, from which it
can be seen that FESSD can achieve accurate detection and location of different remote
sensing target categories.
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Table 4. The performance comparison of different methods on the DIOR dataset.

Methods Airplane Harbor Ship Vehicle BT ST mAP FPS

CBS-Model 0.638 0.652 0.613 0.508 0.783 0.765 0.659 6.1
PIIF 0.584 0.597 0.568 0.486 0.752 0.735 0.620 8.3

ASBL-RetinaNet 0.671 0.698 0.602 0.552 0.823 0.782 0.688 29.4
RECNN 0.714 0.735 0.648 0.596 0.842 0.795 0.721 22.5
GLS-Net 0.738 0.759 0.668 0.624 0.865 0.813 0.744 31.6

SSD 0.674 0.682 0.617 0.542 0.776 0.724 0.669 35.8
YOLOV3 0.695 0.712 0.638 0.571 0.792 0.753 0.693 32.4

Faster R-CNN 0.758 0.764 0.695 0.638 0.854 0.826 0.755 30.2
FESSD 0.812 0.793 0.782 0.758 0.862 0.864 0.812 36.5

Figure 8. Visual detection results of FESSD on the DIOR dataset.
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4.6. Ablation Study

In this experiment, we evaluate the performance of each part of FESSD. To analyze the
impact of the shallow feature enhancement (SFE) module and the deep feature enhancement
(DEF) module on the remote sensing target detection accuracy mAP, the experiment set up
different feature enhancement module combinations, and the experimental effects of each
module are shown in Table 5.

Table 5. The influence of feature enhancement module on target detection.

SSD SFE DEF
Class

mAP FPS
Airplane Vehicle Ship Bridge ST BD TC

M 0.738 0.687 0.695 0.792 0.824 0.831 0.829 0.771 36.8
M M 0.775 0.713 0.748 0.825 0.786 0.875 0.873 0.798 28.6
M M 0.756 0.695 0.724 0.803 0.765 0.852 0.857 0.778 38.2
M M M 0.824 0.731 0.763 0.812 0.892 0.897 0.912 0.830 36.2

It can be seen from Table 5 that by adding the SFE module on the basis of SSD model,
the mAP increased from 0.771 to 0.798, and the mAP of the small targets airplane, vehicle,
and ship increased by 0.037, 0.026, and 0.053, respectively. However, due to the addition
of SFE module, the model parameters increased and the FPS decreased by 8.2. When
the DFE module is added on the basis of SSD, the target detection accuracy of each class
is improved, and the DFE module makes the deep network structure more efficient, so
that the FPS reaches 38.2. When the SFE module and DFE module are added at the same
time, in terms of detection accuracy, the mAP of FESSD has reached 0.830, which is an
improvement of 0.059 compared to SSD, and the detection accuracy of different class has
been improved, especially the small target airplane, vehicle, and ship reached 0.824, 0.731,
and 0.763 respectively.

Figure 9 shows the visual detection results of different feature enhancement modules.
Figure 9a is the detection result of SSD algorithm, which has problems such as target
positioning offset and low confidence; Figure 9b is the detection results of the introduction
SFE module, which has been greatly improved compared to the detection confidence of SSD;
Figure 9c is the detection result of the introduction DEF module, although the confidence
of target detection is improved, but occurs target positioning offset problem; Figure 9d is
the detection result of FESSD, which not only accurately detect the target class, but also
completes precise target positioning.

To compare the feature enhancement effects of different feature enhancement modules
on the network, we visualize the last convolution layer of FESSD, and the results are shown
in Figure 10. It can be seen from the Figure 10 that the original SSD algorithm has no
obvious effect on the feature extraction of the detected target, and a large amount of target
feature information is lost; When the SFE module is introduced, the feature extraction
ability for target has been significantly enhanced, especially for the contour and texture
features of small targets; When the DFE module is introduced, its feature extraction ability
has been greatly improved compared to SSD, but the feature enhancement effect is not very
obvious, because the function of DEF module is to deepen the depth of the network and
alleviate the overfitting problem during the training process; FESSD has significant target
area feature enhancement capabilities, it can be seen that FESSD accurately enhances the
target area features and suppresses a large amount of background information.
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Figure 9. Visual detection results of different feature enhancement module.

Figure 10. The feature maps visualization results of the last convolution layer.
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The influence of different attention mechanisms on the model training process and
detection accuracy is shown in Figure 11. After iterative training, the loss value of SSD
algorithm is 0.145, and the detection accuracy mAP reaches 0.832, indicating that its training
effect and detection performance still need to be improved. When the attention mechanism
module is introduced, both the SAM module and the FPA module improve the performance
of the SSD algorithm. When the SAM module is introduced, the loss value and mAP of the
model reaches 0.130 and 0.905. When the FPA module is introduced, the loss value and
mAP of the model reaches 0.140 and 0.931. Compared with the SSD algorithm, the model
with FPA and SAM has obvious advantages, and from the loss curve and mAP value, it can
be analyzed that the FESSD model training effect and detection performance are better.

Figure 11. The comparison of loss values and mAP of different attention mechanisms.

Figure 12 shows the heat maps of SSD algorithm, self-attention mechanism (SAM)
module, feature pyramid attention mechanism (PAM) module, and FESSD algorithm. It
can be seen from Figure 12 that the region of interest (ROI) of the SSD algorithm does
not correspond to the target area, which leads to inaccurate positioning of the target;
the introduction of the SAM module enhances the correlation between features, so that
ROI focuses on the target area, but there is still attention distraction phenomenon; the
introduction of FPA enhances the feature fusion capability of the model, so that the ROI
and the target area correspond to each other, and local receptive field is enlarged; When the
SAM and FPA modules are introduced at the same time, the local receptive field and ROI
of the model are expanded, and the ROI completely corresponds to the target area, which
means that the model can accurately extract the features of the target area.

The operational efficiency of different DL-based methods is compared using the evalu-
ation index of memory space (the memory utilization space of the model training process),
calculation parameters, train time (the train time required to achieve the model optimal
detection accuracy), and single image test time. The calculation efficiency comparison
results of different methods are shown in Table 6. The proposed FESSD has advantages in
different evaluation indicators of calculation efficiency, its memory space and calculation
parameters are 6.38 GB and 32,168,285, which show that FESSD requires less computation
resource in the model training process. The train time of FESSD is 7.25 h, which is the
minimum of several compared methods, and its single image test time is 2.41 s, further
proves that FESSD can satisfy the real-time requirement of remote sensing target detection.
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Figure 12. The effect of different attention mechanism on model performance.

Table 6. The calculation efficiency comparison of different methods.

Methods Memory Space (GB) Train Time (h) Test Time (s) Parameters

ASBL-RetinaNet 10.72 12.15 6.74 48,175,462
RECNN 9.85 11.63 5.38 57,186,273
GLS-Net 9.26 13.54 5.75 63,241,156

SSD 8.53 9.83 4.26 42,381,268
YOLOV3 7.64 10.75 4.18 38,183,347

Faster R-CNN 10.56 14.68 7.83 62,248,751
FESSD 6.38 7.25 2.41 32,168,285

5. Conclusions

In this study, we presented a novel remote sensing target detection algorithm FESSD.
The proposed method can effectively extract the multi-scale features and global contextual
features contained in remote sensing images to achieve accurate detection of small and
dense remote sensing targets. In FESSD, the feature enhancement module is used to enhance
the shallow and deep features extracted by different convolution layers. The self-learning
attention mechanism is used to expand the local receptive fields and multi-scale feature
extract ability. In addition, the feature pyramid attention mechanism is used to enhance the
nonlinear relationship between different feature maps. The experimental results on SD-RSI
and DIOR show that proposed FESSD outperformed the compared state-of-the-art remote
sensing target detection methods, which demonstrated the effectiveness and robustness
of FESSD. In the future, we will introduce unsupervised learning methods to reduce the
dependence on annotation data.
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