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Abstract: As an important part of autonomous driving intelligence perception, pedestrian detection
has high requirements for parameter size, real-time, and model performance. Firstly, a novel multi-
plexed connection residual block is proposed to construct the lightweight network for improving
the ability to extract pedestrian features. Secondly, the lightweight scalable attention module is
investigated to expand the local perceptual field of the model based on dilated convolution that can
maintain the most important feature channels. Finally, we verify the proposed model on the Caltech
pedestrian dataset and BDD 100 K datasets. The results show that the proposed method is superior to
existing lightweight pedestrian detection methods in terms of model size and detection performance.

Keywords: autonomous driving; pedestrian detection; multiplexed residual; scalable attention

1. Introduction

Pedestrian detection is a challenging task for autonomous driving [1,2]. With the rapid
development of deep learning, some advanced detectors have been constructed with mas-
sive weight parameters, such as Mask-RCNN [3], Faster-RCNN [4], SSD [5], and YOLO [6],
among others. However, these deep networks cannot guarantee detection efficiency based
on insufficient computing resources [7], for example, vehicle or roadside embedded devices.
Therefore, researchers developed lightweight networks, which are designed to maintain
model accuracy while further reducing the number of model parameters and complexity.

The design of lightweight networks can improve the performance of pedestrian detec-
tion for autonomous driving. For the past few years, researchers have made a number of
advances in lightweight models [8,9]. For instance, the MobileNet uses deeply separable
convolution to cut down parameters [10]. The ResNet adopts residual structures that can
effectively avoid the gradient disappearance problem [11]. In order to maintain accuracy
and greatly reduce computation cost, ShuffleNet designed group convolution and channel
shuffle based on the residual structure to reduce model size [12]. In addition, there are many
other advanced lightweight models, such as YOLO v3-tiny [13], YOLO v4-tiny [14], etc.

Although the design of a lightweight model effectively reduces the complexity of the
algorithm, their ability to recognize small-scale or scale variation objects, like pedestri-
ans [15], is unsatisfactory. The residual structure is very important for lightweight networks,
but the identity shortcut skips the residual blocks to preserve features and consequently
might limit the representation power of the network, since the residual connection in the
lightweight network is not reusable, resulting in poor recognition of small-scale pedestri-
ans [16]. Attention mechanisms [17] can emphasize the importance of individual features.
However, the existing lightweight attention mechanism lacks the perception ability of scale
variation [18], resulting in poor multi-scale target recognition [19].
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To overcome the weakness of lightweight detectors for recognizing multi-scale and
small-scale objects, we propose a novelty feature multiplexed residual network (FMRN).
The backbone network is constructed by employing a three-layer multiplexing connection
residual block for feature extraction. This lightweight backbone net improves the feature
capture ability of small-scale pedestrians. Then, the feature maps are enhanced through the
scalable attention mechanism of topology structure. Finally, the targets and classification
are obtained after a full connection layer and regression. The contributions of this paper
are as follows:

(1) We propose a novel multiplexer residual (MR) method to build the feature extraction
network. The multiplexed connection residual structure retains the characteristic
information of the previous layer and passes the useful characteristic information to
the output of the next layer. The MR improves the information transmission ability of
the traditional methods, which is more conducive to the lightweight model to capture
small-scale pedestrian features;

(2) A lightweight scalable attention module (SA) is investigated to expand the respective
field of the detection model. The branch structure of the SA module is selected
to synchronize the feature dimensions, and the dilated convolution is introduced
to expand the local respective field of the model. The SA module can eliminate
redundant channel information, which can further improve the adaptation ability of
the model to deal with the issue of pedestrian scale variation;

(3) Experiments show that our proposed FMRN model is superior to existing lightweight
pedestrian detection methods. Our model can reach 66.4% detection accuracy in
the Caltech dataset, model size (17.6 Mb), detection speed (FPS 124), and excellent
detection performance.

The rest of this paper can be summarized as follows: Section 2 summarizes related
studies; Section 3 describes the design details of the model and the implementation details
of each innovation point in detail. A large number of comparative experiments which verify
the advanced nature of this method are demonstrated in Section 4. Section 5 summarizes
the conclusion of this paper and the directions for further research in this field.

2. Related Studies

With the popularity and development of autonomous driving, intelligent sensing
pedestrian detection has gradually become a research hotspot. Researchers have focused
on the balance between lightweight models and detection performance. Many excellent
network reduction algorithms have been proposed, such as two-stage detection models [20]
for generating candidate frames and end-to-end single-stage detection models [21], but
the two-stage detection models are slow in inference. The single-stage detection model is
less effective at detecting difficult samples, such as small-scale pedestrians; hence, how to
ensure the real-time performance of the algorithm and enhance network detection [22] has
become a hot topic of research.

2.1. Single-Stage Detection Model

In recent lightweight research, there are many advanced one-stage detectors. Yi et al. [23]
improved the YOLO v3-tiny backbone network by adding three convolutional layers
and introducing a 1 × 1 convolutional kernel to reduce the complexity of the algorithm.
However, they only used three convolutional layers to the backbone network, which led to
some improvement in the detection performance of the algorithm, but the false detection
of pedestrian misses was still high. The basic unit of ENet [24] is residual structure, and
the detection effect is better than that of the VGG network [25]. This is due to the network
structure design of ENet encoding and decoding, which adds information compilation at
different network layers. To achieve real-time pedestrian detection speed without reducing
detection accuracy, Murthy et al. [26] proposed an optimized MobileNet combined with an
SSD network and added contextual information using a connected feature fusion module.
MobileNet uses separable convolution to build a feature extraction network, which greatly
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reduces convolutional computation [27]. In the face of the complex scene changes of
autonomous driving, the information interaction capability of MobileNet is poor, and the
transfer of deep and shallow information during model feature extraction is not considered,
resulting in a small model size but poor pedestrian detection. Shao et al. [28] took PeleeNet
as the backbone and further integrated multi-scale features and spatial concerns to enhance
the characteristics of small objects, such as people.

At present, the residual structure is widely used for designing the network in the field
of lightweight pedestrian detection. One of the reasons that makes ResNet exceptionally
popular is the simple design strategy, which introduces only one identity shortcut. However,
the identity shortcut might limit the representation power of the network [29]. Moreover, it
causes the collapsing domain problem [30], which weakens the network’s ability to detect
small-scale pedestrians.

2.2. Lightweight Attention Mechanism

Other researchers have improved the detection performance of lightweight models by
designing attention mechanisms [31]. Wang et al. [32] proposed a multi-scale pedestrian
detector APNB + ASFF based on a self-attention mechanism and adaptive spatial feature
fusion. They used an attention mechanism to solve the problem of poor small-scale
pedestrian detection, but the attention mechanism module also involves a large number
of parameters. Current state-of-the-art attention mechanisms in the field of pedestrian
detection include PPM [33] and RFB [34], among others. Yu et al. [33] used CNN as
the backbone for feature extraction and used the attention mechanism PPM to capture
important details in the images, and multi-scale features were effectively fused to gain cross-
channel attention. Zeng et al. [34] replaced the convolutional layers with RFB structures
in the two output feature layers of the SSD detection network. The improved algorithm
showed a significant improvement in the detection results of the KITTI dataset. Designing
more effective lightweight attention mechanisms is gradually becoming a research hotspot.

The attention mechanism can emphasize the importance of features and improve the
detection effect of the lightweight model [35]. Most existing approaches focus on develop-
ing more complex attention modules for better performance, which inevitably increases the
complexity of the model. However, the existing lightweight attention mechanism lacks in-
formation perception of different dimensions and cannot capture pedestrian characteristics
at different scales [36]; thus, it is difficult to effectively detect pedestrians at multiple scales.

3. Methods

In this section, we study the network structure of FMRN in detail. It is composed of
two parts: a multiplexing connection residual structure and a scalable attention mechanism.
We introduce the design idea of a multiplexing connection residual structure in Section 3.2.
The scalable attention mechanism is introduced in this subsection. Then, the structure of
the loss function is described in the Section 3.4.

3.1. Overall Networks

The network structure of our model is shown in Figure 1. The overall network consists
of a convolutional layer, a pooling layer, a reuse connection residual structure, and a scalable
attention mechanism. The initial input size of the image is 416 × 416 × 3. The size of the
feature map at the convolution and pooling layer is 416× 416× 16. The feature dimensions
increase after multiplexing. It can enhance the ability of the residual structure for retaining
its characteristics. The scalable attention mechanism module is cascaded behind the feature
layer to expand the local perceptual field by using different expansion rates of convolutions
and adapting the scale variation of pedestrians. It introduces an attention mechanism
to filter pedestrian features that are subject to background and occlusion to optimize
pedestrian detail features. The structure of our proposed network model is shown in
Figure 1.
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The feature extraction network is built based on the multiplexed connection residual
blocks to reduce the size of the network model. The FMRN network parameters are shown
in Table 1.

Table 1. FMRN network parameters.

Network Layer Convolution Kernel Number Convolution Kernel Size Output Size

Conv 3 × 3/1 416 × 416
maxpooling 2 × 2/1 208 × 208

Multiplexer Residual (1) 16
[

16 1× 1
16 3× 3

]
208 × 208

Conv 1 × 1/1 208 × 208
maxpooling 2 × 2/2 104 × 104

Multiplexer Residual (2) 32
[

16 1× 1
16 3× 3

]
104 × 104

Conv 1 × 1/1 104 × 104
maxpooling 2 × 2/2 52 × 52

Multiplexer Residual (3) 64
[

16 1× 1
16 3× 3

]
52 × 52

Conv 1 × 1/1 52 × 52
maxpooling 128 2 × 2/2 26 × 26

3.2. Multiplexing Connection Residuals

ResNet [37] first proposed the idea of residual structure and jump connection, which
change the output of a certain layer into a linear superposition of the input and a nonlinear
transformation of the input. This structure not only solves the problems brought to the
network by the deepening of the number of convolutional layers but also makes the
information transfer more effective. Take layer i as an example, and the input of layer i + 1 as:

Xi+1 = Xi + F(x1, W1) (1)

where, Xi+1 represents the output data, Xi represents the input data, W1 is the weight of
the neurons, and F(.) represents the result of the input data through the residual structure.

The conventional residual structure uses a ReLU activation function with a derivative
of 0 when z is less than 0. Neuron death may occur during gradient descent, whereas
Leaky ReLU still has parameters in negative coordinates that prevent the gradient problem
that occurs when the network is backward. Figure 2 shows two mathematical models of
activation functions.
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Figure 3a shows a schematic diagram of the residual structure and the multiplexed
connection residual structure. Traditional convolutional or pooling layers are prone to
information loss when transmitting the information. The network model lacks the ability to
generalize. The whole network usually learns only the feature difference part, simplifying
the difficulty and steps of learning. As shown in Figure 3b, we propose a multiplexed
connected residual block of the same latitude based on the residual bottleneck structure. It
introduces 1 × 1 convolution to reduce the computation while maximizing the informa-
tion flow between all layers in the network. The interaction between deep and shallow
information is enhanced when extracting pedestrian features. Thus, we can build a feature
extraction network using the multiplexed connected residual structure.
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3.3. Scalable Attention Mechanism

In this section, we study the scalable attention mechanism that employs dilated
convolution to obtain a larger perceptual field. It merges the input feature channels through
data filtering to extract information that is more valuable to the classification of the network
model. The scalable attention mechanism is shown in Figure 4.
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The concatenation operator is given by Equation (2). The vectors F1, F2 and F3 are
concatenate connected after dilated convolution of the multi-branch structure.

U = Concat{DilateConv(F1), DilateConv(F2), DilateConv(F3)} (2)

Firstly, the number of channels in the input feature map is carried out by average
pooling to shrink the spatial dimension of U. The output of each channel is a scalar, and
the calculation formula is given by Equation (3):

Zc = Fsq(Uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

where Uc represents the input feature channel and Zc indicates the spatial dimension of
global average pooling compression.

Secondly, the sigmoid function is used to obtain the weight of each channel. Non-
linear interactions between channels can learn non-exclusive relationships and obtain the
importance ratio of each channel. The calculation formula is given by Equation (4):

s = Fex(z, W) = δ(g(z, W)) = δ(W2δ(W1, z)) (4)

where W1 ∈ R
C
r ∗C represents dimension reduction to C

r , W2 ∈ RC∗ c
r indicates dimension

increase to dimension vector C, and δ represents the ReLU function, which indicates a full
connection layer.

After the 1× 1 convolution layer and sigmoid activation layer, the attention coefficient
between 0 and 1 is obtained. Non-linear interactions between channels can learn non-
exclusive relations and obtain the importance ratio of each channel. The calculation formula
is given by Equation (5):

X = Fscale(uc, sc) = scuc (5)

where Fscale represents multiplication, X represents the output of a new feature graph, uc
represents features and sc represents scalars.

Finally, we add the coefficient to achieve data filtering and extract more valuable infor-
mation for network model classification. The calculation formula is given by Equation (6):

F = X + F3 (6)

3.4. Loss Function

In autonomous driving scenes, the physical size of pedestrians is small, and the
detection network is easily disturbed by scale variation. Therefore, the FMRN loss function
is obtained from the sum of three parts, which are the center coordinate and width-height
coordinate error Lpos of the pedestrian object, the confidence error Lobj, and the classification
error Lcls, respectively. The specific calculation formula is as follows:
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Lpos = λcoord

s2

∑
i=0

B

∑
j=0

Iobj
i,j

{
[(xi − x̂i

j)
2 − (yi − ŷi

j)
2
] +

[(√
ω

j
i −
√

ω̂
j
i

)2
+

(√
hj

i −
√

ĥj
i

)2
]}

(7)

Lobj = λnoobj

s2

∑
i=0

B

∑
j=0

Inoobj
i,j (ci − ĉi)

2 + λobj

s2

∑
i=0

B

∑
j=0

Iobj
i,j (ci − ĉi)

2 (8)

Lcls =
s2

∑
i=0

Iobj
i,j ∑

cεclass
([P̂j

i log (Pj
i ) + (1− P̂j

i )log(1− Pj
i )]) (9)

where λcoord is used to coordinate the different sizes of the rectangle box contributions
to the error function and is not a consistent set of coordination coefficients; s2 is the
size of the feature graph; B is the number of prior frames; xi, yi are the horizontal and
vertical coordinates of the center point; ωi,hi is the width and height of the prediction
box, respectively; λnoobj represents the weight of the confidence error in the loss function

when the prediction box does not predict the target; Iobj
i,j represents the first j anchor frame

in the first i grid, which is 1 if there is a pedestrian target and 0 otherwise; similarly,
Inoobj
i,j represents the fact that there is no pedestrian in the first j anchor frame in the grid;

ci represents the probability score that the prediction box contains the target object; ĉi
represents the true value; λobj represents the weight of the confidence error in the loss

function when the target is predicted in the prediction box; Pj
i represents the probability

that the (i, j) prediction box belongs to category c; and
ˆ

Pj
i indicates the true value of the

category to which the tag box belongs.

4. Experiments and Analysis of Results

We first introduce two kinds of pedestrian detection datasets and the purpose of
pretreatment, i.e., Caltech [38] and BDD 100 K [39]. Experimental equipment and an
evaluation metric are presented. Then, the implementation details of our FMRN model are
described. To demonstrate the effectiveness of our multiplexing connection residual and
scalable attention module, we make some ablative studies. Finally, our model is compared
with a state-of-the-art lightweight pedestrian detection network.

4.1. Experimental Dataset and Experimental Parameters

Caltech Pedestrian dataset is the largest Pedestrian dataset in the field of autonomous
driving. Video data are collected by vehicle cameras throughout the whole process, in-
cluding a total of 10 h of 30 Hz video of 640 × 480 pixels, mainly in rural streets. In
order to eliminate the influence of inter-frame information of video data on detection
results [34], one image out of every fourteen datasets was selected to retain the original
format in the data preprocessing part, and a total of 4389 training sets and 4340 test sets
were obtained. Figure 5 shows an example of the training set and test set sections of the
Caltech pedestrian dataset.

The BDD 100 K dataset released by Berkeley University is a challenging dataset of
traffic scenes, collected from across the United States. The dataset covers driving images at
different times of day, such as early morning, midday, evening, and night, and also contains
many complex weather scenarios, such as rainy, cloudy, and snowy days. In this paper,
we select images from the BDD 100 K dataset where only pedestrian targets are present
and construct the sub-dataset BDD 100 K-Person by taking only the 5th frame image. A
total of 4420 training sets and 3220 test sets were obtained, and this dataset was used as
an experimental supplement to the Caltech pedestrian dataset. Figure 6 shows a partial
example of the BDD 100 K dataset.
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All the experiments in this paper used Ubuntu 16.04 as the main system; the work-
station processor model was NVIDIA GeForce RTX 2060; and the memory was 16 G. The
deep learning framework adopts the framework and image processing library that are com-
monly used in autonomous vehicle engineering. The experimental facilities and parameter
configurations are shown in Table 2.

Table 2. Experimental environmental parameters.

Item Parameter

CPU Intel Core i5-9400F 2.9 GHz x6
GPU NVIDIA GeForce RTX 2060

Operating system Ubuntu 16.04 LTS
Memory 16 GB

Deep learning framework version Pytorch 1.8
Development languages Python 3.6

In this experiment, the initial network input size was set as 416 × 416, momentum
was set as 0.9, batch size of each round was set as 8, the learning rate was 0.001, and weight
decay was 0.05, ensuring the fairness of the experiment. All the comparison experiments
adopted the same parameter settings. Figure 7 shows the loss curve of network training.
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4.2. Evaluation Indicators

The evaluation indexes of object detection algorithms mainly include detection accu-
racy and detection speed. Average Recall (AR) is the ratio of detected recognition frames to
real frames of a certain category. The mathematical relation of the missed rate is the higher
the Recall rate, the better, and the lower the missed rate, the better. Average Precision
(AP) is especially suitable for the algorithm that simultaneously predicts the position and
category of objects. It represents the area value of the P–R curve at different IOU values
(IOU is 50% in this paper). The larger the AP value, the higher the average accuracy of the
model. Another important evaluation index of pedestrian detection algorithm is speed.
FPS (Frame Per Second), which is defined as the number of images that can be processed
per second, is used to evaluate the speed of pedestrian detection.

AR =
TP

TP + FN
=

TP
all groundtruth

(10)

AP =
n

∑
k=1

(rk+1 − rk)× pk (11)

where TP represents correctly identified pedestrians, FN represents positive samples
incorrectly identified as negative samples, and all groundtruth represents all targets to
be identified.

4.3. Ablation Experiments

The baseline model of this paper is YOLO v3-tiny network. The measurement unit of
the model parameter is megabytes (Mb), and the measurement unit of detection speed is
FPS, i.e., the number of frames transmitted per second. Based on the Caltech Pedestrian
detection dataset, an ablation experiment was conducted for the innovation points in this
chapter. It can be seen from Table 3 that:

(1) After using the multiplexed connection residual structure, the feature extraction
network can accurately extract pedestrian targets in the complex traffic background;
the missed detection rate of the pedestrian is reduced by 4.1%; the average detection
accuracy is increased by 2.1%; the number of parameters of the model is reduced by
about 50% compared with that of the baseline network; and the model parameter size
is only 17.2 Mb. The inference speed of the algorithm is faster than that of the baseline
network, and it satisfies the real-time requirement well;

(2) The SA module proposed in this paper does not impose an additional burden on the
detection network; the number of model parameters does not increase significantly;
the missed detection rate is further reduced by 1%; and the average detection accuracy
is increased by 1.3%. The ablation experiment of the Caltech pedestrian data set
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showed that the FMRN recall rate, detection accuracy, and model size of this model
reached 64.5%, 66.4%, and 17.6 MB, respectively, which were better than those of the
baseline network. The missed detection rate was reduced by 5.1% and the average
detection accuracy was increased by 3.4%.

Table 3. Ablation experiments.

Experiment Number Multiplexed Residual Scalable Attention AR50 (%) AP50 (%) Model Size (Mb) FPS

1 59.4 63 34.8 120
2

√
63.5 65.1 17.2 128

3
√

62.6 65.7 35 117
4

√ √
64.5 66.4 17.6 124

The attentional mechanism can effectively enlarge the local receptive field of the
model and remove the redundant information of feature channels. Attention mechanisms
commonly used in pedestrian detection are mainly divided into channel domain and spatial
domain. In recent years, the channel domain and spatial domain have evolved into various
morphed attention mechanisms.

To verify the effectiveness of the scalable attention mechanism, this chapter selected
the attention mechanism widely used in pedestrian detection algorithms and the scalable
attention mechanism (SA) proposed in this chapter for comparative experiments, including
Squeeze and Excitation (SE) [40], Convolutional Block Attention Module (CBAM) [41],
Pyramid Pooling Module (PPM) [33], and Receptive Field Block (RFB) [34], where PPM
and RFB are the latest lightweight attention mechanisms in the field of pedestrian detection
and improve the detection effect significantly.

The experimental results of the Caltech pedestrian dataset are shown in Table 4.
Compared to the baseline network, our proposed scalable attention mechanism reduces
the detection miss rate by 5% and increases the average detection accuracy by 2.7% in the
Caltech pedestrian dataset. Compared to the latest lightweight attention mechanisms PPM
and RFB applied in pedestrian detection, the scalable attention mechanism (SA) of this
chapter is more effective, with a 1.4% and 1.8% reduction in missed detection rate, 0.7%
and 1.5% improvement in average detection accuracy over PPM and RFB, respectively, as
well as fewer model parameters and faster inference.

Table 4. Comparative experiments on attention mechanisms for Caltech detection datasets.

Model Dataset Attention Model AR50 (%) AP50 (%) Model Size (Mb) FPS

Baseline Caltech Pedestrian

- 59.4 63 34.8 120
+SE 62.1 63.4 35.3 106

+CBAM 63.2 64.7 35.3 105
+PPM 63 65 72.6 78
+RFB 62.6 64.2 55.2 90
+SA 64.4 65.7 35 117

To further validate the effectiveness of the scalable attention mechanism, the scalable
attention mechanism proposed in this chapter was also subjected to comparative experi-
ments on the BDD 100 K dataset under the same parameter configuration. As can be seen
from Table 5, the scalable attention mechanism reduces the missed detection rate by 4.2%
and increases the average detection accuracy by 3.4% in the BDD 100 K dataset, expanding
the model’s respective field and capturing small-scale pedestrian features more effectively
with essentially the same number of model parameters and inference speed. The scalable
attention mechanism captures more detailed information, expands the model’s local field
of perception without creating complex computational problems, and effectively improves
the performance of the pedestrian detection network.
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Table 5. Comparative experiments on attention mechanisms for BDD 100 K-Person datasets.

Model Dataset Attention Model AR50 (%) AP50 (%) Model Size (Mb) FPS

Baseline BDD 100 K-Person

- 28.2 28.4 34.8 106
+SE 28.3 28.4 35.3 90

+CBAM 31.3 30.2 35.3 87
+PPM 31.6 30.9 72.6 70
+RFB 32.1 29.5 55.2 78
+SA 32.5 31.8 35 98

4.4. Comparative Experiment of Lightweight Model

This chapter compares the proposed model with current state-of-the-art lightweight
pedestrian detection networks on the Caltech Pedestrian Dataset. YOLOX [42] is a high-
performance Anchor free detector, which adds decoupling head, Anchor free, and advanced
label allocation strategy to the network. Xception + SSD [43] represents an improved version
of ShuffleNet [12] and the SSD algorithm. The main idea is to optimize the backbone
network of the SSD algorithm by using an inception structure, thus achieving higher
detection accuracy and less computation. The main idea of MobileNet + SSD [26] is to
use MobileNet to optimize SSD network parameters. MobileNet mainly uses separable
convolutional design features to extract the network and reduce the complexity of the model.
APNB + ASFF [32] is a multi-scale pedestrian detector based on a self-attention mechanism
and adaptive spatial feature fusion, which uses a lightweight attention mechanism to solve
the problem of poor detection effect of the small-scale pedestrian.

As can be seen from Table 6, the detection recall of this chapter’s method reaches
64.5% and the average detection accuracy reaches 66.4%, both of which are better than the
current mainstream lightweight pedestrian detection networks. Compared with the latest
pedestrian detection methods ResNet10 and APNB + ASFF, our model has a 1.0% lower
missed detection rate, 1.2% and 1.4% higher average detection accuracy, respectively, and
has fewer model parameters and faster detection speed. The experimental results show
that the method in this chapter is suitable for autonomous pedestrian detection because it
can improve small-scale and scale variation pedestrian detection while effectively reducing
the number of model parameters.

Table 6. Caltech Pedestrian dataset lightweight model comparison experiment.

Dataset Binary Model AR50 (%) AP50 (%) Model Size (Mb) FPS

Caltech Pedestrian

ENet 62.3 62.4 26.7 52
YOLOX 63 64.8 54.2 102

SSD(VGG) - 57.8 110.2 37
Xception-SSD 52 61 56.8 74

MoblieNet-SSD 63.1 62.6 43.6 85
ResNet10 63.5 65.2 24.1 88

APNB+ASFF 63.5 65 61.2 64
Our model 64.5 66.4 17.6 124

The application of the traditional convolution leads to losses of start-up formation and
implicitly to the loss of information in the transmission process. We design a multiplexed
connected residual structure, which, using convolution 1 × 1 and residual structure, not
only reduces the burden of computer operation but also maximizes the flow of information
between all layers in the network. Therefore, in comparison to other experiments, our FPS
has a certain advantage.

The BDD 100 K dataset is a complex and variable scene, containing a variety of
challenging images with low light and strong light interference. We conducted the same
comparative experiments on the BDD 100 K dataset, and, as shown in Table 7, our proposed
model FMRN can achieve 38.9% detection recall and 38.7% detection accuracy, respectively,
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which are both better than current lightweight pedestrian detection methods. Compared
with the latest pedestrian detection method PeleeNet [44], the method in this chapter has
a 1.4% reduction in missed detection rate and a 0.7% improvement in average detection
accuracy, as well as a significant reduction in model size and a substantial improvement
in detection speed. The experimental results show that the FMRN model has a simple
structure and is easily portable on GPU devices with low computational performance.

Table 7. BDD 100 K-Person dataset lightweight model comparison experiment.

Dataset Binary Model AR50 (%) AP50 (%) Model Size (Mb) FPS

BDD 100 K- Person

ENet 32.3 30.5 26.7 43
YOLOX 33.2 34.2 54.2 88

SSD(VGG16) - 33.4 110.2 30
Xception-SSD 35.6 37.1 56.8 67

MoblieNet-SSD 36.2 38.5 43.6 78
ResNet10 32.1 30.6 24.1 72
PeleeNet 37.5 38 24.6 89

Our model 38.9 38.7 17.6 101

4.5. Detection Visualization

We give three representative pedestrian detection networks for visualization; the
detection results are shown in Figure 8. The interaction of deep and shallow information in
the image is facilitated by the reduced loss of information due to the multiplexed connected
residual structure in the convolutional pooling layer when extracting pedestrian features;
hence, the multiplexed connected residual enhances the network’s ability to capture small-
scale pedestrian features and semantic information. In addition to pedestrian targets facing
complex scale variation and the scalable attention to design dilated convolution modules
with different branching structures, the attention mechanism can adapt to the complex
scale variations of pedestrians and has good detection results for multi-scale pedestrians.
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5. Conclusions

In Sections 4.2–4.4, we not only conduct ablation experiments to prove the effectiveness
of each module, but also compare experiments in two datasets to show that our model has
a small number of parameters, fast detection speed, and good detection effect. The main
reasons are as follows.

The multiplexed connection residual structure (MR) retains the characteristic informa-
tion of the previous layer and passes the useful characteristic information to the output
of the next layer. The MR improves the information transmission ability of the tradi-
tional methods, which is more conducive to the lightweight model to capture small-scale
pedestrian features.

A lightweight scalable attention module (SA) is investigated to expand the respective
field of the detection model. The branch structure of the SA module is selected to syn-
chronize the feature dimensions, and the dilated convolution is introduced to expand the
local respective field of the model. The SA module can eliminate the redundant channel
information, which can further improve the adaptation ability of the model to deal with
the issue of pedestrian scale variation.

Pedestrian detection is of profound importance to autonomous driving. This paper
proposes a lightweight pedestrian detection method based on a multiplexed connection
residual network. Firstly, a multiplexed connection residual structure is designed based on
the residual structure idea, and a new feature extraction network is built on YOLO v3-tiny
network using this structure. Then, a scalable attention mechanism module is proposed
to expand the model’s receptive field and enhance the feature extraction capability of
the detection network for small-scale pedestrians. Experimental results show that the
proposed method is lighter than YOLO v3-tiny, with only 17.6 MB of parameters. Validation
experiments on the Caltech pedestrian dataset and BDD 100 K pedestrian dataset prove
that the proposed method can reduce the number of parameters in the network model and
improve the detection performance for pedestrians, especially for small-scale pedestrians.

This research can bring different research ideas to the application of lightweight
models, pedestrian detection, and other computer vision fields, to help develop more
lightweight models to bring better detection results. In the future, we will focus on the
integration of lightweight detection models and multi-mode fusion technology, explore
the joint detection of infrared images or radar sensor information, and strengthen the
robustness of the pedestrian detection network in cases of bad weather.
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