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Abstract: Social network information has been widely applied to traditional recommendations that
have received significant attention in recent years. Most existing social recommendation models
tend to use pairwise relationships to explore potential user preferences, but overlook the complexity
of real-life interactions between users and the fact that user relationships may be higher order.
These approaches also ignore the dynamic nature of friend influence, which leads the models to
treat different friend influences equally in different ways. To address this, we propose a social
recommendation algorithm that incorporates graph embedding and higher-order mutual information
maximization based on the consideration of social consistency. Specifically, we use the graph attention
model to build higher-order information among users for deeper mining of their behavioral patterns
on the one hand; while on the other hand, it models user embedding based on the principle of social
consistency to finally achieve finer-grained inference of user interests. In addition, to alleviate the
problem of losing its own hierarchical information after fusing different levels of hypergraphs, we
use self-supervised learning to construct auxiliary branches that fully enhance the rich information in
the hypergraph. Experimental results conducted on two publicly available datasets show that the
proposed model outperforms state-of-the-art methods.

Keywords: social recommendation; hypergraph; attention mechanism; mutual information

1. Introduction

Recommendation systems have had great success in various applications that pre-
dict how likely a user is to be interested in a particular item. Nevertheless, the data
collection is often labor-intensive, which leads to a high risk of cold-start problems in
recommendation [1,2]. Aiming to alleviate this problem, researchers have added various
auxiliary information to recommender systems to improve their accuracy. This auxiliary
information plays a significant role as side information of the user-item interaction, thus
accurately mining the user’s interests, for instance, tourism recommendation [3], food
recommendation [4], etc. In this regard, fusing users’ social information with user-project
interaction data effectively improves recommendation performance. Consequently, in
recent years, social recommendation algorithms use social information as auxiliary informa-
tion, which is then used to outline a more complete user profile. This leads to personalized
recommendations for users’ interests, which has attracted the attention of an increasing
number of researchers.

Generally, the social recommendation model uses the direct social relationships formed
among users (such as friends, concerns and worries, user relevance, etc.) as auxiliary infor-
mation to improve recommendation performance. On the basis of the matrix decomposition
collaborative filtering method with the user-item interaction matrix as input, researchers
tried to fuse the information of the user’s social relationship matrix in different ways [5,6]
to build a socialized recommendation model. Then users and items were mapped into
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low-dimensional space, and embedded representations of users and items were obtained
for subsequent prediction and recommendation. At present, many fruitful works have been
developed by researchers in the field of social recommendation, thus effectively mining
the influence of social friends on user preferences. Guo et al. [7] explore how to use the
graph neural network (GNN) model to solve the problems of online data management
and blurred preference feedback boundaries in social recommendation. Paolo et al. [8]
proposed the use of trust metrics among users to improve the performance of recommenda-
tions, which can be used to replace the trust weights of similarity weights. Jamali et al. [9]
presented a random wandering model that combines a trust relationship-based approach
to model user social relationships with a collaborative filtering approach. Jamali et al. [10]
introduced a social network recommendation approach based on matrix decomposition
techniques. Chen et al. [11] suggested using an attention-based memory module fusing
the aspect- and friend-level of users. Tao et al. [12] explored the social recommendation
problem in depth and introduced knowledge distillation techniques in the model training.

The above works have achieved good research results, but the following problems are
still a challenge:

1. Most research work in social recommendation assumes that all of the user’s friends
have the same influence on them or that they all have similar interests to them.
This assumption is too far from the actual real-life situation due to the different
types of friends. In real life, different friends have different influences on a user’s
decision-making [13]. As shown in Figure 1, user B has two friends; B and A both
like to play volleyball and have the same preference for singing as C. B takes A’s
suggestion more into account when doing outdoor activities and C’s suggestion more
into account when doing indoor activities. Singing and playing volleyball, however,
have different degrees of influence on the users. Chen et al. [14] proposed to fuse
social influence between users with two attention networks for modeling complex
dynamic and general static preferences of users in social recommendations. However,
only the importance of friends is considered and the impact on users in different
aspects is neglected.

2. GNN-based social recommendation models have shown outstanding performance [15–17].
Nevertheless, these models widely exploit only simple pairwise user relationships
and overlook the complex higher-order relationships between users. Inspired by
hypergraph learning [18], Yu et al. [19] used social information for constructing
hypergraphs to model higher-order interactions through multi-channel hypergraph
convolution. Problems in constructing multiple levels of hypergraph for fusion,
however, cannot take into account the independence of different levels of hypergraph
modeling itself.

To address the above problems, inspired by the social inconsistency modeling pro-
posed by Yang et al. [20] In this paper, we develop a novel self-supervised social recom-
mendation model called Hypid Graph Attention Hypergraph model (henceforth HGATH).
Specifically, we use a hypergraph attention network to mine the implicit higher-order
information in the original user embedding. The hypergraph is constructed by unifying
the user–friend–items that form triangular relationships, and a multi-channel hypergraph
convolutional attention model mines the hidden information between users. We aim to
construct hypergraph models of different aspects of user attributes based on different
channels representing different types of high-level relationships of users, which leads to
the study’s richer user representations with higher-order implicit information. Simultane-
ously, we propose a combination of sampling as well as relational attention mechanisms
that highlight the different effects of different types of friends on the performance of
the final recommendation results based on the idea of social inconsistency. In addition,
inspired by self-supervised learning, in this paper, we exploit the ranked nature of the
hypergraph structure to hierarchically maximize the mutual information among users,
user-centric sub-hypergraphs, and global hypergraphs to achieve performance improve-
ment. The experiment results show that HGATH has superior performance with respect
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to mean absolute error (MAE), and root mean square error (RMSE) compared to current
state-of-the-art methods.
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Figure 1. Typical scenario for social recommendation.

The contributions are as follows.

1. By modeling different levels of hypergraphs to enrich user feature expressions, and
introducing hypergraphs to dig deeper into the higher-order information among users,
we conclude with a description of the transcendent pairwise relationships among
users through hypergraph modeling.

2. Based on the consideration of social consistency, a new attention framework is pro-
posed to highlight the influence of different friends on the final recommendation
results. This framework also deeply highlights the important influence of friends who
make important suggestions in a certain aspect on the final recommendation results,
which better simulates the real recommendation scenario.

3. We propose to integrate the self-supervised learning strategy seamlessly with hyper-
graph model training to enhance the model’s performance.



Electronics 2023, 12, 906 4 of 19

4. Experiments on two publicly available datasets show that the proposed model
HGATH outperforms state-of-the-art social recommendation models.

2. Related Works

In this section, we give a brief review of two lines of research related to our work:
recommendation algorithms based on attention mechanisms and social recommendation
algorithms based on GNNs.

2.1. Social Recommendation Based on Attention Mechanism

Social recommendation has been studied in recent years with the formation and devel-
opment of social networks in various online services that use consumers’ social information
as auxiliary information to alleviate the problem of sparse interaction data in traditional
recommendation systems to improve recommendation performance. Related sociological
theories have also demonstrated that a user’s preferences are similar to or easily influenced
by those around him/her. Social recommendation based on matrix decomposition is one
of the most commonly used methods because matrix decomposition methods have the
advantages of accurate recommendation effect, good scalability, and low implementation
complexity. The basic idea of these methods is to incorporate users’ social relationship
information grounded in collaborative filtering recommendation methods which are based
on matrix decomposition, aimed at the mining of better potential feature vectors.

As the publication of the literature shows [21], researchers have started to consider
the use of attention mechanisms to improve existing relevant social recommendation
algorithms that have fruitful results [19–22]. Pei et al. [22] proposed a new interactive
attention-gated recursive network for social recommendations to accurately capture their
joint impact on user-item interactions and to better model the dynamics of user and item
changes. In particular, the attention mechanism is innovatively applied to learn the attention
scores of user and item histories, and thus explore the dynamic dependencies between users
and items. Zhang et al. [23] proposed a new meta-path-based social recommendation model
to strengthen the model performance by using meta-paths to simulate the user-item-society
relationship, where a combination of attention mechanism and multigraph representation
model was used to achieve the representation fusion of multigraph models. Yu et al. [24]
proposed a multi-channel hypergraph network, which deeply explores the higher-order
associations between users-items through hypergraph modeling, while employing an
attention mechanism to efficiently aggregate embeddings modeled from multiple channels.
Zhang et al. [25] proposed an inductive context personalization (ICP) framework based on
context learning, in which a neural aggregator based on an attention network is introduced
to fuse the heterogeneous content of entities for optimizing the sorting scheme by expressing
the paired relationship between entities.

2.2. Social Recommendation Based on Graph Neural Networks

Deep learning has been successful in artificial intelligence and machine learning by
bringing great progress to society; it is characterized by stacking multiple layers of neural
networks, which then have better learning representation capabilities. Many scholars
have applied deep learning techniques to the field of recommendation and have achieved
good results [26,27].

Since GNNs establish a deep learning framework for graph structure, they can utilize
both graph structure information and node feature information, and construct more com-
plex and deeper neural networks for representation learning when compared with network
representation learning methods, thus becoming a popular research topic in recent years.
To simplify the problem and facilitate modeling, most of the early GNNs were based on
simple graph structures, i.e., static, homogeneous pairwise graph structures. GraphRec [28]
constructed the user, item, and social network as a graph model integrating node informa-
tion and topology, then captured the interaction information between the graph models
using a principled strategy based on the consideration of user social relationship hetero-
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geneity. DiffNet [29] and the follow-up work of the same team DiffNet++ [30] model the
diffusion of users’ social influence and potential interest based on the diffusion model and
its theory. They constructed heterogeneous graphs of social and interest networks, digging
deeper into higher-order social and interest networks, then aggregated the embeddings
of the heterogeneous graphs based on a new attention mechanism to precisely learn the
representations of nodes in the graph. Wu et al. [29] argued that it is the user’s friends
who are dynamic and multiple aspects influence the user’s preferences. Therefore, they
constructed two graph-embedding models to model the user and item domains, and then
further aggregated the graph-embedding models based on the reinforcement learning and
attention frameworks by adaptively adjusting the weighting influence of multifaceted
graph embeddings. Song et al. [31] developed a new GNN social recommendation model
that addresses the problems of ignoring potential personal interests hidden in user-item
interactions and high computational costs in the social recommendation which is based on
the influence of partially important social relationships, and uses diffusion theory to make
the computation more efficient.

In the real world, the relationships between things are often not in pairs, but between
two or more entities that together form an interactive relationship [32]. Using simple graphs
to represent such non-pairwise relationships would result in information loss [33]. Hyper-
graphs extend the definition of simple graphs. In the hypergraph, a hyperedge can contain
any number of nodes, so it can store non-pairwise relationships directly. Hypergraphs
have more flexible edge definitions than simple graphs, and thus are more powerful for
representing complex relationships.

The hypergraph neural network (HGNN) [34] was the first work to design hypergraph
convolution operations from a spectral perspective to deal with complex data correlations
in representation learning. Tan et al. [35] pioneered the study of user alignment in social
networks using a hypergraph structure, which differs from the traditional approach in
which a hypergraph approach is used to model higher-order relationships. Ji et al. [36]
developed a jump hypergraph convolutional collaborative filtering solution based on
a two-channel learning strategy, which exploits the hypergraph structure to deeply ex-
plore the higher-order relationships between users and items, while using a two-channel
strategy to flexibly characterize users and items. In addition, hybrid matrix factorization
(HMF) [37] combines matrix decomposition techniques and hypergraph networks in the
field of social recommendation; this exploits the hypergraph structure to model contextual
relationships while comprehensively exploring the role of contextual information in the
recommendation process based on the matrix decomposition model. Location based social
networks (LBSN2Vec) [35] focus on the relationship between user mobility and social
relationships, and thus propose specialized hypergraph embedding methods for inferring
user preferences, which combine hypergraphs and random wandering strategies for learn-
ing node representations of hypergraphs based on sampling in terms of user check-ins
and social relationships. Comparison between HGATH and the competing methods are
given in Table 1.

Table 1. Comparison between HGATH and other related works.

Approaches Details Gaps

Attention network-based modeling

The combination of attention mechanisms with
different neural network models has yielded fruitful
results in social recommendation models, including

gated neural network approaches [22],
meta-paths [23], and especially joint work with

hypergraphs [24] and the application of multilayer
attention networks in so cial

recommendation models [25].

User representation modeling
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Table 1. Cont.

Approaches Details Gaps

Simple graph-based modeling

Different graph neural network models have
achieved fruitful results in social recommendation

models, including the graph
convolution approach [28], graph diffusion

approach [29–31], etc.

User representation modeling
based on different diffusion ideas

Hypergraph-based modeling

The application of hypergraphs in social
recommendation models has yielded fruitful results,

for example, in the literature [34–36], especially
work on the combination of hypergraphs and matrix
decomposition techniques [37] and the combination
of hypergraphs and random roaming strategies in

social recommendation models [38].

High-order relations between
users and complex relations

between users and items

Our work is different from the previous approaches. First, we construct different levels
of hypergraphs based on the actual situation of realistic scenarios, thus obtaining a richer
representation of user features. Second, based on the starting point of social consistency,
we propose a framework that integrates sampling and attention mechanisms to accurately
model the importance of users’ different friends.

3. Self-Supervised Hypergraph Attention Recommendation Model

In this section, the proposed self-supervised hypergraph attention model HGATH is
introduced in detail, and the overall structure of the model is illustrated in Figure 2 below.
HGATH model has three submodules. The first is the social consistency module, which
aims to extract friends who have higher consistency with users. The second submodule is
the hypergraph attention module, which is designed to model higher-level connections be-
tween users. The third is a self-supervised learning module, which alleviates the problem of
data sparsity in social recommendation. Specifically, first in the social consistency module,
we transform the input user data U = {u1, u2, . . . , um} and item data T = {t1, t2, . . . , tn}
into user and item embeddings, respectively, afterwards. Then, we unite the two obtained
embeddings together to generate a query embedding to select consistent neighbors. Next,
we perform the selection using a neighbor sampling strategy, in which the sampling proba-
bility is based on the consistency score between the query embedding and the neighbor
embedding. After sampling, the neighbors with consistent relationships are given higher
weights for aggregation using relational attention, and finally the consistency-processed
user embeddings Uc and item embeddings Tc are obtained. In this way, the influence
of different friends on the user is highlighted, while the importance of friends who give
essential advice in a certain area to the user is also strongly highlighted. Meanwhile, in
the hypergraph attention module, according to U = {u1, u2, . . . , um}, we use the semantic
hypergraphs constructed for different aspects and the graph attention network to learn the
higher-order relations of user information, thus presenting key user semantic information.
Finally, we use hypergraph encoded user information combined with user embeddings
modeled utilizing a consistency policy to obtain more comprehensive user representations
UT . Then, the obtained accurate user embedding is fed into the self-supervised learning
module. For self-supervised tasks, further enhanced user representation is achieved by hi-
erarchically maximizing the information based on the interaction between different aspects
of the user representation. Comprehensive user representations, which were considered to
contain multiple types of higher-order relational information, were obtained based on a
self-supervised task. Finally, the recommendation list was obtained by an inner product
operation with the precise item embeddings obtained in the social consistency module.
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To facilitate the understanding of the forthcoming text and formulae we introduce the
nomenclature of symbols used in this paper in Table 2.

Table 2. The nomenclature of mathematical symbols used in this paper.

Symbol Description

U = {u1, u2, . . . , um} User data.

T = {t1, t2, . . . , tn} Item data.

UT , eu User embedding.

Tc, et Item embedding.

qu,t Query embedding.

eu, et ∈ Rd Embedding of the nodes u and t.

ψ ReLU activation function.

W(l) ∈ R2d×d Encoding function.

h(0)v Initial embedding of node v.

o(l)(i; b) Node embedding of node i at layer l.

α
(l)
i

Importance of the i-th neighbor sampled.

Q Sum of the neighbors sampled.

ri Relationship of edge (v, i).

eri ∈ Rd Relational embedding of relation ri.

wa ∈ R2d Trainable parameter.

ai Attention weight.

h(L)
u Embeddings of u.

h(L)
t Embeddings of t.

E(0)
u Original user embedding.

E(0)
t Original item embedding.

Wc
g ∈ Rd×d Training weight parameter.
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Table 2. Cont.

Symbol Description

bc
g ∈ Rd Bias parameter.

c Different hypergraph channels.

σ Sigmoid function.

W f Trainable weight matrix.

xl−1
k

Feature information of node k in the lth layer of the neural
network.

aT
1 Weight parameter.

uk Correlation of node K on the hyperedge ej.

ajk Different weights when super-edge aggregation.

hl
i Updated feature information of node vi.

Wh Weight matrix.

bij Attention coefficient of node vi on the hyperedge ej.

aT
2 Weight parameter.

vj Correlation of super-edges at node i.

Ht User embedding vector after averaging.

E(l)
t Potential feature vector of the user.

Ac Adjacency matrix.

ac
u Row vector of Ac.

sum(ac
u) Number of the sub-hypergraph.

ηout2 : Rm×d → Rd Readout function.

fD(·) : Rd ×Rd 7→ R Discriminant function.

Erating
Rating error (RMSE) between Erating and the true value (u, t)
for all R̂u,t pairs in Ru,t.

ŷi Predicted value.

yi True value.

3.1. Social Consistency

Wu et al. [29] utilize embedding technology for the first step of item and user formal-
ization. Inspired by the work [29], U = {u1, u2, . . . , um} and T = {t1, t2, . . . , tn} are first
transformed into user embeddings eu and item embeddings et,

qu,t = σ
(

W>q (eu ⊕ et)
)

(1)

where qu,t is the query embedding and eu, et ∈ Rd is the embedding of the nodes u and t.
This part is designed with a query layer that dynamically samples the neighbors according
to different items. The embedding obtained after node aggregation is as follows:

h(l)
v = ψ

(
W(l)>

(
h(l−1)

v ⊕AGG(l)
{

h(l−1)
i | i ∈ Nv

}))
(2)

where ψ is the ReLU activation function, W(l) ∈ R2d×d is the encoding function, and h(0)v is
the initial embedding of node v. Moreover, it is recommended to emphasize more consistent
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rather than inconsistent neighbors when aggregating them. Therefore, the consistency
score across all neighbors is as follows:

p(l)(i; b) = o(l)(i; b)/ ∑
j∈Nv

o(l)(j; b) (3)

where o(l)(i; b) denotes the node embedding of node I at layer l.
Thus, we utilize relational attention to learn the importance of these sampled nodes.

Relational attention attributes a significant factor to each sampled node i. Then the AGG
function in (2) can be reformulated as follows:

AGG(l) =
Q

∑
i=1

α
(l)
i · h

(l−1)
i (4)

where α
(l)
i denotes the importance of the i-th neighbor sampled and Q denotes the sum

of the neighbors sampled. Assuming that the relationship of edge (v, i) is ri, the attention
formula for αi is obtained as:

α
(l)
i =

exp
(

w>a
(

h(l−1)
i ⊕ eri

))
Q
∑

j=1
exp

(
w>a
(

h(l−1)
j ⊕ erj

)) (5)

where eri ∈ Rd denotes the relational embedding of relation ri, wa ∈ R2d is the trainable
parameter, and ai is the attention weight.

Following L-layer propagation, the embeddings of u and t can be obtained, denoted
as h(L)

u and h(L)
t , respectively.

3.2. Hypergraph Attention Network

The hypergraph was first used to construct user-item and social networks. In this
paper, similar to the literature [19], we also designed a multi-channel hypergraph network
to represent users in many aspects. Inspired by the literature [39], we also used a gate
network to process the user embedding and separate it into different channels; the original
user embedding E(0)

u is defined as follows. Meanwhile, we generated the original item
embedding E(0)

t based on the same principle.

E(0)
u = f c

gate(eu) = eu � σ
(

euWc
g + bc

g

)
(6)

E(0)
t = f c

gate(et) = et � σ
(

etWc
g + bc

g

)
(7)

In (6), Wc
g ∈ Rd×d and bc

g ∈ Rd denote the training weight parameter and bias
parameter, respectively, c refers to different hypergraph channels, and eu and et are the
initial user embedding and item embedding, respectively.

We used two different attention mechanisms through two aggregation processes to
get the final representation.

We first learned the hyperedge representation of node based on the attention mech-
anism in combination with hypergraph attention (HyperGAT) [40] for characterized
node feature.

f l
j = σ

(
∑

vk∈ej

ajkW f xl−1
k

)
(8)

X(0) = g
(

E(0)
u ⊕ E(0)

t

)
(9)
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ajk =
exp

(
aT

1 uk
)

∑
vp∈ej

exp
(
aT

1 up
) (10)

uk = LeakyReLU
(

W1xl−1
k

)
(11)

where σ is the Sigmoid function, W f is a trainable weight matrix, and xl−1
k denotes the

feature information of node k in the lth layer of the neural network. Equation (9) show
the fusion of user information and item information. aT

1 is the weight parameter and uk
denotes the correlation of node K on the hyperedge ej. ajk highlights the effect of different
weights when there is super-edge aggregation.

Next, all hyperedges are denoted as
{

f l
j | ∀ej ∈ Ei

}
. We used the high-order relation-

ship of users based on hyperedge modeling to learn the representation of nodes

hl
i = σ

 ∑
ej∈Ei

bijWh f l
j

 (12)

where hl
i is the updated feature information of node vi, Wh represents the weight matrix,

and bij indicates the attention coefficient of node vi on the hyperedge ej, as follows:

bij =
exp

(
aT

2 vj
)

∑
ep∈Ei

exp
(
aT

2 vp
) (13)

vj = LeakyReLU
([

W2 f l
j ‖W f hl−1

i

])
(14)

where, aT
2 is the weight parameter, vj denotes the correlation of super-edges at node i.

The final-user representation of the hypergraph is as follows:

Ht =
1

L + 1

L

∑
l=0

E(l)
t (15)

where Ht denotes the user embedding vector after averaging and E(l)
t refers to the potential

feature vector of the user.

3.3. Self-Supervised Learning

Inspired by the literature [16], self-supervised learning was added to the training of the
model in order to improve the performance. The three semantic hypergraphs capture higher-
order information using the adjacency matrix Ac. Each row in Ac represents a subgraph
of the corresponding hypergraph with the user represented by the index of that row at its
center. Thus a hierarchical structure can be derived based on the relationship between hy-
pergraphs and sub-hypergraphs: user nodes—user-centered sub-hypergraphs—hypergraphs,
and from this structure self-supervised signals are created. We designed a new function
ηout1 : Rm×d → Rd , as follows:

zc
u = ηout1(Pc, ac

u) =
Pcac

u
sum(ac

u)
(16)

where Pc = f c
gate(P) is to control P. We set ac

u to represent the row vector of Ac the sub-
graph. sum(ac

u) denotes the number of the sub-hypergraph. Similarly, another readout
function ηout2 : Rm×d → Rd is defined, which is actually an average set that summarizes
the obtained sub-hypergraph embedding:

hc = ηout2(Zc) = AveragePooling(Z c) (17)
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In accordance with deep graph infomax (DGI), we used info noise contrastive estima-
tion (InfoNCE) as the learning objective using hierarchical mutual information maximiza-
tion. As a result, the objective function of the self-supervised task is defined as follows.

Ls = − ∑
c∈{s,j,p}

{
∑

u∈U
log σ( fD(pc

u, zc
u)− fD(pc

u, z̃c
u))

+ ∑
u∈U

log σ( fD(zc
u, hc)− fD(z̃c

u, hc))

} (18)

where fD(·) : Rd ×Rd 7→ R is a discriminant function. We break Zc by shuffling between
rows and columns to create negative examples of Z̃c.

3.4. Model Optimization

For the user representation h(L)
t , the score is obtained by summing and averaging the

Ht and calculating the inner product with the item representation h(L)
t

R̂u,t = Avg(h(L)
u + Ht) · h(L)

t (19)

where Avg() is the mean function and R̂u,t is the scoring score. The primary loss function
for the recommendation task is referred to as the root mean square error (RMSE) between
Erating and the true value (u, t) for all R̂u,t pairs in Ru,t:

Lm =

√√√√∑(u,t)∈Erating
(Ru,t−R̂u,t)

2∣∣Erating
∣∣ (20)

Thus, the total loss consists of two parts: one is the loss of recommended tasks and the
other is the loss of self-supervised learning tasks, as follows:

L = Lm + fiLs (21)

where β adjusts two loss functions.

4. Experiment Comparison and Analysis
4.1. Dataset

We conducted experiments on two public datasets, Epinions [13] and Ciao [41]. Epin-
ions is an online social network that provides an item evaluation and review service to
allow other users to add to their own trust list, indicating the approval of this user’s ratings
and reviews. The dataset contains a list of ratings given to items by users, as well as the
social relationships between users and trusted users. The Ciao dataset is similar to Epinions
with the exception of the point in time when the trust relationship was established, but it
captures the text content of each comment and information about the comment from other
users. To preprocess the data, we delete users with non-social connections because they are
not present in the social referrals, while linking neighboring items that share more than
50%. The datasets’ statistical parameters are summarized in Table 3.

Table 3. Statistical information of the datasets.

Dataset Ciao Epinions

#of Users 6776 15,210
#of Items 101,415 233,929

#of Interactions 271,573 644,715
Interaction Density 0.0395% 0.0181%
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4.2. Evaluation Criteria

To evaluate the performance of the algorithms used, we selected two evaluation
metrics frequently used in recommendations—mean absolute error (MAE) and root mean
square error (RMSE) [42], both of which are often used for performance analysis [43]. The
formulas for their calculation are:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (22)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (23)

where ŷi is the predicted value and yi is the true value.

4.3. Experimental Setting

We verified the efficiency of this model from the following aspects.

1. We considered a comparison with mainstream advanced algorithms to verify the
efficiency and advancement of the algorithm proposed in this module.

2. We compared this model with graph neural networks to verify the effectiveness of the
employed hypergraph attention.

3. We considered potential dimensionality factor analysis to test the effective dimension-
ality in various cases based on differing potential dimensionality factors to verify the
robustness of the algorithm proposed in this module.

First, seven social recommendation algorithms proposed in recent years were selected
for comparison.

1. SoRec [44] combined social information with matrix decomposition.
2. SocialMF [10] proposed a new social recommendation model, which is based on the

matrix decomposition model and integrates the user’s trust propagation mechanism
to model social networks.

3. SoReg [44] proposed a recommendation algorithm based on social relations, which
constrained the learning of users’ potential feature vectors in the traditional matrix
decomposition by social relations in a way of social regularization, so as to make the
potential feature vectors of two users with social relations as similar as possible.

4. The collaborative user network embedding (CUNE) [45] proposed to dig deep into
the implicit social relationship of users based on user feedback to identify the implicit
important friends of users, and eventually realized the ranking of user preferences
based on the Matrix Factorization (MF) ranking model.

5. Graph Convolution Matrix Completion with Spectral Nonlinear (GCMC + SN) [46]
proposed a bipartite interactive graph-based graph autoencoder framework for differ-
entiable message passing based on graph structure data.

6. Graph Recommendation (GraphRec) [28] developed a new graph neural network
framework for social recommendation, which is the first time that a graph neural
network was combined with a principled method to model users and projects and the
complex interaction between them.

7. ConsisRec [15] used a sampling strategy to mine complex relationships among neigh-
bors based on the principle of social consistency, thus modeling neighbors, and uses an
attention mechanism to highlight the influence weights of different important users.

Second, we compared graph convolution, graph attention, and hypergraph convolu-
tion with hypergraph attention to verify the effectiveness of the hypergraph attention used
in this paper. Finally, this model tested the impact of this algorithm under different latent
dimensions and verified the robustness of the algorithm exhibited by the latent dimensions
employed in this paper.
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The dataset was randomly divided into training, validation, and test sets according to
60%, 20%, and 20% probability. The validation set was used to adjust the hyperparameters,
and the predicted data from the training set was compared with the test set to obtain the
final results. Meanwhile, we searched for percentages between 0.2, 0.4, 0.6, 0.8, and 1.0. For
the embedding size, we adjusted between 8, 16, 32, 64, 128, and 256. The learning rate was
adjusted between 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1 for batch sizes ranging from 32, 64,
128, and 256.

4.4. Experimental Analysis
4.4.1. Performance Comparison

The experimental results of all compared algorithms on the two datasets are shown in
Figure 3 above. We observed the following conclusions:

(a) On both datasets, CUNE, ConsisRec, and HGATH algorithms work better than SoRec,
SocialMF, and SoReg, which shows the superior function of considering the consis-
tency of social relationships shown on the model.

(b) Among the social recommendation-based algorithms, HGATH outperforms the CUNE
and ConsisRec algorithms, which indicates that for social recommendation, it is not
enough to extract valid social relationships from users’ social relationships. Ob-
viously, the higher-order relationships among users must be considered. Mean-
while, compared with the simple graph structure that can only connect two nodes,
the inset attention focuses on more complex relationships and mines richer user
interaction information.

(c) HGATH is more effective than GCMC + SN and GraphRec, which means that higher-
order information interactions can maximize the inheritance of different aspects of
hypergraph information.

(d) On all the evaluation metrics, all comparison algorithms perform better on the Ciao
dataset than the Epinions dataset; this is because the Epinions dataset is sparser than
the Ciao dataset.

We adopted Recall@K and Normalized Discounted Cumulative Gain@K (NDCG@K)
to evaluate the performance of all methods, where K = 5.10. These two metrics have been
widely used in previous recommendation studies to validate the accuracy. For each dataset,
we used 80% as a training set to learn the parameters, 10% as a validation set to tune the
hyperparameters, and 10% as a test set. We also followed similar experimental settings in
the literature [39].

The performance of different methods on the Epinion and Ciao datasets are considered
in Tables 4 and 5, respectively.

Table 4. Comparisons of different methods on the Epinion dataset.

SoRec SocialMF SoReg CUNE GCMC +
SN GraphRec ConsisRec HGATH

Recal@5 0.217 0.215 0.221 0.233 0.241 0.249 0.255 0.261

Recal@10 0.259 0.263 0.257 0.271 0.282 0.287 0.297 0.323

NDCG@5 0.183 0.187 0.178 0.192 0.211 0.209 0.212 0.224

NDCG@10 0.198 0.207 0.211 0.228 0.241 0.238 0.249 0.267
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Table 5. Comparisons of different methods on the Ciao dataset.

SoRec SocialMF SoReg CUNE GCMC +
SN GraphRec ConsisRec HGATH

Recall@5 0.229 0.235 0.234 0.244 0.257 0.261 0.271 0.271

Recall@10 0.274 0.277 0.275 0.291 0.322 0.318 0.326 0.347

NDCG@5 0.186 0.191 0.188 0.201 0.222 0.226 0.237 0.243

NDCG@10 0.208 0.211 0.215 0.233 0.251 0.256 0.266 0.275
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In this section, we verify whether HGATH outperforms the baselines. We obtained
the following observations.

1. HGATH beats all baselines, which shows the effectiveness of the proposed method
in this paper.

2. The graph model-based recommendation algorithms (e.g., GCMC + SN, GraphRec)
outperform the social recommendation algorithms that do not employ graph learning
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methods (e.g., SoRec, SocialMF, SoReg, CUNE), which validates the powerful learning
capability of graph models in recommendation scenarios.

3. The performance difference between SoRec, SocialMF, and SoReg is not significant,
which also validates that all three models are essentially MF-based recommendation
models. The same reasoning applies to GCMC + SN and GraphRec.

4. The performance of each model based on the Epinion dataset is generally slightly
lower than that of the Ciao dataset, which is consistent with the fact that the Ciao
dataset is not as sparse as the Epinion one.

4.4.2. Comparative Analysis of Graph Neural Networks

To validate the presence or absence of graph neural network structure and the dif-
ferent effects brought by different graph neural network structures on the algorithm, this
paper presents experiments and comparative analysis of graph convolution, graph at-
tention, hypergraph convolution, and hypergraph attention. The experimental results
are shown in the following Figure 4. The graph convolution network (GCN), graph at-
tention (GAT), hypergraph convolution (HGCN), and hypergraph attention (HGAT) are
presented in Figure 4.
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First, HGATH shows better performance in the two datasets. Moreover, the structure
created using the hypergraph is obviously better than the simple graph structure, which
proves the effectiveness of the hypergraph structure constructed in this paper for higher-
order information extraction. Second, the difference between hypergraph convolution
and hypergraph attention for two different metrics is not very obvious in the different
datasets, which shows that although they are different hypergraph structures, they have
their strengths and weaknesses in dealing with data with sparsity.

4.4.3. Potential Dimensional Analysis

The variation of potential dimensions also has a certain degree of influence on the
experimental results, which are compared and analyzed to observe the adaptability of
different potential dimensions to the algorithm. The experimental results are shown in
Figure 5 below.
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As shown by the experimental results, the effect becomes more pronounced when
the dimensionality is larger, whereas the relative increase in the potential dimensional-
ity increases memory usage and computing time. It is therefore obvious that the im-
provement of the algorithm levels off when the potential dimension increases to a certain
level. Thus, the potential dimension 256 used in this paper is the optimal choice after
comprehensive consideration.

5. Discussion

In this section, we summarize the results of the experiments and presents the discus-
sion of the contributions made by our work as below:

1. In contrast to other social recommendation work that uses simple graph models to
learn user representations, we used hypergraphs to learn user representations. The
hypergraphs were used to learn the representation of the user based on multiple
aspects of the user. As a complex graph, the hypergraph has the property of linking
multiple nodes within one edge, which makes it naturally advantageous for the repre-
sentation of complex data relationships between nodes. By taking advantage of the
supergraph’s superior learning ability to fully learn the user’s representations, the
complex relationships between users are well described, while higher-order relation-
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ships are accurately modeled. The results in Figures 3 and 4 verify the effectiveness
and efficiency of the method in this paper.

2. Users are influenced differently by different friends when making decisions. Instead
of using the vanilla attention mechanism to distinguish the importance of friends, we
designed a hierarchical iterative aggregation to learn the relational attention network
of user representations. First, the user’s friend features are dynamically sampled in
a single layer based on item features, and then a dynamic aggregation operation is
performed based on a relational attention mechanism to learn the user’s representation.
Next, each layer takes the previous layer’s user’s embedding as input, which finally
outputs the user’s iterative updated embedding. The whole process simulates how
the potential embeddings of the users evolve with the dynamic influence of the project
until the precise user embeddings are finally generated. In the process of simulated
evolution, the attention network proposed in this paper accurately manifests the social
consistency principle.

3. In order to further contextualize the effect of data sparsity while fully inheriting the
rich user representation learned from the hypergraph, we innovatively incorporated
self-supervised learning into the training of the recommendation model proposed
in this paper. By considering the hypergraphs reflecting different aspects of user
representations as different views in the self-supervised contrastive learning con-
sidered, the mutual information of these views was maximized to achieve rich user
representations in the recommendation task for better performance.

4. Self-supervised learning is a fresh direction in the future recommendation field. How-
ever, graph learning-based recommendation models in self-supervised learning tasks
mostly arbitrarily employ operations such as item cropping and masking to improve
the variability among views in the self-supervised comparative learning process. Such
operations also bring about the problem of creating more sparse training data. In the
future, we will further investigate how to perform robust self-supervised learning
while preserving the original data.

6. Conclusions

Considering social information as auxiliary information provides a big help to the
recommendation system. Hence, we view social consistency as the first basis for considering
social relationships in real scenarios and used hypergraph attention to model higher-order
relationships among users when extracting special higher-order user information features.
Simultaneously, higher-order mutual information maximization was used to alleviate the
problem of higher-order information loss caused by fusing different aspects of hypergraph
information. The experiments on two real datasets verify that the proposed algorithm
outperformed the state-of-the social recommendation algorithms. Further, in the future, we
will consider how to simulate the changing interaction information in realistic scenarios
based on dynamic graph models about the impact of friends on users.
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