
Citation: Yang, Q.; Cao, Z.; Jiang, Y.;

Sun, H.; Gu, X.; Xie, F.; Miao, F.; Gao,

G. Semi-Supervised Gastrointestinal

Stromal Tumor Detection via

Self-Training. Electronics 2023, 12, 904.

https://doi.org/10.3390/

electronics12040904

Academic Editor: Yu Zhang

Received: 4 January 2023

Revised: 31 January 2023

Accepted: 4 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Semi-Supervised Gastrointestinal Stromal Tumor Detection
via Self-Training
Qi Yang 1,†, Ziran Cao 2,†, Yaling Jiang 3, Hanbo Sun 2, Xiaokang Gu 2, Fei Xie 4,5,*, Fei Miao 6,* and Gang Gao 7

1 Department of Neurology, National Center for Neurological Disorders, Huashan Hospital, Fudan University,
Shanghai 200433, China

2 College of Information Science and Technology, Northwest University, Xi’an 710127, China
3 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
4 Frontier Cross Research Institute, Xidian University, Xi’an 710071, China
5 Xi’an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation,

Xijing University, Xi’an 710123, China
6 Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,

Shanghai 200025, China
7 Shanghai Yiran Health Consulting Co., Ltd., Shanghai 201821, China
* Correspondence: fxie@xidian.edu.cn (F.X.); mf11066@rjh.com.cn (F.M.)
† These authors contributed equally to this work.

Abstract: The clinical diagnosis of gastrointestinal stromal tumors (GISTs) requires time-consuming
tumor localization by physicians, while automated detection of GIST can help physicians develop
timely treatment plans. Existing GIST detection methods based on fully supervised deep learning
require a large amount of labeled data for the model training, but the acquisition of labeled data
is often time-consuming and labor-intensive, hindering the optimization of the model. However,
the semi-supervised learning method can perform better than the fully supervised learning method
with only a small amount of labeled data because of the full use of unlabeled data, which effectively
compensates for the lack of labeled data. Therefore, we propose a semi-supervised gastrointestinal
stromal tumor (GIST) detection method based on self-training using the new selection criterion
to guarantee the quality of pseudo-labels and adding the pseudo-labeled data to the training set
together with the labeled data after linear mixing. In addition, we introduce the improved Faster
RCNN with the multiscale module and the feature enhancement module (FEM) for semi-supervised
GIST detection. The multiscale module and the FEM can better fit the characteristics of GIST and
obtain better detection results. The experiment results showed that our approach achieved the best
performance on our GIST image dataset with the joint optimization of the self-training framework,
the multiscale module, and the FEM.

Keywords: gastrointestinal stromal tumor; semi-supervised learning; self-training; object detection;
computational intelligence

1. Introduction

A gastrointestinal stromal tumor (GIST) is a highly aggressive gastrointestinal mes-
enchymal tumor, mainly diagnosed with image examination. GIST detection on abdominal
CT images helps acquire the location of tumors, formulate treatment plans in time, and pre-
vent distant metastasis of tumors. Currently, computer vision technology based on the
neural network has been widely used in a variety of lesion detection tasks, including
the diagnosis of pulmonary tuberculosis, breast cancer, and other lesions. Unlike lesion
detection in other organs, the small intestine has a motor function, so the shape of the GIST
varies widely, leading to low discriminability and many difficulties for GIST detection.
Therefore, there are few studies related to the detection and identification of GIST, and exist-
ing techniques still use common object detection algorithms (Faster R-CNN [1], YOLO [2],
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Cascade R-CNN [3], RetinaNet [4], etc.). These fully supervised learning methods heavily
rely on labeled data for the parameter optimization, but the medical images must be labeled
by doctors with clinical experience, which requires considerable resources. As a result,
the detection results of neural networks are affected by the lack of labeled data. Meanwhile,
a substantial number of unlabeled images are stored in the hospital’s medical system.
Compared with the high cost of manually labeling them, it is much easier to retrieve these
images. To solve the problem of unsatisfactory training results caused by the imbalance
between the number of labeled and unlabeled images, we use the semi-supervised learning
method to train the model.

With limited labeled data, the semi-supervised learning (SSL) method can improve
the performance of the model by effectively using a tremendous amount of unlabeled data
to optimize the model while reducing the dependence on labeled data. Generally, the SSL
method can be divided into two steps: (a) training on a small amount of labeled data to ob-
tain model A and predicting pseudo-labels of unlabeled data through A; and (b) retraining
the model on a new dataset consisting of pseudo-labeled and labeled data to improve the
performance of the model. Since the pseudo-labels of the unlabeled data are generated with
the model prediction, there may be some mistakes. Some researchers [5,6] have used self-
integration methods to improve the quality of pseudo-labels and enhance the robustness of
the model. In addition, there are also algorithms [7,8] that learn complementary informa-
tion by cotraining to avoid confirmation bias and guarantee the accuracy of pseudo-labels.
In order to prevent wrong pseudo-labels from producing errors that continue to iterate
and affect the performance of the model, we propose a self-training-based SSL method
(Figure 1) that uses the dual constraints of dynamic threshold and IOU to enhance the
quality of pseudo-labels. The dynamic threshold constraint means setting a minimum
threshold for the confidence of the pseudo-label, using a higher confidence threshold at the
beginning of the training and gradually decreasing it as the training progresses. The IOU
constraint means that the intersection over union (IOU) between multiple pseudo-labels of
different transformed images should be greater than the set threshold; that is, after the data
augmentation on the unlabeled image is completed, the shape and the position of the new
candidate bounding box should maintain a certain immutability.

Additionally, to fundamentally ensure the quality of pseudo-labels, we improved the
popular two-stage object detector (Faster R-CNN [1]) and applied the Improved Faster R-
CNN to pseudo-label generation. Most of the traditional object detection algorithms used in
existing GIST detection techniques are designed for object detection tasks in natural images
and perform well on salient object detection. However, GIST has an unclear boundary and
inconspicuous features in abdominal CT, and these algorithms cannot achieve good results.
Compared with these techniques, Improved Faster R-CNN makes adjustments targeted
to the morphological characteristics of GIST. In Improved Faster R-CNN, the multiscale
module and the feature enhancement module (FEM) designed for the characteristics of
GIST have been added. The newly added module can better detect GISTs of different scales
in complex backgrounds, which helps to improve the accuracy of pseudo-labels. Finally,
Mixup [9] can be used to augment the true labels of the labeled data and the pseudo-labels
of the unlabeled data. The generalization capability of the network can be significantly
enhanced by linearly mixing these samples.
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Figure 1. Overview of the self-training method. In each iteration, the predictions of the Improved
Faster R-CNN on unlabeled data are augmented and then filtered out with the IOU constraint and
the dynamic threshold together to generate pseudo-labels. The labeled data and the pseudo-labeled
data are linearly mixed using Mixup, and the resulting new dataset is used for the next iteration. The
data augmentation methods in the figure are (a) horizontal flip, (b) vertical flip, (c) rotation, and (d)
affine transformation; one is randomly selected as the data augmentation method and repeated k
times during the experiment.

In summary, our main contributions are as follows: (1) We propose a detection algo-
rithm (Improved Faster R-CNN) for GIST detection and use it as the benchmark model for
the SSL method. (2) We propose a novel self-training-based SSL method for GIST detection.
(3) Extensive experiments demonstrated that the performance of the proposed SSL method
is significantly improved compared to the fully supervised learning method.

2. Related Work
2.1. Lesion Detection

Lesion detection is an important computer vision task in the field of CAD (computer-
aided diagnosis) and has received considerable attention in recent years. Many scholars
have designed excellent object detectors based on convolutional neural networks (CNNs)
for lesion detection. Cireşan et al. [10] added max-pooling layer and postprocessing
strategies to the CNN for mitosis detection on mammary gland histological images. Setio
et al. [11] proposed a multiview convolutional network that combines the respective ad-
vantages of three detectors for pulmonary nodule detection. Rajpurkar et al. [12] improved
the dense convolutional network by replacing the fully connected layer with a single
output layer and applying a nonlinear sigmoid activation function to achieve excellent
performance on the task of pneumonia detection on chest radiographs. Sedik et al. [13]
constructed a deep learning architecture for COVID-19 detection on CT images and X-ray
films based on CNN and ConvLSTM, which included convolutional, pooling, and ConvL-
STM layers, and the multilayered structure effectively reduced the overfitting errors and
enhanced the detection accuracy. Although artificial intelligence technologies have been
widely used in the field of CAD, there is still little research on GIST detection. The small
intestine moves by its nature, and the GIST appears with considerable morphological differ-
ences in abdominal CT, resulting in difficulty in improving the accuracy of GIST detection.
At present, only our team has carried out this research. Fei et al. [14] have combined a
variety of classical fully supervised detection algorithms to improve the accuracy of GIST
detection, but the theoretical innovation of this method needs to be improved. In addition,
the method requires training on a large amount of accurate manually annotated data, which
is expensive and time-consuming to acquire in the medical imaging domain. In contrast
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to previous methods that solely train models on labeled data, our SSL approach trains an
object detector on both labeled and unlabeled data.

2.2. Semi-Supervised Object Detection

Semi-supervised learning methods can leverage latent knowledge from unlabeled data
to facilitate model learning with limited labeled data [15]. Existing SSL methods consist
of two categories: consistency-based methods and self-training-based methods. The main
idea of the consistency-based [16–18] approach is that for any input data, its output should
be consistent with the original output when it is disturbed by less noise. Self-training-based
approaches improve the performance of SSL by filtering noisy labels using a predefined
threshold and adding the retained pseudo-labels into model retraining. Lee et al. [19]
used the deep neural network to train both labeled and unlabeled data simultaneously
and pioneered the method of using pseudo-labels for training. Iscen et al. [20] used a
transduction label propagation method based on the prevalence hypothesis in predicting
pseudo-labels and achieved transduction learning by calculating the similarity matrix
between the labeled and unlabeled data. Qizhe Xie et al. [21] improved the quality of
pseudo-labels through repeated teacher–student model iterations to enhance the robustness
and accuracy of self-training. Considering the uncertainty of the teacher network in the
self-training method, Mukherjee et al. [22] chose the Bayesian network to estimate the
uncertainty of pseudo-labels, thereby reducing the influence of noisy labels on the model.

The SSL method has also been widely used in the object detection field, and many
researchers are committed to training high-performance object detectors with a limited
amount of labeled data and a large amount of unlabeled data. Jeong et al. [23] proposed
the CSD method based on consistency regularization, which calculates the consistency
loss between the prediction on the original unlabeled image and the flipped unlabeled
image to achieve the aim of fully utilizing unlabeled data. Sohn et al. [24] combined
both self-training and consistency regularization to propose the STAC method, which first
eliminates some low-confidence pseudo-labels obtained from self-training by threshold
screening and calculates unsupervised loss as well as a supervised loss while training
on the augmented unlabeled data together with labeled data. Qize et al. [25] performed
self-training object detection based on the mean teacher model, using the nonmaximum
suppression (NMS) method to fuse the detection results from different iteration periods to
ensure the stability of the detection results during the training process. Moreover, the use of
double-head can effectively utilize the complementary information and improve the quality
of the pseudo-labels. To address the problem of the imbalance between the foreground
and background, Fangyuan et al. [26] proposed a self-training method of adaptive class
rebalancing that stores and extracts foreground instances and pastes them into random
positions of training samples, increasing the proportion of foreground instances. They also
designed a two-stage filter to weed out unreliable pseudo labels.

Although the SSL method for object detection has garnered a degree of success,
the following problems in SSL-based GIST detection still remain: (1) The current semi-
supervised object detection methods only employ basic object detection algorithms, such
as Faster R-CNN [1]. However, given that GIST does not have clear boundary features in
the CT image and has a large degree of variation, it is necessary to use an object detection
algorithm that is more suitable for these characteristics. (2) The current object detection
approach uses self-training without taking into account erroneous pseudo-labels, which
results in overfitting to the wrong pseudo-labels and a decrease in the model’s accuracy.
As a result, we have built our SSL framework using the Improved Faster R-CNN with
the multiscale module and the FEM. We then added the dynamic threshold and the IOU
constraint in the self-training process to increase the accuracy of pseudo-labels, ensuring
that the following model iterations perform better.
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3. Method

With a severe lack of labeled data, using limited labeled data to improve model
performance has become a significant problem in GIST detection. To fully utilize all data,
including unlabeled data, we propose an SSL method based on self-training and design
Improved Faster R-CNN as the detection algorithm according to the characteristics of GIST.
The Improved Faster R-CNN containing the multiscale module and the FEM can better
integrate multidimensional feature information and combine deep semantic information
with shallow location information. We further developed a new pseudo-label selection
strategy to improve the robustness of the model. By applying the dynamic threshold
constraint and the IOU constraint to the prediction results of unlabeled data, the reliable
pseudo-labels can be retained for subsequent training. In the subsequent sections, we
describe improvements to the Faster R-CNN by introducing two new modules aimed
at characterizing GISTs (Section 3.1). Next, we introduce a novel pseudo-label selection
strategy (Section 3.2) and outline our self-training approach (Section 3.3).

3.1. Improved Faster R-CNN

We optimized the Faster R-CNN to improve the accuracy of GIST detection and
ensure the quality of pseudo-labels; the network structure is shown in Figure 2. In this
paper, two optimization modules are proposed: (1) Given the large variability of GISTs,
a multiscale module was developed to use feature information of various levels. (2) The
FEM was introduced to combine channel and spatial dimension information for the complex
background of GIST images.

Figure 2. The architecture of the Improved Faster R-CNN which consists of several main components:
ResNet, the multiscale module, FEM, RPN, and ROI. The input images are processed using ResNet
to obtain the feature maps of each layer, and the results are combined using the multiscale module
to feed into the FEM. The feature maps enhanced with the FEM are fed into the RPN for anchor
proposal, and the ROI then collects the input feature maps and proposals to extract the proposal
feature maps into the full connected layer.

One of the challenges of GIST detection is that the object scale varies excessively. Using
the single-layer feature map for prediction may affect the accuracy of the result due to
the limited information, so the feature maps at different levels should be combined for
detection. The traditional feature pyramid network (FPN) [27] can fuse information of the
low-level with that of the high-level, but there are still some problems: (1) The transmission
path between the low-level features and high-level features is too long, which increases
the difficulty of access. (2) Although FPN utilizes the information of different layers, each
layer only contains the information of the current layer and higher layers. The lack of
location information of lower levels is not conducive to small target detection. In response
to the problems in the FPN, we improve it by adding a bottom-up connection based on
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the original path. When downsampling the feature map of the Ni layer, M2 and Mi+1 are
bilinearly interpolated to resize to the same scale (the size of the feature map of the Ni
layer), and then the fused results are combined with the feature map of the Ni layer to
obtain the feature map of the Ni+1 layer. We choose the Inception [28] convolution block
for feature map fusion to solve the problem of excessive computation caused by a large
convolution kernel. The improved FPN structure enables the feature map of each layer
to contain both the semantic information of the deeper layers and the rich localization
information of the first layer, assisting the model in performing better detection.

Another challenge of GIST detection is the difficulty of distinguishing the foreground
from the background in CT images. The lesion area shares certain similarities with the
surrounding background, and it is hard for the basic model to separate the object, so the
FEM is introduced. The feature map obtained through convolution only contains the spatial
information in the local receptive field and lacks the connection between each channel.
If the information of each channel is only processed globally, the information interaction
within the space is missed. Our FEM uses both a channel attention mechanism and a spatial
attention mechanism to enhance feature representation, highlight relevant features of the
GIST lesion area, and suppress background noise, thus enhancing the feature extraction
ability of the network.

We use the channel attention mechanism (CAM) [29] to model the correlation between
each channel and obtain the weight of each channel. The process can be written as follows:

MLP1 = Conv1/r
1 (Relu(Convr

1(Pmax(F)))), (1)

MLP1 = Conv1/r
1
(

Relu
(
Convr

1
(

Pavg(F)
)))

, (2)

CA(X) = σ(MLP1 + MLP2), (3)

where F represents the original feature map, Pmax and Pavg denote the max pooling and the
average pooling, Conv1/r

1 denotes that the convolution kernel size is i× i and the number
of channels becomes 1/r times of the original, and σ is the Sigmoid.

The spatial attention mechanism (SAM) [29] is used to model the correlation of the
spatial position on the feature map of each channel and calculate its weight. The feature
map is calculated as follows:

SA(F) = σ(Conv7
(

Pmax(F)‖Pavg(F)
)
, (4)

where Conv7 denotes that the convolution kernel size is 7× 7, and ‖ represents merging in
the channel dimension.

The FEM refers to BAM [30] and establishes a parallel connection between the CAM
and the SAM. Finally, the calculating process can be expressed as follows:

F′′ = FEM(F) = F + F× F′ (5)

= F + F× σ(expand(CA(F))× expand(SA(F))).

3.2. Pseudo-Label Selection Strategy

The correctness of pseudo-labels is crucial for subsequent training iterations. If in-
correct pseudo-labels are added to the dataset, this will hinder the optimization of model
parameters. To this end, we designed a pseudo-label selection strategy based on the dy-
namic threshold and the IOU constraint, which can effectively screen out pseudo-labels
with a higher correct probability and help the model converge.

The method of selecting pseudo-labels by using an unchanging threshold has numer-
ous drawbacks. If the threshold is set too high, the model will filter out the candidate
bounding box in the target area and prevent it from being added to the pseudo-label set,
leading to a large number of false negative examples in the subsequent training phase.
In contrast, if the threshold is set too low, numerous candidate bounding boxes in the
nontarget area will be added to the pseudo-label set, thus generating many false-positive
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examples in the next round of training. In fact, as training progresses, the network’s de-
tecting ability gradually advances, and the validity of the generated pseudo-labels rises.
Therefore, the threshold value used to choose the pseudo-label should be dynamic. To avoid
incorrect pseudo-labels from influencing model training, we set a high selection threshold
at the early stage of training. As training proceeds, we gradually lower this threshold to
prevent correct pseudo-labels from being eliminated. Selecting pseudo-labels through the
dynamic threshold makes more sense. The value of threshold in the qth round is defined as
follows:

Tq =

{
0.95, q = 1
Tq−1 − (q− 1)× 0.05, q > 1

. (6)

Based on the dynamic threshold, we created a new IOU constraint. The IOU constraint
sets the condition for the retention of pseudo-labels. Only when the IOU between the
detection results of various transformed images is higher than 0.9 do we regard the bound-
ing box as the pseudo-label. Figure 3 shows the results after applying the IOU constraint.
By comparing the original results with the true label, it can be found that the detection box
on the right is a false-positive example, which will affect the optimization of the model if it
is kept as a pseudo-label. After the IOU constraint is applied, the false-positive bounding
box can be successfully excluded, which further ensures the quality of the pseudo labels.

Figure 3. The effect of IOU constraint (the orange bounding box in the figure represents the predicted
box, and the green bounding box represents the actual labeled box).

By synthesizing the dynamic threshold and the IOU constraint, the selecting criteria
of pseudo-labels in the qth round can be expressed as follows:

Pj
i =

{
1, f j

i > Tq and IOU > 0.9
0, otherwise

, (7)
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where i and j denotes the jth bounding box of the ith image, f j
i is the confidence of the

bounding box, and Pj
i = 1 represents that the pseudo-label corresponding to this bounding

box is retained, with the opposite being discarded.

3.3. Self-Training Method

In this paper, we propose a semi-supervised GIST detection algorithm based on the
self-training method, which aims to improve the effectiveness of GIST detection with a
small amount of labeled data and a large amount of unlabeled data. The whole procedure
of the GIST detection is shown in Algorithm 1.

Algorithm 1 Procedure of Semi-Supervised GIST Detection.

Input: Labeled data, L; Unlabeled data, U; Data augmentation strategies T in
{t1, t2, . . . , tm}

Output: Trainable parameters of network, W
1: Initialize hyperparameters: rounds of iteration Q, times of data augmentation K, thresh-

old P1
2: Pretrain the model on L to get the initial parameters W
3: for q = 1 : Q do
4: for k = 1 : K do
5: Use W to predict on ti(U)
6: end for
7: Pq ← Pq − (q− 1)× 0.05
8: Filter the results according to (7) to obtain the set of pseudo-labels
9: Reassemble to acquire the new training set: Ln = L ∪ R ∪ (Mixup(L, R))

10: Retrain the model on Ln to acquire the new parameters W
11: end for
12: Return W

For the labeled data, the labels are the actual bounding boxes, and the confidence is set
to 1. We first train with the labeled data to obtain the initial model and then apply different
data augmentation strategies to the unlabeled data following the data distillation method
proposed by Radosavovic et al. [31].

The data augmentation strategies used in this paper mainly include flip, rotation,
and affine transformation. When the flip is chosen as the data augmentation method,
the corresponding detection result needs to be flipped as well. For the affine transformation,
the set translation range does not exceed 10 pixels, and the position of the bounding box
does not vary greatly, so it can remain unchanged. For the rotation operation, the given
rotation angle is an integer multiple of 90◦ or less than 10◦. When the angle does not exceed
10◦, the position of the bounding box stays unchanged, referring to the affine transformation
operation; when the image is rotated 90◦ clockwise, the coordinates of the corresponding
bounding box need to be rotated 90◦ counterclockwise, and so on for other angles.

The initial model detects the images after data augmentation 1 to k times respectively,
and all the results are fused to obtain the pseudo-labels. The pseudo-labels generated by
prediction may have some errors. For this reason, we use the dynamic threshold and the
IOU constraint to enhance the quality of pseudo-labels. The dynamic threshold refers to
a threshold that changes dynamically for the confidence of the pseudo-label, utilizing a
higher confidence threshold in the early stages of training and progressively lowering
the threshold as training progresses. The IOU constraint is a constraint on the overlap
area between the bounding boxes predicted by the initial model on the images after data
augmentation 1 to k times. After the transformation, the bounding box is used as a pseudo-
label for that image only if it appears on all images with a similar position and size.

After clean pseudo-labels are filtered out through the above-mentioned constraint
strategies, Mixup [9] is used to linearly mix the labeled data and the pseudo-labeled data.
The new samples acquired after mixing are then used once more for the training, which
can substantially enhance the network’s generalization capacity.
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Mixup is a crucial part of the MixMatch [16] framework, which enables the model
to obtain better generalization performance by linearly interpolating pairwise training
samples. The traditional Mixup is designed for image classification tasks, where each
image is associated with one class label. The generated image x̃ and its label ỹ can be
defined as follows:

x̂ = λx + (1− λ)x′, (8)

ŷ = λy + (1− λ)y′, (9)

where x and x′ denote two different images, y and y′, respectively, denote their probability
of the corresponding class, λ ∈ [0, 1].

Since the data used in this paper are annotated with the bounding box of the lesion,
we opted for image-level Mixup rather than classification Mixup. The generated label x̂i
and its confidence ŷi in image-level Mixup can be calculated as follows:

λ̃ = max(λ, 1− λ), (10)

x̂i = λ̃xi +
(

1− λ̃
)

x′i , ∀i, (11)

ŷi = λ̃yi +
(

1− λ̃
)

y′i, ∀i, (12)

where x̂i denotes the ith label on the generated image x̂, x and x′ denote bounding boxes
on two different images, and y and y′, respectively, represent their confidence, λ ∈ [0, 1].

4. Results

We first conducted ablation studies to verify the effectiveness of the proposed module
and strategies. Furthermore, we designed experiments to demonstrate the superiority of
the Improved Faster R-CNN and the self-training method. Detailed information on the
configuration and results is presented in the following subsections.

4.1. Datasets and Experimental Settings

Datasets used for the fully supervised method (Improved Faster R-CNN) were the
following: The datasets used in the experiment were the CT images (a series of DICOM
format files obtained by doctors using related equipment to scan the patient’s abdomen)
of GIST patients provided by the hospital, including labeled images of 213 patients and
unlabeled images of 10 nonpatients. Each patient had between 50 and 80 slices, of which
only 3 to 10 slices contained GIST. The slices with lesions labeled by qualified medical
professionals were used as the datasets in this work. We used pydicom to convert DICOM
format files to png format images and finally obtained a total of 3735 images with GIST
annotated by doctors, comprising 526 ones with the small object, 2212 ones with the
medium object, and 997 ones with the large object. Of the labeled images, 70% were used
for training, and the remaining 30% of labeled images were added to the test set together
with 600 slices without lesions of 10 nonpatients. Table 1 displays the makeup of the
training set and test set for the GIST detection experiment.

Experimental settings in the fully supervised method (Improved Faster R-CNN) were
the following: The operating system was an Ubuntu 18.04, and the hardware environment
was an Intel(R) Core(TM) i9-10980XE CPU@3.00 GHz and two TITAN RTX 24 G graphics
cards. The programming language used was python3.7, and the framework was the
PyTorch-based mmdetection [32]. The backbone of the network was ResNet50, the number
of training epochs was 24, the batch size was 8, the optimizer was stochastic gradient
descent (SGD), the momentum was 0.9, and the initial learning rate was 0.01, which decays
at epochs 16 and 22.
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Table 1. Composition of the training set and test set.

Dataset Object Number of Slices

Training set Small-scale 413
Medium-scale 1412
Large-scale 789

Test set Small-scale 113
Medium-scale 800
Large-scale 208
Nonlesion 600

Datasets used for the semi-supervised method (Improved Faster R-CNN) were the
following: The semi-supervised method experiment requires a greater number of unlabeled
samples, so the datasets used for the fully supervised method were divided, using 3%, 5%,
10%, and 20% of the data as labeled samples, and the remaining data were unlabeled after
the labels were removed to form an unlabeled dataset together with the unlabeled data
of 54 patients. The specific division of the train set used for the semi-supervised method
is shown in Table 2. The test set was consistent with that used in the fully supervised
method experiment.

Table 2. Composition of the training set.

Proportion of Retained Labels Labeled Data Unlabeled Data

3% 90 6180
5% 150 6120
10% 300 5970
20% 600 5670

The experimental settings in the semi-supervised method were as follows: The hard-
ware environment was identical to that in the fully supervised method experiment, and the
Improved Faster R-CNN was used as the object detector for the experiments. The batch
size was set to 8, the optimizer was stochastic gradient descent (SGD), the initial learning
rate was 0.01, the momentum was 0.9, the rounds of iterations were 5, and the times of
data augmentation were 4. When training the network with only labeled data, the number
of epochs was set to 30 to obtain a better-performing initial model and higher-quality
pseudo-labels, with the learning rate decaying at epochs 18 and 26. For better comparison
with the experimental results of the fully supervised method, the experimental settings
when unlabeled data were used for training were the same as those in the fully supervised
learning experiments. The number of epochs was set to 24, and the learning rate decayed
at epochs 16 and 22.

The variables used in the self-training method experiments included Q and the thresh-
old. Q indicates the total number of training rounds after adding pseudo-labels, and a
higher value of Q indicates a higher proportion of pseudo-labels in the dataset used for
training. The pseudo-label selection threshold is one of the criteria used to select pseudo-
labels during the training process. If the score of the prediction result is lower than the
threshold, it cannot be used as a pseudo-label. The threshold value reflects the correctness
of the pseudo-label, and the larger the threshold value is set, the higher the correctness of
the pseudo-label.

4.2. Ablation Study on Improved Faster R-CNN

In this section, we describe the designed experiments conducted to demonstrate the
effectiveness and superiority of the multiscale module and FEM introduced in the Improved
Faster R-CNN. Table 3 lists the experimental results.
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Table 3. Investigation of different modules introduced to the Faster R-CNN.

Model FPN PAFPN Ours_FPN FEM APs APm APl AP

0.329 0.677 0.796 0.662
X 0.395 0.692 0.806 0.680

X 0.413 0.699 0.815 0.701
Faster R-CNN X 0.431 0.702 0.827 0.735

X 0.342 0.671 0.799 0.667
X X 0.401 0.695 0.811 0.682

X X 0.415 0.711 0.814 0.705
X X 0.435 0.704 0.829 0.739

The bold indicates the best result.

We respectively compare the effects of the Faster R-CNN without the multiscale
module, with the initial FPN [27] module, with the PAFPN [33] module, and with the
FPN module proposed in this paper, and the experimental results are shown in Table 3
and Figure 4. The data in the table show that the proposed FPN structure increases the
AP of the entire item by 0.073, and the AP at all scales is improved by the improved
FPN structure, with the most significant improvement for small objects. The suggested
multiscale approach surpasses other methods in the AP of both the overall objects and each
scale object, proving that the improved FPN is more effective for the task at hand.

(a) base (b) FPN (c) PAFPN (d) Ours_FPN

Figure 4. Visual comparison of different feature pyramid networks (the orange bounding box in the
figure represents the predicted box, and the green bounding box represents the actual labeled box).

As shown in Table 3 and Figure 5, we compared the test results using only the FEM,
using the FPN module together with the FEM, using the PAFPN module together with the
FEM, and using our FPN together with the FEM to verify the effectiveness of the FEM. As
evident from the results in the table, the AP is slightly improved when using only the FEM
without the multiscale module. Using FPN as the multiscale module, the FEM yields an
AP improvement of 0.002, using PAFPN 0.004, and using the proposed multiscale module
0.04. Overall, the AP goes from 0.662 to 0.739 with the addition of the multiscale module
and the FEM. Although the effect of the FEM on this task is not as significant as that of the
multiscale module, a series of comparative experiments also proved that this module can
improve the performance of the network.
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(a) base (b) FEM (c) FPN+FEM (d) PAFPN+FEM (e) Our_FPN+FEM

Figure 5. Visual comparison of the FEM combined with the different feature pyramid networks
(the orange bounding box in the figure represents the predicted box, and the green bounding box
represents the actual labeled box).

4.3. Ablatation Study on the Semi-Supervised Method

In this section, we detail the ablation experiments of the SSL method to demonstrate
that the strategies we introduced to the self-training method are effective in improving
the detection results related to the task defined in this paper. In addition, we explored the
impact of different settings on the model performance.

To verify the effectiveness of the self-training method used in this paper, we first
iteratively optimized the initial model using the original self-training method. We usd
the control variable method to test the two initialization hyperparameters, the number of
training rounds, and the threshold for pseudo-label selection. The experimental results are
shown in Table 4, where Q represents the total number of iterations. When Q = 0, only the
labeled data are used for training, and when Q > 0, pseudo-labels are gradually added to
the train set.

Table 4 shows that as Q rises, the detection accuracy declines. This phenomenon
indicates that in the GIST detection task, accuracy improvement cannot be achieved by
using the initial self-training method to create pseudo-labels. With the threshold held
constant, we observe that as the round of iteration increases, the accuracy of the training
set with 3% labeled data decreases faster than that with 20% labeled data. Because the
initial model trained with 3% labeled data is less accurate than that with 20% labeled
data, a greater number of false pseudo-labels are generated as the number of rounds
increases. In the same training set, we can find that the accuracy decreases faster when the
pseudo-label selection threshold is 0.5. Using a lower threshold leads to many bounding
boxes in nonlesion regions being added to the pseudo-label set, thus generating many
false-positive samples in the subsequent round. When the pseudo-label selection threshold
is 0.9, the accuracy of the model improves briefly, but as the number of iteration rounds
increases, the model tends to overfit the high-confidence data, resulting in a decrease in
accuracy. Therefore, if the accuracy of the initial model is too low or the threshold value
is not appropriate, there will be too many noisy labels. This result shows that using the
original self-training strategy reduces, rather than improves, the detection accuracy due to
noisy pseudo labels.
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Table 4. Investigation of the proportions of labelled data, the thresholds, and the rounds.

Training Set Threshold Q = 0 Q = 1 Q = 2 Q = 3

3% Labeled data 0.5 0.200 0.154 0.126 0.115
0.7 0.200 0.163 0.137 0.125
0.9 0.200 0.202 0.205 0.203

5% Labeled data 0.5 0.312 0.281 0.241 0.239
0.7 0.312 0.288 0.246 0.244
0.9 0.312 0.314 0.313 0.312

10% Labeled data 0.5 0.501 0.481 0.472 0.469
0.7 0.501 0.482 0.475 0.471
0.9 0.501 0.503 0.505 0.504

20% Labeled data 0.5 0.637 0.615 0.608 0.604
0.7 0.637 0.621 0.614 0.611
0.9 0.637 0.638 0.636 0.636

The bold indicates the best result.

Table 5 shows the the experimental findings on the 10% annotated dataset without
data augmentation, with data augmentation using horizontal flip, vertical flip, random
rotation, random noise, and affine transformation to confirm the impact of various data
augmentation approaches. The use of data augmentation techniques other than random
noise can increase the accuracy of detection. One of the four data augmentation techniques
(horizontal flip, vertical flip, rotation, and affine transformation) was chosen at random
in the experiment. There is some variation in the training outcomes because the data
augmentation method was chosen at random. As a result, the findings of the subsequent
experiments involving data augmentation were averaged after four rounds of training.

Table 5. Influence of using different data augmentation methods on the 10% labeled dataset.

Data Augmentation AP0.5 AP0.75 AP

Base 0.793 0.580 0.501
Horizontal flip 0.801 0.585 0.506
Verical flip 0.795 0.578 0.504
Random rotation 0.794 0.581 0.503
Affine transformation 0.794 0.582 0.502
Random noise 0.801 0.576 0.491

The underline indicates the worse results after using data augmentation.

To demonstrate the effectiveness of the dynamic threshold, the IOU constraint, and the
Mixup used in the self-training method, we present ablation studies on the 10% labeled data.
Table 6 shows that after applying the dynamic threshold and the IOU constraint, the results
are improved with iteration. In contrast, as the training iterates, the accuracy of the model
using the original self-training method declines. We can also observe that employing Mixup
results in a modest rise in AP, proving that Mixup enhances the network’s generalization
ability and improves the model’s performance.

Table 6. Investigation of using different strategies in the self-training method.

Model Dynamic Threshold IOU Constraint Mixup Q = 0 Q = 3 Q = 5

X 0.501 0.515 0.518
Improved X 0.501 0.517 0.518

Faster R-CNN X X 0.501 0.519 0.521
X X X 0.501 0.521 0.524

The bold indicates the best result.

4.4. Comparison Experiments and Analysis

In this section, we describe the series of comparative experiments conducted to prove
the superiority of the Improved Faster R-CNN and the proposed self-training method.
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As shown in Table 7 and Figure 6, the Improved Faster R-CNN outperformed the other
mainstream object detection algorithms, including the one-stage object detector, two-stage
object detector, and anchor-free object detector, which demonstrates that our network has
superiority by virtue of the multiscale module and the FEM.

Table 7. Comparison with the state-of-the-art object detection algorithms.

Model AP0.5 AP0.75 AP

Faster R-CNN [1] 0.923 0.771 0.662
Mask R-CNN [34] 0.933 0.802 0.702
Cascade R-CNN [2] 0.914 0.798 0.703
YOLOv3 [3] 0.933 0.474 0.484
RetinaNet [4] 0.922 0.783 0.673
FCOS [35] 0.860 0.543 0.516
Improved Faster R-CNN 0.961 0.802 0.739

The bold indicates the best result.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Visual comparison of the different object detection algorithms including (a) Faster R-CNN,
(b) Mask R-CNN, (c) Cascade R-CNN, (d) YOLOv3, (e) RetinaNet, (f) FCOS, and (g) Improved Faster
R-CNN. The orange bounding box in the figure represents the predicted box, and the green bounding
box represents the actual labeled box.

In Table 8, we present the improvement in accuracy when using our semi-supervised
method compared to CSD [23], STAC [24], and Instant-teaching [36] on all datasets. It
demonstrates that the network has higher robustness for all datasets since the dynamic
threshold and the IOU constraint guarantee accurate pseudo-labels.



Electronics 2023, 12, 904 15 of 18

Table 8. Comparison with state-of-the-art semi-supervised methods.

Dataset Method AP0.5 AP0.75 AP

3% labeled data CSD 0.283 0.227 0.198
STAC 0.291 0.231 0.191
Instant-teaching 0.288 0.246 0.197
Ours 0.301 0.257 0.204

5% labeled data CSD 0.574 0.346 0.351
STAC 0.597 0.319 0.348
Instant-teaching 0.574 0.300 0.341
Ours 0.587 0.412 0.355

10% labeled data CSD 0.715 0.511 0.499
STAC 0.759 0.587 0.508
Instant-teaching 0.781 0.604 0.504
Ours 0.835 0.611 0.524

20% labeled data CSD 0.891 0.721 0.639
STAC 0.901 0.701 0.638
Instant-teaching 0.913 0.728 0.648
Ours 0.932 0.731 0.659

The bold indicates the best result.

Finally, we compared the semi-supervised method with the fully supervised Improved
Faster R-CNN on the fully labeled dataset, using all the labeled data for initial training
and adding the unlabeled CT images of only 54 patients for the pseudo-label generation.
The experimental results are shown in Table 9 and Figure 7. The comparison reveals that the
semi-supervised method can use the information in the unlabeled data to produce detection
results that are marginally better than those of the fully supervised method after using
unlabeled data. It proves that the addition of unlabeled data has no impact on the model’s
performance. However, the improvement in the model performance is not substantial
because the unlabeled data used in this comparison experiment were insufficient and only
contained images of 54 patients.

(a)

(b)

Figure 7. Visual comparison of (a) the fully supervised method and (b) semi-supervised method.
The orange bounding box in the figure represents the predicted box, and the green bounding box
represents the actual labeled box.
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Table 9. Comparison with the fully supervised Improved Faster R-CNN.

Method AP0.5 AP0.75 AP

Fully supervised Improved Faster R-CNN 0.959 0.799 0.739
Semi-supervised Improved Faster R-CNN 0.960 0.797 0.740

The bold indicates the best result.

5. Conclusions

To address the problems of large object scale variation, confusing background, and the
challenge of obtaining labeled data in the detection of GIST, we propose a semi-supervised
object detection method using self-training in this study. The method uses only a small
amount of labeled data supplemented by a sizable amount of unlabeled data and fully
exploits the information contained in the unlabeled data. Through comparison with existing
methods and ablation studies of each module, the feasibility of the proposed method was
proven, and the detection accuracy of the model increased without extra labeling costs.

Although the improved scheme for GIST detection in this paper has achieved good
results, there are still some limitations that should be noted. In the semi-supervised learning
method, the best prediction results are used as pseudo-labels for subsequent training.
The challenging samples—those that the model has not yet learned well—are not used
effectively. Therefore, we can try to combine semi-supervised learning and active learning
to find challenging samples by active learning and then manually label the challenging
samples for training.
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