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Abstract: Energy efficiency (EE) is the main target of wireless communication nowadays. In this paper,
we investigate hybrid precoding (HP) and massive multiple-input multiple-output (MIMO) systems
for a high-altitude platform (HAP). The HAP is an emerging solution operating in the stratosphere
at an amplitude of up to 20–40 km to provide communication facilities that can achieve the best
features of both terrestrial and satellite systems. The existing hybrid beamforming solution on a HAP
requires a large number of high-resolution phase shifters (PSs) to realize analog beamforming and
radio frequency (RF) chains associated with each antenna and achieve better performance. This leads
to enormous power consumption, high costs, and high hardware complexity. To address such issues,
one possible solution that has to be tweaked is to minimize the number of PSs and RFs or reduce their
power consumption. This study proposes an HP sub-connected low-resolution bit PSs to address
these challenges while lowering overall power consumption and achieving EE. To significantly reduce
the RF chain in a massive MIMO system, HP is a suitable solution. This study further examined
adaptive cross-entropy (ACE), a machine learning-based optimization that optimizes the achievable
sum rate and energy efficiency in the Rician fading channel for HAP massive MIMO systems. ACE
randomly generates several candidate solutions according to the probability distribution (PD) of the
elements in HP. According to their sum rate, it adaptively weights these candidates’ HP and improves
the PD in HP systems by minimizing the cross-entropy. Furthermore, this work suggests energy
consumption analysis performance evaluation to unveil the fact that the proposed technique based
on a sub-connected low-bit PS architecture can achieve near-optimum EE and sum rates compared
with the previously reported methods.

Keywords: energy efficiency; hybrid precoding; massive MIMO; machine learning; adaptive cross-
entropy; Rician fading channel; HAP

1. Introduction

The capacity demand in fifth-generation (5G) wireless communication and beyond
is facing major challenges, particularly in terms of “last mile” transmission. Line-of-sight
(LOS) propagation paths are a bottleneck on the ground unless a significant number of base
stations (BS) are deployed, while satellite systems have capacity limitations. To effectively
provide high data rates, massive numbers of antennas, and consistent coverage, innovative
technologies are required [1,2]. The high-altitude platform (HAP) is an emerging solution,
operating at an amplitude of up to 20–40 km to provide communication facilities that can
achieve the best features in both terrestrial and satellite systems. Relative to the terrestrial
cellular base station (BS), the HAP has a wide coverage area and is more flexible and
non-polluting. Furthermore, when compared with satellite communication technologies, it
consumes far less energy and has low propagation, which means greater QoS for real-time
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users [3]. Massive MIMO is a technology used on HAPs that can improve energy efficiency
and data rates by deploying a massive number of antennas, allowing multiple users to be
served with the same time and frequency resources [4].

Massive MIMO technology allows high data rate transmissions by using the high
number of antennas on the HAPs. Moreover, the enormous number of antennas in an
array can provide sufficient gain by precoding, which can overcome the free space path
loss [5]. However, in conventional fully digital (CFD) MIMO systems, each antenna requires
a dedicated energy-intensive RF chain, which consumes a significant amount of energy
(approximately 250 mW per RF chain). The energy consumption of CFD systems is too high
due to the massive number of RF chains [6]. This allows researchers to consider hybrid
(analog-to-digital) MIMO systems, which significantly reduce the number of RF chains by
switching some operations to an analog domain [7].

A fully digital precoding technique demands a precise radio frequency (RF) chain
consisting of a digital-to-analog converter (DAC), mixer, filter, and power amplifier for
each antenna. When a large number of transmitting antennas is employed in the massive
MIMO scenario, this results in prohibitively high hardware costs as well as significant
energy consumption [8]. To solve this issue, recently, finite-resolution PS schemes have
been developed. In this scheme, finite-resolution PSs are used directly instead of high-
resolution phase shifters. This can lower the energy consumption of a PS network without
loss of performance, but it still demands a large number of PSs, each of which consumes a
significant amount of energy [9].The other scheme is to use the switch network instead of
the PS network [10]. This can considerably minimize hardware costs and energy utilization,
but it has a noticeable performance loss.

Few studies have specifically addressed the shortcomings of power consumption, SE,
and achievable sum rates for HAP networks, in contrast to the extensive research that has
been undertaken in the spectrum sharing and theoretical analysis of HAP [11–14].

Due to the enormous amount of power consumed by base stations (BSs), energy
efficiency (EE) has been viewed as an essential criterion for the development of future
communication networks, both from an economic and environmental point of view. In this
connection, the authors in [15] jointly optimized the transmission beamforming and covari-
ance matrix in a MISO system in order to maximize the equivalent efficiency (EE). The au-
thors of [16,17] addressed the EE maximization problem for terrestrial-aerial networks and
proposed two array signal-processing approaches based on Dinkelbach’s transformation in
order to achieve suboptimal solutions. However, fully connected HP requires an extremely
large number of active antennas and RF chains, which causes the existing techniques, such
as those in [16,18,19], to have an extremely high level of hardware power consumption,
which in turn results in a low level of system EE. In [20], the authors established beam-
forming techniques aimed at the mmWave HAP system. These algorithms were built
for planar arrays that had thousands of antenna elements. The work in [21] presents HP
for HAP massive MIMO systems in order to obtain the RF and the baseband precoder
with limited RF chains. The authors applied duality to exploit the relation between the
RF precoder and the statistical CSI, which is complicated to tackle. In [22], the authors
proposed two stages of outer precoding design with the assumption of a zero-precoding
(ZF) inner pre-beamformer and iterative algorithm to achieve the sum rate result for HAP.
The authors of [23] used NOMA-based HAP communications and multiple antennas to
satisfy the connectivity, dependability, and high data rate needs of 5G-and-beyond applica-
tions. Furthermore, a user selection and correlation-based user corresponding method for a
NOMA-based multi-user HAPS system were proposed. In [24,25], the authors designed
an outer beamformer to reduce the dimensional statistical eigen mode of the users and
user grouping algorithm for HAP massive MIMO systems. The work in [26,27] proposed
HAP to perform the beamforming technique. For this, the authors realized the interference
alignment method for achieving the maximum sum rate of HAPs, respectively. In [28], the
authors realized a decreased channel state information (CSI) overhead in a sub-connected
RF precoding scheme, but this is incompatible with HAP massive MIMO systems. In [29],
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the initial RF precoder selection from a discrete codebook and the proposed algorithm
iteration were utilized together to develop the RF precoder, avoiding an exhaustive search
while maintaining a high level of complexity. The published literature did not focus on
reducing the complexity of the architecture or energy consumption of the system, while in
our proposed machine learning technique, we use limited RF chains and sub-connected HP
with low-bit PSs for HAP massive MIMO systems, which reduces the power consumption
and complexity and improves the overall sum rate, energy, and spectral efficiency (SE).

In the proposed work, we examined energy-efficient HP sub-connected one- and
two-bit PSs for HAP massive MIMO systems, and our main contributions are the following:

• We investigate the energy consumption analysis to unveil the fact that the HPs based
on a sub-connected low-bit PS architecture is substantially lower than that consumed
by HR-PS-based HP. Moreover, utilizing one-bit PSs results in a slight and constant
array gain loss.

• We propose 1- and 2-bit sub-connected PSs for an HAP massive MIMO system with
significantly reduced hardware cost, complexity, and energy consumption in the
Rician fading channel. The sub-connected HP design is expected to be easier to deploy
and be more energy efficient. The sub-connected architecture is more practicable for
antenna deployment due to its lower cost and lower hardware complexity.

• We propose ACE-based optimization with low-bit PSs to optimize the achievable sum
rate, EE, and SE. First, our scheme randomly generates several candidate elements
according to the probability distribution (PD) in HP, and then it weights them ac-
cording to their sum rates, thereby improving the HP elements’ PD by decreasing
the cross-entropy. By repeating this process, we ultimately generate an HP with a
sufficiently high probability close to the optimized level.

• We further examine the simulation results to show the fact that the HPs based on a
sub-connected low-bit PS architecture can achieve near-optimum EE and sum rates
compared with the traditional schemes.

The rest of this paper is arranged accordingly. Section 2 is about the energy consump-
tion analysis of different hybrid precoding schemes. Section 3 is a brief description of the
channel and system model, presenting ideas and steps for algorithms, ACE-based HPs
with M-bit PSs, and complexity analysis. The experiment and discussion are in Section 4.
The conclusions are in Section 5.

Notations: Lowercase and boldface x is used to denote the vector, and uppercase and
boldface X is used to denote the matrix, while letters without boldface denote scalars.
(.)T denotes a transpose, (.)−1 denotes an inversion, |.| denotes an absolute operator, (.)H

denotes a conjugate transpose, ‖.‖F denotes the Frobenius norm, (.)+ denotes a pseudo
inversion, ⊗ denotes the Kronecker product, and IN denotes an N × N identity matrix.

2. Energy Consumption Analysis of Different Hybrid Precoding Schemes

Here, we discuss a fully connected, high-resolution phase shifter (e.g., 4 bits) hybrid
precoding-based architecture in which every RF chain is connected to each antenna through
the network. The high-resolution (HR) PS-based hybrid precoding energy consumption
can be represented as follows:

PHR−PSs = P + NRFPRF + NNRFPHR−PS + PB (1)

In Equation (1), P represents the total transmission power, PRF is the power consumed
by the RF chain, PHR−PS depicts the energy consumed by the PSs, PB represents the
baseband power consumption, N shows the number of PSs, and NRF represents the number
of RF chains. The energy consumed by the HR-PSs is (PHR−PS = 40 mW) for the 4-bit
phase shifters. The HR-PS-based HP architecture can attain the achievable sum-rate, but it
requires a large number of PSs. As stated in [30], the power consumption by HR-PSs is
quite high. Thus, to overcome this problem, a switch-based HP was introduced in [7],
where instead of HR-PSs, switches were used, which could also decrease the hardware cost.
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Nevertheless, this switch-based solution cannot actually obtain the array gain of mmWave
massive MIMO systems. We describe the system in [7] as follows:

PSw−PSs = P + NRFPRF + NRFPSw + PB (2)

where PSw is the power consumed by the switches, which is much lower than the HR-PSs
(e.g., PSw = 5 mW) [31]. However, this design cannot achieve the array gain since only the
NRF antennas are active simultaneously, resulting in sum rate performance degradation.

In a sub-connected one-bit PS-based HP architecture, in which each RF chain is
attached to the subantennas of an array with N/NRF, the power consumption is much
lower than in a fully connected architecture [7], and it provides the better trade-off between
the two precoding schemes. The energy consumed by a sub-connected HP architecture can
be express as

PSubC−PSs = P + NRFPRF + NPSubC + PB (3)

It is noted that energy consumed by an HP architecture sub-connected with one or
two bits is low (PSubC = 5 mW). Therefore, compared with HR-PSs, the sub-connected
PS energy consumption is too low. Aside from that, the proposed sub-connected PS HP
architecture is able to use all antennas to achieve the optimal array gain compared with
SW-based HP [32]. Compared with the fullly connected HP architecture, the sub connected
HP architecture with one- or two-bit PSs has a significantly lower number of phase shifters
from Nt × NRF

t to Nt, which will have more benefits and will excite the PSs. It can save
energy and compensate the insertion loss of PSs. In addition, it also has less complexity
due to its simplicity in its architecture and configurations.

3. Channel and System Model

We adopted a multi-user HAP massive MIMO system where an HAP was equipped
with a uniform planner array (UPA) with C number of antennas in each column, while
the number of antennas in each row was N = C× A, as shown in Figure 1, and each RF
chain was connected to a subset of the antenna serving K single-antenna users, as shown in
Figure 2. The received signal at the kth user can be expressed as follows:

y = HFAFDs + n (4)

where s denotes the transmission signal of a size K × 1, while FA is of a size N × NRF
and FD is of a size NRF × K for the analog and digital precoder, respectively. In addi-
tion, n represents the additive white Gaussian noise vector with a distribution CN (0, IK).
H = [h1,h2, . . . hk] denotes the overall downlink channel matrix of a size K × N, where
hk ∈ CN×1 is the channel vector for the kth user, which can be expressed as

hK =
√

α

(√
Kr,k

Kr,k + 1
hLK +

√
Kr,k

Kr,k + 1
hNLK

)
(5)

where Kr represents the Rician factor, α = (4πrk/λ)−2 is the large scaling factor for the kth
user, rk represents the distance between the HAP and the kth user, as shown in Figure 1, and
λ is the carrier wavelength, while hLK and hNLK are the line-of-sight (LOS) components
and non-line-of-sight (NLOS) components, respectively, which can be expressed as [33]

hLK = a(θk, φk)⊗ x(θk, φk) (6)

hNLK =
√

Ŵk[w1k, w2k, . . . wNk]
T (7)

where a(θk, φk) = [1, e(j2πdh),... exp(j2π(N−1)dh)]T , x(θk, φ) = [1, e(j2πdv),... exp(j2π(N−1)dv)]T ,
the angles θk ∈ [−π, π] and φk ∈ [0, π/2] are the angles of departure (AoDs), d is the
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distance between two adjacent antenna elements, and Ŵk ∈ CN×N is the correlation matrix
of the user K, which can be represented as follows:

[Ŵk]a,b =

π/2∫
0

π∫
−π

f (θ) f (φ)e(j 2π
λ (d1−d2))dθdφ (8)

where d2 = (a− b)dd cos(φ) cos(θ), d1 = (a− b)dv cos(φ) sin(θ), f (φ) = e(−
√

2|φ−φ0|/σ), in
which σ and φ0 are the mean AoDs, f (θ) = eκ cos(θ−µ)/2π I0(κ), I0 is the zero-order Bessel
function of the first kind, µ = (−π, π) is the mean angle of departure (AoD) of user K, and
κ is the angular spread.

Figure 1. HAP massive MIMO system with user K.

Figure 2. Sub-connected hybrid precoding architecture.

Furthermore, we need to explain the hardware constraints imposed by the proposed
low-bit-based sub-connected HP, which differ from those imposed by traditional architec-
tures. The first constraint is that the analog precoder FA must be a block diagonal matrix
rather than a full matrix:

FA =

 f1 . . . 0
...

. . .
...

0 · · · fn

 (9)
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where the analog weighting vector for the nth sub antenna array is fn with a size N × 1.
These components have the same amplitude but different phases. All N nonzero elements
FA should belong to

1√
N
[−1,+1] (10)

Our main objective is to develop an efficient hybrid precoders Fopt
A and Fopt

D to maxi-
mize the sum rate R, which can be written as(

Fopt
A , {Fopt

D

)
= arg max R(sum)

Fopt
A , Fopt

D
s.t. Fopt

A ∈ <

M

∑
m=1

∥∥∥Fopt
A , Fopt

D

∥∥∥2

F
= ρ (11)

where < represents the set of all possible analog precoders that satisfy the constrains in
Equations (9) and (10). The sum rate can be expressed as

Rk =
K

∑
k=1

log2(1 + ηk) (12)

where ηk represents the signal-to-interference-plus-noise ratio (SINR) for the kth user,
which can be expressed as follows:

ηk =

∣∣hH
k FAbk

D
∣∣2

K
∑

k̄ 6=k

∣∣∣hH
k FAbk̄

D

∣∣∣2 + Kσ2
(13)

Here, σ2 represents the noise power, and bk
D[m] represents the kth column of FD. It

is worth mentioning that the constraints in Equations (9) and (10) on the analog precoder
FA are non-convex. This makes Equation (12) incredibly difficult to solve. The number of
possible FA values is finite, since all nonzero elements belong to the constraint in Equation
(10). In order to tackle this challenging problem, we propose a machine learning (ML)
adaptive cross-entropy optimization (ACE) with a low-bit, PS-based HP scheme.

3.1. Proposed ACE-Based Hybrid Precoding

To overcome the non-convex problem mentioned in Equations (9) and (10), we first
decouple the joint design of the analog and digital precoders. As all of the analog pre-
coder’s N nonzero elements belong to Equation (10), the number of possibilities FA is
finite. As a result, we can consider the problem in Equation (11) to be a non-coherent
combining problem. We can select an FA candidate first and compute the optimal FD with
an efficient channel matrix HFA without non-convex constraints. After searching for all
possible FA values, we can find the optimum analog precoder Fopt

A and digital precoder
Fopt

D . Unfortunately, such an exhaustive search involves filtering through all possible 2N

combinations, requiring excessively high complexity as the number of antennas N required
is typically higher in massive MIMO systems, which in this case is N = 64, 264 = 1.8× 1019.
To tackle this challenging problem, we proposed an ACE algorithm with a one- or two-bit
PS-based HP scheme, which is the advanced version of the CE algorithm [34]. In the CE
algorithm, all elite contributions are treated as equal. Logically, when updating the PD,
the elite contributions with better values should be more important. Therefore, if we can
weight the elites as per their objective values, then we can expect better results. In ACE,
multiple candidates’ HP schemes are randomly generated based on the PD of the element
in the HP. Then, they are weighted according to their sum rates for the calculated candidate
HP. To enhance the probability distribution (PD) of an element FA, we reduce the CE
between the two PDs.
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We formulated the non-zero elements in FA as an N × 1 vector at the beginning,

which can be expressed as f =
[
(fA

1 )
T

, (fA
2 )

T
, . . . (fA

NA)
T]T

, and the probability function

q = [q1, q2, q3, . . . qN ]
T as the N× 1 vector. The probability is denoted by 0 ≤ qn ≤ 1, where

fn = 1√
N

fn is the nth element of f. First, we initialized q(0) as q(0) = 1
2 × 1N×1 after setting

the initial values of the parameters, namely the parameter for the ACE-based HP with
sub-connected low-bit PSs. The updated method has the steps presented below.

In step 3, we produce the Z candidate analog precoder {Fz
A}Z

z=1, which depends
upon the probability distribution function Ξ(<; q(i)), and in step 4, we calculate the digital
precoding FD based on the efficient channel (Hz

eq)
H = H{Fopt

A }. We employed a zero-
forcing digital precoding scheme with low complexity and near-optimal performance in
this paper, which can be expressed as

Gz = (Hz
eq)

H
(

Hz
eq(H

z
eq)

H
)−1

(14)

Fz
D = βzGz (15)

where βz =
√

ρ

‖Fz
AGz‖F

represents the power-normalized factor.

In step 5, we calculate the achievable sum rate by putting Fz
A and Fz

D in Equation (12).
The achievable sum rates will be sorted in descending order in step 6. In step 7, the elite
Zelite values can be obtained with the highest sum rate. These candidates are utilized to
update the probability distribution qi+1 and minimize the CE, which is equivalent to [34]

qi+1 = arg max
1
Z

Zelite

∑
z=1

ln Ξ
(
<[z]

A q(i)
)

(16)

where Ξ
(
<[z]

A q(i)
)

is the probability to output Fz
A as stated in Equation (16). All elites have

the same effects, and this leads to decreased performance. In order to fix this problem, we
propose adaptively weighting the elites depending upon their sum rates. Thus, an auxiliary
parameter U, which denotes the average of all sum rates, is introduced.

U =
1

Zelite
∑Zelite

z=1 R(F[z]
A ) (17)

The weight wz of the elite Fz
A can be calculated in step 8 based on {w}Zelite

z=1 , and
Equation (15) can be modified to become

q(i+1) = arg max
1
Z

Zelite

∑
z=1

wz ln Ξ
(
<[z]

A q(i)
)

(18)

where Ξ
(
<[z]

A q(i)
)

is the probability to calculate the Fz
A. Notice that Ξ

(
<[z]

A q(i)
)

=

Ξ
(

f[z]; q(i)
)

, the nth element f (z)n of f[z], is the Bernoulli random variable, where f (z)n = 1√
N

has a probability q(i)n , and similarly, f (z)n = − 1√
N

has a probability 1− q(i)n . Thus, we have

Ξ
(
<[z]

A q(i)
)
=

N

∏
n
(q(i)n )

1
2 (1+

√
N f (z)n )(1− q(i)n )

1
2 (1+

√
N f (z)n ) (19)

By putting Equation (19) into Equation (18), the first-order derivatives based on q(i)n
from Equation (18) is given as follows:

1
Z

Z

∑
z=1

wz

(
1 +
√

N f (z)n

2qi
n

− 1 +
√

N f (z)n

2(1− qi
n)

)
(20)

For Equation (20), when set to zero, 1− q(i)n is updated in step 9 as follows:
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q(i+1)
n =

Zelite
∑

z=0
wz

(√
N f (z)n + 1

)
2

Zelite
∑

z=1
wz

(21)

We can further simplify Equation (21) to avoid the local optimum:

q(i+1)
n = Ωi+1 × q(i+1)

n + (1−Ωi+1)× q(i)n (22)

where Ωi+1 in iteration (i + 1) is a smooth size for the step. We used steps 3–10 for the pre-
defined iteration. Finally, the optimal analog Fopt

A and digital precoding Fopt
D are obtained.

3.2. ACE-Based Hybrid Precoding with M-Bit PS

We present a more general case (i.e., m-bit PSs) for the proposed ACE-based HP.
We first generated the parametric sample distribution, which produced the applicant
alternatives for the next iterations. The simple method of producing a random sample
b̂ = {b̂}N

n=1 is to draw independently from {b̂1, b̂2, . . . b̂N}. Here, each sample belongs to a

discrete distribution {q(i)
m,n}, and the mth quantized process of a set M is chosen to be b̂n.

The elite candidates should then change the potential to minimize the CE:

q(i+1)
m,n = arg max

q(i)

1
Z

wz

Zelite

∑
z=1

ln Ξ
(
<[z]

A q(i)
m,n

)
(23)

where Ξ
(
<[z]

A q(i)
m,n

)
is given by

Ξ
(
<[z]

A q(i)
m,n

)
=

N

∏
n

M

∑
m=1

wz(q
(i)
m,n)1{â(z)∈<m,n} (24)

The indicator function is 1{.} if the statement is valid (i.e., = 1); otherwise, 1{.} = 0.

In addition, <m,n = b̂ ∈ MN : b̂n = 2πm
|M| , in which M =

{
2πm
2M (z = 1, . . . , 2M)

}
refers

to the set containing all possible analog precoders which satisfy the given constraint in
Equation (9). Here, it is given that a single PS can be allocated to only one quantized
process. The sum of every constrained probability is equal to one, and we implement the
Lagrange multiplier to fulfill the constraints:

q(i+1)
m,n = arg max

q(i)

1
Z

wz

Zelite

∑
z=1

ln Ξ
(
<[z]

A q(i)
m,n

)
+

N

∑
n=1

Ln(
M

∑
m=1

q(i)
m,n − 1) (25)

When we take the first derivative of Equation (25) with respect to the probability q(i)
m,n

and then set the outcome to zero, we obtain the following result:

1
Z

Zelite

∑
z=1

1{â(z) ∈ <m,n}+ Lnq(i)
m,n = 0 (26)

Finally, we add Equation (26) for m = 1, 2, . . . , M, and we modify the probability as
given below:

q(i+1)
m,n =

Zelite
∑

z=1
wz{â(z) ∈ <m,n

∑Zelite
z=1 wz

(27)

3.3. Complexity Analysis

According to Algorithm 1, the difficulty of the proposed ACE-based HP sub-connected
low-resolution bit PS scheme initiates steps 4, 5, and 9. As in step 4, the effective channel
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matrices
{

HZ
eq

}Z

z=1
for each candidate solution Z, as well as the related digital precoder{

Fz
D
}Z

z=1, must be calculated as in Equations (15) and (16). As a result, this component
has a complexity of Z

(
NZK2). In step 5, the sum rate for each candidate solution is

computed. Here, we employ the traditional ZF precoder, which reduces the SINR of each
user for each candidate to γz = (βz/σ)2. According to Equation (22), step 9 is the updating
step of q(i+1)

n , which composes the complexity of Z(NZelite). After I iterations, the overall
computational cost of the proposed ACE-based HP sub-connected low-resolution bit system
PS is Z

(
ZINK2). Meanwhile, I and Z are not essentially so big. This enables the complexity

of the ACE-based HP sub-connected low-resolution bit PS to be reasonable and comparable
to some current methods.

Algorithm 1 ACE-based hybrid precoding with sub-connected phase shifters (PSs)
Input:
Rician Channel-Matrix H, Iterations I, Candidates Z, Elites ZElite, Smoothing Step size

Ω
Output:
Analog Precoder Fopt

A , Digital Precoder Fopt
D

1. initialization i = 0,p = 1/2× 1N×1
2. for iteration = 1, 2, . . .
3. Generate Z candidates randomly as {Fopt

A }Z
z=1 based on Ξ(<; q(i))

4. Calculate Z digital precoder {Fopt
D }S

z=1 based on effective channel by (15)
5. Calculate the sum-rate R{Fopt

A }Z
z=1 by (12)

6. Sorting R{Fopt
A }Z

z=1 in descending order as R(F[1]
A ≥ F[2]

A ≥, . . . , F[Z]
A )

7. Select elite as F[1]
A , F[2]

A , . . . , F[ZElite ]
A

8. Calculate weight for each elite F[S]
A according to their sum-rate

9. Update the probability q(i+1) according to weight and {Fopt[z]
A }ZElite

z=1
10. end for

4. Experiment and Discussion

In this section, we will discuss the effectiveness of the ACE-based optimization that
was proposed with low-bit PSs in terms of the achievable sum rate, EE, and SE. The fol-
lowing are the primary simulation parameters. We used the assumption that the users
were dispersed in a 20-km radius under the HAP circle, and the height of the HAP was
20 km. It operated at a frequency of 2.4 gigahertz. The number of transmitting antennas
C = A = 10, the transmitting power P was set to 20 dB, and we set the bandwidth to
10 MHz. The Rician factor Kr =10, and the transmitting antenna array was a UPA with
antenna spacing d = 2λ. The number of RF chains was four. Furthermore, the number of
candidate solutions, the number of elite candidates, and the number of iterations were set
to Z = 200, Zelite = 40, and I = 20, respectively.

Figure 3 presents that the proposed ACE sub-connected low-bit PS-based HP obtained
a higher sum rate than the technique that is currently being used for HAP massive MIMO
systems. For the ACE-Algorithm 1, the values were the same as above. The zero-forcing
(ZF) precoding system is designed for use with the fully connected PS architecture, whereas
the hybrid precoding system for conventional analog selection (AS) is designed for the
switch-based architecture. When compared with CE, the ACE-based HP method has only
one more step, but this step has a minimally increased level of complexity. The proposed
ACE algorithm is, therefore, more effective. In Figure 3, we can see that the sum rate of the
proposed ACE-based low-bit PSs was significantly higher than that of traditional AS-based
HP and CE-based HP, and the difference between the ZF precoding and ACE-based HP
remained constant. Nevertheless, the gap can be closed if the PSs continue to increase in
terms of their resolution.
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Figure 3. Sum-rate of ACE-based method with sub-connected PSs when C = A = 10 and users and RF
chains are 4.

Figure 4 compares the sum rates that can be achieved by the proposed ACE-based
HP with sub-connected low-bit PSs to the sum rates that can be achieved by the existing
solutions for the HAP massive MIMO system. We used 8 for the number of RF chains and
8 for the number of users K, while the number of antennas C = A = 12. The remaining
parameters are the same ones that were discussed above. It is evident from this that the
proposed solution with sub-connected low-bit PSs was capable of achieving a significantly
higher sum rate than the conventional HP, CEO-based HP with one-bit PSs, and fully
connected ZF-based HP gap. In addition, a noticeable performance gap may be seen
between the proposed solutions, which used 1-bit and 2-bit PSs, and the HR-based full-
connected HP, which used 4-bit PSs. However, this gap could be narrowed by increasing
the resolution of the PSs.

Figure 4. Sum rates of ACE-based method with sub-connected PSs when C = A = 12 and user count
and RF chain are 8.
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Figure 5 presents the energy efficiency attained by the proposed ACE-based HP with
sub-connected PSs and some existing HP schemes mentioned above. The number of RF
chains was equal to the user count K, and it varied from 1 to 32, while the other parameters
were similar to those in Figure 2. In accordance with [35], the energy efficiency was
calculated as the ratio of the sum rate to the total power consumption:

EE =
Rsum

ptotal
(bps/Hz/W) (28)

Figure 5. Energy efficiency of ACE-based method with sub-connected PSs (when C = A = 10), where
SNR = 30.

The practical values for power consumption are as follows. The energy consumed
by the sub-connected architecture where p = 0.03 W for the baseband power consumption
is PB = 0.2 W, the power consumed by the RF chain PRF = 0.3 W, the one-bit PS power
consumption Pps = 0.005 W, and the typical valves of PS power consumption are 0.015 W,
0.045 W, 0.06 W, and 0.078 W for PSs of 3, 4, 5, and 6 bits, respectively [36,37]. Our proposed
ACE-based HP scheme with sub-connected PSs attained a high value of energy efficiency
when compared with other existing HPs, as mention above.

Figure 6 presents that the proposed ACE-based algorithm with low-bit PSs obtained
improved SE in comparison with other sub-connected schemes, especially when the number
of users was not extremely large. The number of users K could range from 1 to 32, and the
RF chains had the same configuration as the users. The bandwidth was fixed at 10 MHz,
and the other parameters were comparable to those shown in Figure 4. In addition, it can be
seen that when K equaled eight, the proposed ACE with two-bit PSs had a greater spectral
efficiency than other sub-connected schemes, with the exception of the ZF precoding fully
connected method. The reason for this was that when the number of users and RF chains
increased, the number of PSs also increased, leading to a sharp rise in the total number of
PSs in systems that were PS-based. In practice, the utilization of PSs with high resolutions
that need a significant amount of energy is not appropriate. The gap between the proposed
algorithm and the ZF-based HP is constant behavior. This can be reduced by increasing the
resolution of the PSs.
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Figure 6. Spectral efficiency of ACE-based method with sub-connected PSs (when C = A = 10 and
SNR = 30).

Finally, the impact of imperfect CSI was noticed in the proposed ACE-based HP, where
Ĥ represents the imperfect CSI as in [38]:

Ĥ = εH +
√

1− ε2E (29)

where ε ∈ [0, 1] represents the CSI accuracy, H is the original channel matrix, and E is the
error matrix whose elements are distributed according to an independent and identically
distributed distribution CN (0, 1). Figure 7 depicts the ACE-based HP sum rates for various
CSI scenarios when A = C = 10 and NRF and K = 4. We considered a number of flawed
CSI cases with varying values in addition to a perfect CSI scenario. CSI accuracy is not
a factor in the proposed ACE-based HP with one-bit PSs. The proposed scheme’s sum
rate, which was reached with a value of ε = 0.8, was quite close to the perfect CSI situation.
Furthermore, even when the CSI accuracy was extremely low, as when varepsilon = 0.4,
the ACE-based proposal could still achieve 80 percent of the sum rate.

Figure 7. ACE-based HP with different CSI conditions (when C = A = 10 and users and RF chain = 4).
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5. Conclusions

In this paper, we presented an EE design for HPs with a sub-connected low-bit PS
HAP massive MIMO system. Initially, we focused on how to reduce power consumption
without sacrificing performance. This energy utilization study showed that low-bit PS-
based hybrid precoding consumes very little energy, and it also revealed that the array
gain loss that is sustained by low-bit PSs is constrained and constant. Afterward, a low-
complexity method that was based on ACE-based optimization with low-bit phase shifters
was proposed in order to handle the sum rate maximization problem. The outcome of our
simulation demonstrates that the proposed algorithm obtained a sufficiently high value
for sum rate performance metrics as well as a higher value for energy efficiency compared
with other algorithms.
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