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Abstract: While research in the field of automotive systems inclined in the past years towards
technologies such as Vehicle-to-Everything (V2X) or Connected and Automated Vehicle (CAV), the
underlying system security still plays a crucial role in assuring trust and system safety. The work at
hand tackles the issue of automotive system security by designing a multi-service security system
specially tailored for in-vehicle networks. The proposed trusted security services leverage Trusted
Platform Module (TPM) to store secrets and manage and exchange cryptographic keys. To showcase
how security services can be implemented in a in-vehicle network, a Reference TestBed (RTB) was
developed. In the RTB, encryption and authentication keys are periodically exchanged, data is
sent authenticated, the network is monitored by a Stateful Firewall and Intrusion Detection System
(SF/IDS), and security events are logged and reported. A formal individual and multi-protocol
analysis was conducted to demonstrated the feasibility of the proposed services from a theoretical
point of view. Two distinct scenarios were considered to present the workflow and interaction between
the proposed services. Lastly, performance measurements on the reference hardware are provided.

Keywords: automotive; controller area network; security services; trusted platform module; testbed

1. Introduction

Current research in the automotive field leans towards interconnected and cooperative
vehicles, with Vehicle-to-Everything (V2X) [1] being the new hot-topic, only to be accompa-
nied by Connected and Automated Vehicles (CAVs) [2]. From time to time, we have to take
a step back and reconsider the foundation on top of which these promising technologies are
built. The sub-systems and communication protocols present in our everyday vehicles were
designed with a clear scope and purpose, with the focus not on security features, but rather
on mission-critical aspects, such as real-time message transmission, network reliability, and
tolerance to errors. Modern vehicles incorporate multiple communication systems to satisfy
the wide variety of functionalities required by the vehicles and their users. A frequently
used protocol for frame exchange between Electronic Control Units (ECUs), sensors, and
sub-networks, is the Controller Area Network (CAN) [3]. Vehicles contain communication
protocols for computationally restricted sensors (e.g, SENT [4]), infotainment systems (e.g.,
MOST [5]), or for communication with the surrounding infrastructure (e.g., IEEE 802.11p [6]).

Like any other networking systems, the security of vehicle networks can be compro-
mised. ECUs responsible for the automation and control of vital vehicle functionalities
can be re-flashed to execute malicious firmware [7]. Infotainment systems can be compro-
mised, and as a consequence malicious actors become capable of controlling the vehicle
itself [8]. Similarly, the mileage of odometers can be tampered with [9], and sensors can be
manipulated to enable and disable after-treatment systems [10]. Although these statements
paint a grim scene, academic researchers, standardization units, and the industry have
joined forces to overcome the mentioned issues. Academic efforts bring forward new
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and improved security solutions every year (e.g., data authentication, key distribution
protocols) [11], sensor data privacy preserving techniques [12], and advanced anomaly
detection [10]. Industry and standardization units have established security standards and
recommendations for manufacturers (e.g, ISO 21434, UNECE R155, and R156). Further rec-
ommendations were brought up by Automotive Open System Architecture (AUTOSAR)’s
Secure Onboard Communication (SecOC) [13] standard, or by the Trusted Computing
Group (TCG)’s guidelines to Trusted Platform Module (TPM) [14] usage in automotive
vehicles [15]. Security problems are born when a system is not designed with security in
mind from the beginning, and when they do not follow already-known best practices in
protocol design [16]. To pave the roadmap of academic security research integration into
real automotive environments, we identified several concerns present in our past works
and the related literature:

i While proposing novel and improved security services may represent a significant
contribution to the literature, in the real world, most systems are composed of multi-
ple protocols concurrently running over the same communication medium, which
can raise several security concerns if not designed and implemented properly [17].

ii In the most frequently used communication protocol for vehicle networks, the CAN
protocol, there is a gap in terms of identifying the source and destination of a given
message due to its bus-oriented communication pattern. This aspect becomes a severe
concern when security comes into discussion. Preferably, each actor, (e.g., the security
service) should be capable of identifying message sources and corresponding services.

iii A distinct aspect of vehicular networks is that typically, they are not attacked from
outside (e.g., via the Internet), but from inside, by actors who have direct physical
access to the system with or without the owner’s consent (e.g., engine tuning,
installation of custom firmware and devices). Consequently, the problem of where
to store cryptographic credentials becomes critical.

iv Experimentation represents a key aspect in validating the theoretical protocol design
after a proper formal verification. For this reason, building and reproducing a
reference architecture for testing purposes is a must.

The paper at hand addresses each of the aforementioned concerns with three distinct
contributions as follows:

• Contribution I: Several issues were identified in the previously proposed security
services [18,19] regarding protocol and message identification, authentication, alive-
ness, and agreement between protocol participants. We address those problems by
improving the protocols in terms of security design and best practices [16]. To better
understand the security implications, a threat model and evaluation is presented.
Furthermore, a three-step formal security analysis was conducted comprising both
individual and multi-service analysis.

• Contribution II: An approach is formulated to describe how TPMs can be used in
automotive networks. This covers multi-service identification, secure key storage, key
distribution, and log attestation. Performance measurements of TPM commands are
offered on the considered hardware.

• Contribution III: A system of trusted security services is proposed designed for CAN.
An affordable and reproducible Reference TestBed (RTB) was developed to showcase
the implementation of automotive security services. In the RTB, data is sent authenti-
cated using the Mixed Data Authentication for CAN (MixCAN) protocol [18], long-
and short-term cryptographic keys are periodically exchanged [19], the network traffic
is monitored via a Stateful Firewall (SF) and an Intrusion Detection System (IDS) [20],
and finally, security events are logged and published to trusted services.

The rest of the paper continues with the related work and a background on vehicle
networks and TPM functionalities in Section 2. In Section 3, the improvements considered
when designing the security protocols are outlined. In Section 4, our proposed system
and security services are described. Following that, the security analysis in Section 5 is
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conducted. Subsequently, the reference testbed is described in Section 6. The paper offers
a series of discussions in Section 7, and plans for future work in Section 8. The paper
concludes in Section 9.

2. Background and Related Work
2.1. Vehicle Networks

Vehicle networks incorporate several different communication protocols. One of the
most commonly used is the Controller Area Network (CAN) protocol, initially developed
by Robert Bosch GmbH, and later standardized by the International Standardization
Organization [3]. CAN is a bus-oriented protocol that allows different control units and
sensors to exchange frames under a reliable, error-prone medium. Along the CAN protocol,
a vehicle network may contain communication protocols such as Local Interconnected
Network (LIN) for offering different services to the vehicle passengers (e.g., door/seat
control, climate system), Single Edge Nibble Transmission (SENT) for resource-restricted
digital sensors, or Media-oriented System Transport (MOST) for media-oriented control
units and services.

There are several standardized versions of the CAN protocol, such as the Controller
Area Network with Flexible Data-rate (CAN-FD) [21], developed by Robert Bosch GmbH
to improve the original limitations in terms of bandwidth, transfer rates, or the amount
of data that can be transmitted in one frame. Other high-level protocols built over CAN
are SAE J1939 for in-vehicle communication of heavy-duty vehicles, ISO-TP and UDS
for automotive diagnostics, and CANopen for rail vehicles. While CAN allows frame
recipients to acknowledge and detect errors on the frames received, the standard is not
concerned with secure communication. For this, standardization units such as AUTOSAR
are responsible for building specific guidelines.

The article focuses on CAN systems. In CAN, a frame is broadcast over a common
bus. A CAN frame is identified by a 11-bit identifier field, contains 8 bytes of data, and in
addition to other fields, leverages a 15-bit error correction checksum (e.g., a cyclic redun-
dancy check). In protocols such as CAN-FD, the data field is expanded with 64 bytes of
data. In other protocol variations (e.g., SAE J1939), functionalities such as frame addressing
are extended through a 29-bit identifier, and with an address-claiming procedure.

A simplified view of the mentioned protocols is shown in Figure 1. By analyzing the
communication between different ECUs, including the connectivity between the CAN network
to the gateway and to the Communication Control Unit (CCU), we propose a multi-service
security system implemented in a reference architecture that replicates a real CAN system.
Consequently, a system which was initially insecure was extended with the necessary security
services to achieve a higher level of resilience against internal and external threats.

Figure 1. Overview of the components and communication channels frequently found inside auto-
motive systems.
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2.2. Trusted Platform Module

Designed and developed by the Trusted Computing Group (TCG) [15], the Trusted Plat-
form Module (TPM) [14] standard represents a tamper-resistant cryptographic co-processor,
capable of executing cryptographic operations securely and separately from the main
processing unit. While the initial development of the TPM standard targeted traditional
information systems, recently the TCG published an automotive related set of recommen-
dations that describes specially tailored profiles for automotive networks [15]. Additionally,
the TCG formed the Vehicle Services Working Group (https://trustedcomputinggroup.org/
work-groups/vehicle-services/, accessed on 16 January 2023), intending to address prob-
lems related to adopting trust-related standards (e.g., TPM) into automotive environments.

As such, the main scope of the TPM standard is to empower control units (e.g., ECUs
or CCUs), with standardized, state-of-the-art cryptographic algorithms and operations to
obtain a more secure and trusted environment. The functionalities of the TPM range from
secure key generation processes, using internal key hierarchies [22], to digital signature
computation and verification, hashing, encryption, or random number generation. In
addition to these fundamental features, TPMs offer additional secure key storage, and
Platform Configuration Register (PCR) banks targeted for remote attestation.

There are two main options for storing secret keys using the TPM. The first option
is to store the key persistently in the TPM’s non-volatile memory. The drawback here
is in the limited amount of non-volatile memory, and as well as key storage, the non-
volatile memory may need to serve different storage scopes (e.g., monotonic counters,
secret storage). The second option is more effective and uses a special key inside the TPM
called Storage Root Key (SRK). The SRK is rooted into the TPM, meaning that it is only
accessible internally and it can never leave the TPM. SRK is created when a TPM user takes
ownership of the TPM, and its main purpose is to protect other applications’ keys. Using
an operation called sealing, the private part of a pair of keys is encrypted with the SRK,
while the public part remains available. By doing so, the key becomes available only to the
TPM itself. Another type of special key offered by the TPM is the Endorsement Key (EK).
This is a permanent key embedded in the TPM by the Original Equipment Manufacturer
(OEM). The private portion remains stored in the TPM, while the public part is available to
the outside word. This key mainly serves as a proof to identify genuine TPMs.

Lastly, an additional security feature is the PCR banks [23], which ultimately are a set
of memory locations with unique properties. PCRs utilize a cryptographic hash function
to compute measurements that can be used to attest the integrity of log messages or other
forms of events. Basically, PCRs support a single operation that extends the current value of
the PCR with a hash value provided. In other words, it concatenates the current PCR value
with a new digest value, and stores the newly obtained result after hashing.

2.3. Related Work

The domain of security services in the context of automotive systems represents a
research field thoroughly addressed in the past year by individual works and review
papers. Martínez-Cruz et al. [24] offer a comprehensive survey of issues, threats, challenges,
and the most relevant solutions targeting the security of in-vehicle systems. Similarly,
Lokman et al. [25] cover the topic of IDS in automotive systems by providing a comparative
analysis of existing IDSs. More recent works, such as Rathore et al. [7], motivate further
the need for solid security mechanisms. The authors mention their concern regarding the
continuous evolution of vehicle networks (e.g., smart and interconnected vehicles), and the
threats that may arise as a consequence of this process.

To further address future security concerns in automotive systems, the work of Pham
and Xiong [26] explores security threats and existing solutions targeting CAV specifically.
Since automotive systems become more and more connected, the technology is pushed
towards inter-vehicle communication and persistent connection with external services,
therefore it is difficult to estimate what impact threats will have on system security [27].

https://trustedcomputinggroup.org/work-groups/vehicle-services/
https://trustedcomputinggroup.org/work-groups/vehicle-services/
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It is evident that a baseline of works such as [25,26,28] exist which can serve as a start-
ing point to build reliable, secure, and safe automotive systems. Since the threats, counter
measures, attacks vectors, and solutions are known [29], the pathway of securing vehicle
networks can be paved. The additional contribution that the work at hand provides relates
to the proposed trusted multi-service system. It intends to demonstrate how an in-vehicle
network can be secure by respecting security concerns identified in the related works.

3. Design Considerations

Previously proposed protocols [18,19] lacked security properties (such as aliveness,
secrecy, or agreement) which are addressed in the improved versions and in the security
analysis from Section 5. Consequently, the following design improvements are defined
below and later addressed in accordance to Ferguson et al. [16]. Further notations used can
be viewed in Table 1.

Table 1. Table of symbols leveraged in the formal protocol description.

Symbol Description

i Protocol initiator

r Protocol responder

a Protocol adversary/attacker

d Key distributor

m Protocol member

M Set of protocol members

p(i, r) Protocol between i and r

p(r), p(i) Protocol executed by i or r

k(i, r) Symmetric short-term key between i and r

K(i, r) Symmetric long-term key between i and r

pk(i) Public key of i

sk(i) Secret key of i

n Freshness nonce

pid Protocol identifier

kid Key identifier

mid Message identifier

pmid Private message identifier

mc Monotonic counter

{} Encryption/sealing

‖ Concatenation

{}k(i,r) Symmetric encryption with k(i, r)

{}pk(i) Asymmetric encryption with public key pk(i)

{}sk(i) Asymmetric encryption/digital signature with private key sk(i)

ptype Protocol type (LTK or STK)

fr, fs Frames received and sent

Eb f (m) Encrypted bloom filter function over message m

3.1. Service Identity

TPMs offer a convenient mechanism named sealing, through which a key can be linked
to a specific TPM. The private part becomes protected by the TPM and only usable within the
TPM, while the public part remains available and can be shared with other trusted parties.
This process is beneficial for multi-protocol systems, since it allows a system member (e.g.,
service) to identify a specific service being executed with a specific TPM. This further implies
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that the service messages originate from a trusted agent (e.g., service). In other words, by
having a Service Identity (SI), multiple services of the same kind can be executed on a single
piece of equipment. Consequently, each service can be uniquely identified and associated
with the equipment and TPM. This process is outlined in the system bootstrapping process.

Following this rational, the definition below is given:

Definition 1. A Service Identity (SI) represents the property obtained by a service as an outcome of
linking its cryptographic key to a TPM. Consequently, the SI allows service identification at service
and hardware level.

3.2. Identification, Numbering, and Freshness

A crucial aspect that must be taken into consideration while designing security pro-
tocols is clear message identification and freshness. In CAN networks, each frame has an
associated predefined identifier field. This identification mechanism is only meant to refer
to the message itself, not to the data it contains, nor to the message source (e.g., service).
In addition to this, each protocol proposed in the current work leverages three additional
identification and freshness terms: Protocol Identifier (PID), Message Identifier (MID), and
Private Message Number (PMN).

Definition 2. A Protocol Identifier (PID) represents a constant value across the system, meant to
identify the protocol and the protocol version executed by a service.

PIDs are an essential factor in multi-protocol environments. From a security perspec-
tive, each PIDs pid is not secret, and is distributed without preserving its confidentiality.
Consequently, services should ensure only its integrity. Depending on the protocol imple-
mentation, the pid can be sent once when the protocol is initiated, or with every message.

Definition 3. A Message Identifier (MID) represents a monotonic counter value used to identify,
count, and re-assemble messages in a protocol.

The identifier mid is meant to help in message counting, reconstructions, and error detec-
tion. Similarly, this is a publicly transmitted term for which only the integrity is maintained.

Definition 4. A Private Message Number (PMN) is the secret equivalent of MID. A PMN pmid
is meant to identify messages, and serves as an additional source of freshness that hides information
about a nonce or freshness monotonic counter mc.

In automotive systems, message freshness can be ensured in several manners, ranging
from monotonic counters and timestamps to lifetime freshness values. The proposed
protocol leverages pre-installed monotonic counters mc stored in the non-volatile memory
of the TPM. Additionally, a private message numbering pmid is introduced as a secondary
source of freshness and private identification. Each protocol ensures for a freshness n that
is the concatenated result of this two values n = (pmid‖mc).

3.3. Security Properties

Security properties are deemed to be necessary in security protocols for correctness.
Cremers [30] considered that security properties represent an essential part of the security
protocol design, defining guarantees in terms of security, which must be met by the protocol
design. According to [30], the following security properties were identified:

• Secrecy. The secrecy property guarantees that certain information in a security protocol
is not revealed to an attacker, even if the protocol is executed over an untrusted
communication channel.
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• Authentication. Intends to guarantee a protocol participant that there exists a sec-
ond credible and trustworthy participant with which it communicates and executes
the protocol.

• Agreement. The agreement property must guarantee that after completing a protocol
run, all protocol participants agree on the messages exchanged.

4. Proposed System

The proposed security system, as illustrated in Figure 2, incorporates multiple control
units executing our proposed security services. Usually, a CAN system includes multiple
ECUs, digital sensors, and a CCU for cloud communication. The proposed architecture
follows the same approach.

Figure 2. Enhanced in-vehicle network architecture with trusted security services and Trusted
Platform Module (TPM).

The system envisions that each network member has attached a physical TPM and was
bootstrapped accordingly by a trusted authority. This simplified architecture is meant to
present the fundamental functionalities of the systems. Due to the design’s considerations,
in terms of protocol design and implementation, the system can be easily expanded with
additional control units, protocol instances (e.g., running two Key Distribution Service
(KDS) instances in parallel), and networks (e.g., adding a new CAN connection).

Each ECU is responsible to participate in the KDS as a key receiver, and in the data
authentication protocol MixCAN as both a sender and receiver. On the CCU side, the KDS
distributor is executed together with a MixCAN sender/receiver, a Stateful Firewall and
Intrusion Detection System (SF/IDS), and a Secure Logging (S-Log) instance. S-Log is
responsible for communicating via a cloud connection relevant security alerts to Logging
Verifier (V-Log) to validate and store the received information. The system contains the
following services:

• Key Distribution Service (KDS): distributes long-term encryption keys, and short-term
data authentication keys to a group of protocol members by leveraging asymmetric
cryptography.

• Mixed Data Authentication for CAN (MixCAN): aggregates and authenticates a mix
of frames using Message Authentication Codes (MACs) computed with the KDS
short-term authentication key.

• SF: monitors sequences of CAN traffic in a stateful manner based on CAN frame
identifier field.

• IDS: extends the functionalities of the SF by performing additional deep-packet inspec-
tion at CAN data frame level, and by monitoring transmission times between frames.

• S-Log: generates security alerts, which ultimately are log events, yielded by other security
services, signed with the TPM, and chained together for attestation using PCRs.

4.1. Bootstrapping

The bootstrapping process is presented with two distinct algorithms, covering the re-
quirements for the KDS and the S-Log service. Both algorithms use function notations from
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the TPM2 software stack (TSS) tpm2_tools (https://github.com/tpm2-software/tpm2-tools,
accessed on 16 January 2023) to describe the interactions with the TPM. The first bootstrapping
procedure is outlined in Algorithm 1. An instance of KDS implies the presence of two roles:
a key distributor d, and a set of key receiver members m ∈ M. Each m ∈ M is required to
know the long-term public key of d, denoted by pkd, while d is required to know the shared
long-term key pkm by each m ∈ M. In the first function, bootstrapDistributor, a new
key is generated using the TPM, and is stored using sealing, denoted by the operator {}.
Afterwards, it is copied over a secure channel to each m ∈ M and individually loaded into
the corresponding TPM. In the second function bootstrapMember, the first step consists of
generating a new pair of keys (e.g., using openssl). Afterwards, for each m ∈ M, the new pair
of keys is securely copied, loaded, and sealed in the TPM.

Algorithm 2 outlines the steps taken in bootstrapping the S-Log and V-Log. The
pkl and skl are a pair of asymmetric keys of S-Log. Algorithm 2 contains two functions,
bootstrapLogger() is first executed on the in-vehicle service, and bootstrapLogVerifier()
afterwards on the remote V-Log. In both algorithms, the function calls copy() and receive()
refer to transmitting the referred terms to the corresponding address over a secure channel.

Algorithm 1: Bootstrapping KDS
Data: d: Protocol key distributor;

m ∈ M: Protocol receiver member;
Result: pkd: Public key of d;

skd: Secret key of d;
pkm: Public key of m;
skm: Secret key of m;

Function bootstrapDistributor(d, m ∈ M):
pkd, {skd} ← tpm2_create()
For m ∈ M :
copy(pkd, m)

receive(pkm, m)
tpm2_load(pkm)
return pkd, skd, pkm

Function bootstrapMember(d, m ∈ M):
pkm, skm ← gen_key()
copy(pkm, d)
For m ∈ M :
copy(pkm, skm, m)
tpm2_import(pkm, skm)
tpm2_seal(skm)
receive(pkd, d)
tpm2_load(pkd)

return pkd, skm, pkm

Algorithm 2: Bootstrapping the S-Log and V-Log
Result: pkl : Public key of S-Log;
{skl}: Sealed secret key of S-Log;

Function bootstrapLogger():
pkl , {skl} ← tpm2_create()
copy(pkl, V-Log)
return pkl , {skl}

Function bootstrapLogVerifier():
pkl ← receive(pkl , s-log)
tpm2_load(pkl)
return pkl

https://github.com/tpm2-software/tpm2-tools
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4.2. Key Distribution Service

In a KDS instance there is a set of m key receivers, and a single key distributor d. A
round of the protocol is started by a protocol initiator i in relation to a set of receivers
r. Initially proposed by Genge and Haller [19], KDS consists of three key distribution
processes: Long-term Sey Protocol (Proto-LTK), Short-term Key Protocol (Proto-STK), and
symmetric Key Synchronization (SKS). For convenience, only the improved KDS version
is described.

In Proto-LTK, the communication initiator and key distributor are denoted by ECUd
i ,

and a message receiver by ECUm
r . To run a round of Proto-LTK, ECUd

i broadcasts to
each ECUm

r a sequence of messages consisting of a public part, a private part, and an
authentication part. If ECUm

r manages to verify the sequence received, it responds back
with a confirmation and a proof demonstrating the usage of the new key. If an error occurs,
ECUm

r is required to run SKS.

ECUd
i → ECUm

r : mid, pid, {kid, n, K(i, r)}pk(r), {mid, pid, {kid, n, K(i, r)}pk(r)}sk(i)

ECUm
r → ECUd

i : mid + 1, pid, {mid + 1, n + 1, pid}K(i,r). (1)

In Equation (1), the communication terms can be viewed. In the first interaction, ECUd
i

sends mid and pid as plain text (e.g., public part), accompanied by the encrypted part with
the public key shared by each ECUm

r . The encryption is performed over a unique key
identifier kid, a freshness n, and the new long-term encryption key K(i, r). Lastly, both the
public part and the secret one are signed with the ECUd

i private key. If ECUm
r successfully

verifies the received terms, it responds with a incremented mid + 1 and freshness n + 1, the
same pid, and an encryption action performed with the new key. In this way, ECUd

i can
confirm that the new key was distributed correctly.

Proto-STK depends on Proto-LTK since it leverages the encryption key obtained from
it to distribute a short-term authentication key. The roles in Proto-STK are unchanged from
Proto-LTK, and the protocol follows a similar message structure.

ECUd
i → ECUm

r : mid, pid, {kid, n, k(i, r)}K(i,r), {mid, pid, {kid, n, k(i, r)}K(i,r)}sk(i)

ECUm
i → ECUd

r : mid + 1, pid, {mid + 1, pid, n + 1}k(i,r). (2)

As stated in Equation (2), ECUd
i broadcasts a sequence of terms consisting of mid and

pid as the public part; a kid, freshness n, and new short-term key k as the private part,
protected by the Proto-LTK key K; and a digital signature computed over both the private
and public part. After obtaining the terms, each ECUm

r is required to provide the proof of
usage for the new key as a response.

If one protocol, either Proto-LTK or Proto-STK, fails, SKS offers the possibility of
synchronisation. This protocol is an alternative to re-running the whole sequence from the
beginning. SKS is designed to function for both Proto-LTK and Proto-STK, the differentia-
tion between the two being accomplished via the protocol type term ptype.

ECUm
i → ECUd

r : mid, pid{ptype, n}pk(r), {mid, pid, {ptype, n}pk(r)}sk(i)

ECUd
r → ECUm

i : mid + 1, pid{n + 1, ptype, kid, K(i, r)}pk(i){mid + 1, pid,

{n + 1, ptype, kid, K(i, r)}pk(i)}sk(r)

ECUm
i → ECUd

r : mid + 2, pid, {n + 2, , kid}K(i,r). (3)

SKS is initiated by a protocol receiver ECUm
i by requesting via a challenge a new key

to the distributor ECUd
r . The challenge consists of a freshness nonce n and the ptype signed

with the private key of ECUm
i . If successfully verified, ECUd

r responses with a new key
depending on ptype. In Equation (3), the term K can denote both (a Proto-LTK or Proto-STK
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key) in relation with ptype. Consequently, ECUd
r is required to confirm that the distribution

of the new key was successful with an acknowledgment.
Additional KDS execution variants are addressed in Section 7 for completeness.

4.3. Data Authentication

Proposed in a previous work [18] as an alternative to the SecOC standard [13], Mix-
CAN explored the idea of decoupling the data authentication process from the actual data
transmission. This process implied frame aggregation over time, the computation of a
predetermined number of MACs, and an aggregation process of the MAC tags using an
Encrypted Bloom Filter (EBF). Consequently, the MixCAN scheme intended to reduce the
bus overhead that can be brought by introducing new authentication messages.

From the point of view of security design, MixCAN was validated through a false-
positive analysis manifested as a consequence of using EBF. In other words, there is a
trade-off in the protocol in terms of security for performance. As MixCAN is a broadcast
protocol without confirmation, the security analysis performed and presented later in the
paper brings it to the surface that it lacks aliveness and agreement between the protocol
participants. As such, a new extension of the protocol is offered to address those short-
comings, where the properties are required. Therefore, the communication structure was
improved with a confirmation message.

Let ECUs
i be the protocol initiator that periodically sends to a protocol receiver ECUr a

sequence of frames fs. After x frames are sent, ECUs
i proceeds to computes Eb f ( fs, n, k(i, r)),

where Eb f is a function computing a new EBF, n a shared freshness value, and k a short-term
authentication key obtained from Proto-STK. Once the EBF is computed, ECUs

i computes
an additional authentication tag over it, and transmits the structure to ECUr. If ECUr
successfully verifies the obtained structure, it responds with a confirmation message to
ECUs

i . This procedure is outlined in Equation (4).

ECUs
i → ECUr : fs

ECUs
i → ECUr : mid, pid, Eb f ( fs, n, k(i, r)){mid, pid, Eb f ( fs, n, k(i, r))}k(i,r)

ECUr → ECUs
i : {mid + 1, n + 1, pid}k(i,r). (4)

4.4. Firewall and Intrusion Detection System

In designing and developing the SF/IDS [20], the concepts of a CAN firewall and a
rule-based IDS were investigated. The SF/IDS can be defined as a rule-processing engine
capable of acting both as a SF and as an IDS. When configured to act as a SF, the engine
monitors sequences of CAN frames based on their CAN identifier field in a stateful manner.
Consequently, known perturbations in sequences of frames can be detected. In addition
to this, an additional purpose of the SF is to enable CAN gateways, to restrict traffic
coming from one network to another. The IDS configuration of the rule engine extends
the functionality of the SF with the additional capabilities of performing deep-packet
inspection at a CAN frame data level. This is accomplished in the same manner as in the SF,
by leveraging a set of predefined rules with additional functionality that allows byte-wise
logical operations.

While the initial design of the SF/IDS engine focused on detecting known attacks on
CAN traffic, it did not consider the temporal aspect of frame transmission. In CAN systems,
frames are exchanged following a periodic cycle, or when an event happens. Consequently,
deviations from frame cycles can be a sign that an abnormality happened, such as a timing
attack, unauthorised data transmission, fuzzy data, or denial of a service attack [25,31].

To address this problem, the IDS was extended with an additional transmission
frequency rule table. The table defines the mean transmission cycle times for monitored
frames, and a minimum and maximum accepted delay for intrusion detection.
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4.5. Secure Logging

Logging and the later auditing play a critical role in the process of ensuring system
security. The objective of the S-Log service [20] is to capture any security related events
generated by other security services, and properly log and report them. In the present case,
security events range from failed data authentication to failed key exchange and intrusions
detected at the CAN bus level. Once a security event is generated, the S-Log is notified.
The event is composed of the actual event message related to the event, signed with the
TPM signature engine, using the S-Log’s private key, and an associated hash-chain value.
The S-Log chains together different security events using the TPM’s PCR to link together
events, and to maintain a tamper-proof relationship between them.

Once the S-Log completes these operations with the TPM, it publishes the security
events to a corresponding service on the cloud. The V-Log service is responsible for
validating the received events. When a new event is received, V-Log proceeds to verify it,
by performing the same operation done by S-Log. If the digital signature and the hash-chain
values are successfully verified, the matching event is marked as verified.

5. Security Analysis

The security analysis was performed using the Scyther formal language modeling tool
developed by Cremers [32]. Similarly, for repeatability reasons, the protocols are described
using the formal notation from [30,32]. Scyther allows protocol analysis under perfect
encryption assumptions. Furthermore, Scyther leverages the Dolve–Yao [33] adversary
model, which fits perfectly with the threat model from Section 5.1; since it assumes that the
adversary possesses complete control over the communication channel, it can eavesdrop,
manipulate, and replay network messages. In addition to this, the adversary is able to
execute the same cryptographic protocols as the protocol actors if it has knowledge of the
correct cryptographic keys.

A protocol p(i, r) can be described as a sequence of messages exchanged between a
protocol initiator i and a responder r, denoted by send(i, r, m) ∈ S and recv(i, r, m) ∈ R
events, where m is a message, S the set of send events, and R the set of received events,
respectively. Additionally, a given protocol p(i, r) contains a sequence of terms t ∈ T,
and a sequence of claims c ∈ C events used for protocol evaluation [32]. A claim is an
assurance for an agent that a certain property of the protocol holds. As such, a protocol can
be described as:

p(i, r) = ({T}, [S, R, C]) ≡
{

p(i) = ({Ti}, [Si, Ri, Ci])

p(r) = ({Tr}, [Sr, Rr, Cr]),
(5)

where p(i, r) is the generic protocol, and p(x) is the protocol from the perspective of x.
Through a protocol verification tool, a protocol designer can write a protocol specifi-

cation to verify that the protocol design guarantees certain requirements for the protocol
participants. The claims considered in the current protocol analysis are offered by the
Scyther tool, and were identified based on the security properties mentioned in Section 3.3.
Furthermore, claims in formal protocol analysis aim to prove the correctness of the protocol
specification. The claims assumed in the current analysis follow the definitions from [30]:

• Secrecy (secret): A secrecy claim for a term t ∈ T of an agent i is true, if and only if the
term t never becomes known to the intruder.

• Aliveness (alive): A protocol p(i, r) satisfies the property of aliveness if and only if after
an agent i executes a round of p(i, r), i is sure that it communicates with a trusted
agent r, and r executed an event.

• Weak agreement (weakagree): A protocol p(i, r) satisfies the property of weak agreement
if and only if an agent i is sure that agent r executed the correct role in the protocol.

• Non-injective synchronization (nisynch): Represents a strong form of authentication in
protocol p(i, r). The claim is satisfied if all messages exchanged in p(i, r) have been
sent or received by i or r.
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• Non-injective agreement (niagree): A protocol p(i, r) satisfies the claim of non-injective
agreement, if whenever i completes a run of the protocol believing it communicates
with r, then r has run the protocol before believing to be communicating with i.
Consequently, i and r must agree on the contents of the messages exchanged.

The protocol analysis consists of three steps. In the first step, the initially proposed
protocols [18,19] are described in Scyther and individually analyzed. After identifying
the claims that were not assumed by the protocols, step two and three are carried out in
parallel. Step two consists of improving the protocols to satisfy all raised claims. As for step
three, the improved protocol versions are put in a multi-protocol analysis. This happened
as an iterative process since individual claims must hold in multi-protocol claims [30]. For
each protocol, a formal description is provided, with the results available in Table 2.

Table 2. Initial protocol analysis results, with improved individual and multi-protocol analysis.

Protocol Claim Term
Proof of Correctness

Initial Version Improved Version Multi-Protocol Analysis

LTK(i, r)

secret K(i, r) Ok Ok Ok

secret n Fail Ok Ok

secret n + 1 Fail Ok Ok

secret kid Fail Ok Ok

alive - Fail for i, Ok for r Ok Ok

weakagree - Fail for i, Ok for r Ok Ok

niagree - Ok Ok Ok

nisynch - Ok Ok Ok

STK(i, r)

secret k(i, r) Ok Ok Ok

secret n Fail Ok Ok

secret n + 1 N/A Ok Ok

secret kid Fail Ok Ok

alive - Fail for i, Ok for r Ok Ok

weakagree - Fail for i, Ok for r Ok Ok

niagree - Ok Ok Ok

nisynch - Ok Ok Ok

SKS(i, r)

secret ptype N/A Ok Ok

secret n Fail Ok Ok

secret n + 1 Fail Ok Ok

secret n + 2 N/A Ok Ok

secret kid Fail Ok Ok

secret K(i, r) Ok Ok Ok

alive - Fail Ok Ok

weakagree - Fail Ok Ok

niagree - Fail Ok Ok

nisynch - Fail Ok Ok
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Table 2. Cont.

Protocol Claim Term
Proof of Correctness

Initial Version Improved Version Multi-Protocol Analysis

MixCAN(i, r)

secret n Ok Ok Ok

secret n + 1 N/A Ok Ok

secret Eb f Ok Ok Ok

alive - Fail for i, Ok for r Ok Ok

weakagree - Fail for i, Ok for r Ok Ok

niagree - Ok Ok Ok

nisynch - Ok Ok Ok

5.1. Threat Model

The threat model considered in the current work assumes that a malicious actor
possess capabilities in terms of (i) remote/physical access, (ii) system knowledge, and
(iii) security protocol knowledge.

Let a denote a protocol adversary. To attack a protocol p(i, r), the considered threat
model assumes that a has physical access to the vehicle with or without the owner’s consent
(point (i)). Consequently, the adversary a is capable of physically connecting to the network
communication medium, replicating the network traffic of a legitimate protocol member i
(e.g., CCU) or r (e.g., ECU) for an extended period of time. On the other hand, an attacker
may compromise a protocol initiator i (e.g., CCU in case of KDS), to obtain access to the
underlying vehicle network. Once an attacker obtains an entry point to the vehicle network,
it is assumed that it has knowledge regarding the protocol communications. Adversary
a can obtain knowledge about public protocol terms, such as pid, mid, fs, or fr. In other
words, a is able to eavesdrop on the network and record, modify, and replay network
messages without generating communication errors (point (ii)). If a does not compromise r
or i, thus obtaining access to r (e.g., an ECU, or i a CCU), authentication, confidentiality,
and non-repudiation is kept, since k, K, and sk or pk are not known to a. Lastly, for point (iii)
a is able to execute the same cryptographic operations as i and r. It is capable of obtaining
knowledge regarding the running security protocols and further replicate them.

5.2. Individual Service Analysis
5.2.1. Long-Term Key Exchange

In the protocol LTK(i, r), the role of the protocol initiator i is assigned to the services
responsible for generating a new key K(i, r). In consequence, the responder r roles are
assigned to services listening and waiting for a new long-term symmetric key K(i, r). As
can be observed in Table 2, the initial protocol was expanded with a additional term mid for
better message identification.

To satisfy the claims for aliveness and weak agreement for both i and r, an additional
message was introduced for r to give i proof that the new key K(i, r) was received success-
fully, and that r can perform an action with it. The improved LTK(i, r) protocol satisfies all
the claims previously mentioned, both in the individual and in the multi-protocol analysis.
The formal description of the the LTK(i, r) protocol is given in Equation (6).
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LTK(i, r) = ({i, r, mid, pid, kid, n, K(i, r), pk(i), sk(i), pk(r), sk(r)},
[send1(i, r, mid, pid, {kid, n, K(i, r)}pk(r), {mid, pid, {kid, n, K(i, r)}pk(r)}sk(i))

recv1(i, r, mid, pid, {kid, n, K(i, r)}pk(r), {mid, pid, {kid, n, K(i, r)}pk(r)}sk(i))

send2(r, i, mid + 1, pid, {mid + 1, pid, kid, n + 1, }K(i,r))

recv2(r, i, mid + 1, pid, {mid + 1, pid, kid, n + 1}K(i,r))

claim(i, secret, K(i, r), n, n + 1, kid)

claim(i, alive)

claim(i, weakagree)

claim(i, niagree)

claim(i, nisynch)]). (6)

5.2.2. Short-Term Key Exchange

The STK(i, r) protocol follows the same approach in terms of roles as LTK(i, r). The
STK(i, r) initiator i is the same service as in LTK(i, r), and the responders r are the equiv-
alents in LTK(i, r). The STK(i, r) protocol suffered from the same security problems as
LTK(i, r). Therefore, a message identifier mid term was added and a proof message was
introduced for r to prove that the new symmetric short-term key k(i, r) was successfully
received to achieve aliveness and weak agreement. The protocol description is outlined in
Equation (7).

STK(i, r) = ({i, r, mid, pid, kid, n, K(i, r), sk(i), k(i, r)},
[send1(i, r, mid, pid, {kid, n, k(i, r)}K(i,r), {mid, pid, {kid, n, k(i, r)}K(i,r)}sk(i))

recv1(i, r, mid, pid, {kid, n, k(i, r)}K(i,r), {mid, pid, {kid, n, k(i, r)}K(i,r)}sk(i))

send2(r, i, mid + 1, pid, {mid + 1, n + 1, pid, kid}k(r,i))

recv2(r, i, mid + 1, pid, {mid + 1, n + 1, pid, kid}k(r,i))

claim(i, secret, k(i, r), n, n + 1, kid)

claim(i, weakagree)

claim(i, niagree)

claim(i, nisynch)]). (7)

5.2.3. Symmetric Key Synchronisation

Compared to the two previously mentioned protocols, the roles in the SKS(i, r) are
reversed. The communication initiator i requests from the responder r a new symmetric
key K(i, r) depending on the protocol type ptype term. Here, K(i, r) is used interchangeably
with k(i, r), as the SKS(i, r) protocol was designed to fit both long-term keys with LTK(i, r)
and short-term keys with STK(i, r). Consequently, the value of ptype ∈ {LTK, STK} is
binary and must correspond to one of the protocols. The original design of the SKS(i, r)
followed a challenge–response approach.As the initial protocol analysis points out (see
Table 2), while the secrecy of the new symmetric key is proved, the challenge containing the
nonce n is not protected. To address the unmet claims, the SKS(i, r) protocol was extended
in the same manner as the other two. The initiator i requests a new key by challenging r, r
responds to the request, and finally, i proves r (that it can successfully use the new key by
performing and event).
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SKS(i, r) = ({i, r, mid, pid, ptype, kid, n, K(i, r), pk(r), sk(i)},
[send1(i, r, {mid, pid, ptype, n}pk(r))

recv1(i, r, {mid, pid, ptype, n}pk(r))

send2(r, i, {mid + 1, n + 1, ptype, pid, kid, K(i, r)}pk(r),

{{mid + 1, n + 1, ptype, pid, kid, K(i, r)}pk(r)}sk(i)

recv2(r, i, {mid + 1, n + 1, ptype, pid, kid, K(i, r)}pk(r),

{{mid + 1, n + 1, ptype, pid, kid, K(i, r)}pk(r)}sk(i)

send3(i, r, {mid + 1, n + 2, pid, kid)}K(i,r))

recv3(i, r, {mid + 2, n + 2, pid, kid}K(i,r))

claim(i, secret, ptype, n, n + 1, n + 2, K(i, r), kid)

claim(i, alive)

claim(i, weakagree)

claim(i, niagree)

claim(i, nisynch)]). (8)

5.2.4. MixCAN Protocol

The early concept for the data authentication protocol MixCAN(i, r) decouples the
actual message transmission of frames fs from the data authentication phase to reduce the
amount of tags computed. For that reason, the authentication tag aggregation using the Eb f
function was performed after sending fs, and finally sent without requiring a confirmation
message. In addition to this aspect, the flaws in MixCAN(i, r) are related to message
numbering and protocol identification. In the present design, these points are addressed as
can be seen in Table 2.

MixCAN(i, r) = ({i, r, mid, pid, fs, n, k(i, r), Eb f },
[send1(i, r, fs)

recv1(i, r, fs)

send2(i, r, mid, pid, Eb f ( fs, n, k(i, r)), {mid, pid, Eb f ( fs, n, k(i, r))}k(i,r))

recv2(i, r, mid, pid, Eb f ( fs, n, k(i, r)){mid, pid, Eb f ( fs, n, k(i, r))}k(i,r))

send3(r, i, {mid + 1, n + 1, pid}k(i,r))

recv3(r, i, {mid + 1, n + 1, pid}k(i,r))

claim(i, secret, n, n + 1, Eb f )

claim(i, niagree)

claim(i, nisynch)

claim(i, alive)

claim(i, weakagree)]). (9)

5.3. Multi-Protocol Analysis

Scyther provides an easy method for multi-service analysis. The only requirement is
to concatenate the individual protocols subjected to analysis, and then run the analysis nor-
mally. All the above individually analyzed protocols were part of the multi-protocol anal-
ysis. The first multi-protocol analysis conducted pointed out a conflict between LTK(i, r)
and SKS(i, r) due to message similarity. The motivation behind this was that SKS(i, r) is
an extension of LTK(i, r) and STK(i, r) to allow symmetric key receivers to request a new
key in cases of error. As such, the protocol type term ptype was introduced in SKS(i, r) to
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differentiate it from LTK(i, r) and STK(i, r). With this, message similarity was eliminated
and the claims were proved. The results point out that every claim raised was proved to be
correct, as can be seen in Table 2.

5.4. Threat Evaluation

To demonstrate the resistance against attacks of the improved protocol versions to-
gether with their possible drawbacks three common automotive threats, which were identi-
fied in [34], are presented. The main intention here is to link the claims considered in the
formal analysis with concrete scenarios. For each attack, its corresponding attack scenario
is presented in relation to our threat model, along with the countermeasures provided by
the security services. As well as describing the resistance of the protocols against each
attack, recommendations are provided to strengthen the system security in the cases of
more powerful attacks.

5.4.1. Man-in-the-Middle Attack

The attacker connects a malicious device to the CAN bus between two legitimate
control units (e.g., CCU and ECU), capturing, manipulating, and afterwards forwarding
received messages from one direction to the other. The aim of the attacker in this scenario
is to compromise the data authentication protocol MixCAN and the KDS.

In the case of MixCAN, while the attacker is able to read the public part of the protocol
fs, mid, pid, and Eb f , they do not possess knowledge about the authentication key k, which is
distributed via Proto-STK (i.e., the secrecy and alive claims stands). Compromising the mes-
sage authentication tag computed with k implies a brute-force attack on the authentication
algorithm itself (e.g., advanced encryption standard). Consequently, the resistance against
attacks of MixCAN is first related to the authentication algorithm considered. Secondly,
message freshness is guaranteed by the nonce n, which is monotonically incremented
with each protocol round. The probability of compromising the protocol by attacking its
freshness is strictly related to nonce n size in bytes, and the freshness update protocol. The
freshness management was not considered in the current work, since standards such as
SecOC provide a solid freshness management protocol [13]. Since the Eb f is a probabilistic
data structure manifesting a false positive rate on item query, in the prior work [18] this
aspect was investigated, offering reference numbers for each parameter. Authentication
(aliveness) and protocol agreement (weakagree, niagree) are guaranteed through message
authentication or digital signature. This is further enforced with terms such as n, which is
meant to link messages with its monotonic increments.

The authentication key k is protected in the Proto-STK by the long-term encryption
key K (i.e., secrecy claim stands); its non-repudiation is assured by a bootstrapped secret key
sk (i.e., nisynch, weakagree claims stand), and a freshness nonce n (i.e., alive claim stands).
While the same arguments can be made about the security of n as above, sk and K are
protected by the secure storage of the TPM. Lastly, the weakagree and niagree claims are
additionally satisfied through message acknowledgments which contain proof that a new
term (e.g., new key) was verified and an authenticated response was received back. In the
construction of all the proposed protocols, secrecy is guaranteed by means of authentication
and encryption.

Since the attacker is physically positioned between two legitimate protocol members,
it is obvious that any intervention on the bus introduces a certain delay. This delay is
further increased when an attacker has to compute cryptographic operations. In this case,
the SF/IDS possess the ability to monitor the transmission frequency of a set of messages
and detect deviations or delays based on the maximum and minimum expected delays.
Consequently, this limits the time window in which the attacker can read the messages
from the network, conduct the attack, and replay the tampered messages.
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5.4.2. Fuzzy and Replay Attack

While fuzzy attacks intend to perturb the normal functioning behavior of the under-
lying automotive system by sending messages containing arbitrary data, replay attacks
assume that an attacker eavesdrops, reads, and replays back on the network previously
observed messages with or without manipulation. Since the network communication is
bus oriented, the process of conducting a fuzzy or replay attack manifests as a consequence
the same outcome as the man-in-the-middle attack. In other words, these attacks are just a
variation of the man-in-the-middle attack. Thus, the above scenario, claims, and counter-
measures stand for these two attacks too. Even in more severe cases, where the attacker
performs a more aggressive replay attack (e.g., denial of service), the SF/IDS come to aid.
The SF/IDS are capable of running in both blacklisting and whitelisting mode, allowing
identification of unauthorized messages on the network. Likewise, replay attacks and even
denial-of-service attacks affect message transmission cycle time, which will trigger the
SF/IDS. In the end, a trace of the security events generated by the SF/IDS will remain in
logs generated by the S-Log service.

5.4.3. Compromise Attack

A more intelligent attacker may try to compromise a trusted protocol member (e.g.,
CCU or ECU). If the attacker is only able to perform read operations, the secrecy of keys
is guaranteed by the TPM storage. On the other hand, if the attacker is also able to write
(e.g., execute arbitrary code) he may gain access to the secret keys and run protocol rounds
like a genuine protocol member. The severity of the attack depends on the compromised
control unit (e.g., ECU or CCU). To resist against a compromised ECU, the proposed system
requires additional grouping. Having multiple groups, each running a different instance
of the KDS and MixCAN, is proven possible through the multi-protocol analysis and
protocol terms (e.g., protocol identification). Consequently, the number of keys used grows
proportionally with the number of groups.

If the attacker compromises a CCU, the most plausible counter-attack would be not be
have a single control unit running multiple instances of the same protocol, but to have a
designated ECU handling these processes inside of a specific group. Ultimately, the TPM
standard allows security engineers to implement a secure and trusted boot on top of it
which aims to protect the system against this type of attack. Consequently, modification to
system code and parameters should be detected on boot.

6. Reference TestBed

The RTB intends to replicate a simple CAN system and to provide an easy-to-assemble
system for testing security services targeting CAN systems. The reference architecture is
built to be extensible in terms of hardware and integration of new services. New control
units can be easily connected to the CAN network due to its bus nature. The same aspects
were considered for integrating or replacing existing software services. Consequently, this
section discusses the hardware used, the integration process of new software services,
and interfacing with the existing services. Lastly, two distinct workflows are presented to
showcase the functionalities of the RTB.

6.1. Reference Hardware

The hardware components used in the RTB were selected according to several criteria:
accessibility in price, familiarity to the general user, and interoperability with drivers
and other components. Figure 3 depicts the hardware setup used in the RTB. The main
development boards are Raspberry Pi, mainly model 3B and 4, running Raspberry Pi OS
Lite, with kernel version 5.15 and Debian bullseye. Each board has connected an OPTIGA
SLx 9670 TPM 2.0, and a MCP2515 CAN controller with a TJA1050 CAN transceiver.

This configuration is not mandatory from the point of view of CAN communication,
as can be seen in Figure 3. A third board can be seen with a SEEED CAN HAT daughter
board. The motivation for the chosen configuration was to allow a physical TPM to be
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connected to a Raspberry Pi together with the CAN controller. Alternatively, if this is not
possible, the RTB can function normally with alternative virtual TPMs (e.g., IBM Virtual
TPM (https://sourceforge.net/projects/ibmswtpm2/, access on 16 January 2023)). Wiring
and additional details can be found on in Appendix A in Figure A1.

The OPTIGA SLx 9670 TPM 2.0 was considered to be adequate for the case at hand
since it was developed by Infineon specially for automotive environments [35]. Addi-
tionally, Infineon recently published an automotive application guide [36] where they
recommend the TPM for use by security applications, particularly for telematics units (e.g.,
CCU). While Infineon recommends that ECUs should possess hardware security modules,
and considering the limitations of the RTB, a TPM was used also in the case of a ECU to
emphasize service functionalities. In the end, the scope of the RTB is to showcase security
features that can benefit the automotive security field.

Figure 3. Reference testbed hardware setup incorporating Raspberry Pi boards, CAN controllers, and
TPM modules.

6.2. Testbed Interfaces

To integrate a new service or to replace an existing one, there are three interfaces that
must be taken in consideration: the CAN interface, internal Message Queue Telemetry
Transport (MQTT) communication interface, and TPM interface.

6.2.1. CAN Interface

The RTB allows a bi-directional CAN communication over a single CAN interface.
While multiple services can connect to a CAN interface in read-only mode (e.g., MixCAN,
SF/IDS), concurrent write operations are not allowed. Consequently, when multiple
writing services are configured on a RTB instance (e.g., on a Raspberry Pi), a CAN bridge is
considered. This connection consists of an internal virtual CAN bus that allows concurrent
reads/writes, the actual CAN interface, and a CAN gateway. Using can-utils (https://
github.com/linux-can/can-utils, accessed on 16 January 2023), the CAN gateway connects
the CAN interface to the virtual one, forwarding messages coming from one to the other.
Consequently, any messages sent on the virtual CAN are forwarded to the physical one,
and vice versa.

6.2.2. MQTT Interface

Depending on the scope of the new service, interfacing with the internal MQTT com-
munication represents a must. This messaging approach also allows easy replacement of

https://sourceforge.net/projects/ibmswtpm2/
https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
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the security services, such as the data authentication protocol MixCAN. If the new protocol
uses symmetric cryptography, it is required to subscribe to the Proto-STK associated topic to
periodically obtain a new symmetric key. This approach reduces the number of operations
needed to parse the new key messages, compared to the alternative that implies listening
on the CAN.

Likewise, the KDS can be replaced without difficulty if the new solution interfaces
with the existing security modules (e.g., MixCAN) in terms of MQTT topics and message
structure. New independent modules can be added and linked to the MQTT broker, with
their own topics and messaging. This requires topic definition and configuration of the
MQTT broker to authenticate the new module’s users.

6.2.3. TPM Interface

The TPM is rich in features with a properly defined interface. The RTB interfaces with
the TPM using the TCG TSS (https://github.com/tpm2-software, accessed on 16 January
2023). The TSS libraries offer a wide variety of functionalities, ranging from low level TPM
commands to high level function calls to abstract the internal implementation. Additionally,
using the TPM Access Broker & Resource Manager, the RTB is capable of functioning
according to the service configuration, with physical connected TPM, or with a virtual
one (e.g., IBM Virtual TPM). The TPM interface is language agnostic, and it can properly
function with any library that respects the TSS specifications.

6.3. Workflow

To showcase the interaction between different security services, two scenarios were
chosen for demonstration:

• Scenario 1: Showcases the process of distributing a new short-term authentication key
using Proto-STK. Along with this, the MixCAN protocol is executed to present how it
utilizes the key obtained from Proto-STK.

• Scenario 2: Outlines the life-cycle of a security event generated by the SF/IDS, how it
is processed by the S-Log together with the TPM, and how it is published afterwards,
and finally verified on the cloud side.

Each scenario is described using a sequence diagram. Each step in a diagram consists
of one or more sub-steps.

6.3.1. Scenario 1

Outlined in Figure 4, the first scenario assumes that Proto-LTK was executed before-
hand and consists of two phases. In the first phase, Proto-STK is executed, and in the
second one the MixCAN protocol is carried out.

In phase one, the first step consists of a round of Proto-STK. The protocol initiator
performs the necessary operations with the TPM to obtain a new authentication key. In
step 2, the new key is encrypted with a Proto-LTK private key, and the necessary terms are
used to construct the Proto-STK data structure. Step 3 converts the data structure obtained
into several CAN frames and broadcasts it over the CAN bus. Finally, a protocol receiver
obtains the Proto-STK CAN frames in step 4, where it proceeds to verify the information
received and decrypt the new key using the shared long-term encryption key. Once the
new key is received internally by MixCAN, the second phase begins.

Step 1 in MixCAN implies that CAN frames are exchanged normally, and periodically
for each sent frame a MAC is computed on the sender with the Proto-STK key in step 2.
Once a predefined number of MACs is computed, they are inserted into the EBF in step 3.
Finally, an additional MAC is computed over the EBF in step 4, just to be sent in step 5. Sim-
ilarly, on the receiver side, this process is repeated to verify the frames and authentication
tags obtained.

https://github.com/tpm2-software
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Figure 4. Workflow of distributing a new authentication key using the Proto-STK key exchange
protocol and its usage by the data authentication protocol MixCAN.

6.3.2. Scenario 2

Figure 5 showcases the workflow of security events in the system. The sequence
begins with the SF/IDS generating a security event once it detects abnormal behaviour on
the CAN bus. This event is received by the S-Log, which proceeds to communicate with
the TPM to construct the digital signature and extend its associated hash-chain in Step 1.
Once this is accomplished, in the second step the information is published to the cloud. On
the other side, in step 3 the V-Log periodically communicates with the cloud to check if
new security events were pushed to the cloud database. If new entries are found, the V-Log
requests them, and proceeds to verify them using its TPM and the S-Log public key in
step 4. Finally, the status corresponding to the processed entry is updated in the database
as verified or not verified.

Figure 5. Workflow presenting the processing steps performed by the S-Log and V-Log services to
sign and verify with the TPM a security event generated by the SF/IDS.

6.4. Experimental Assessment

The experimental assessment focuses on two aspects. First, it provides concrete
performance measurements on time execution for the operations executed with the TPM
on the reference hardware presented in Section 6.1. Secondly, it showcases 11 replay attacks
conducted on the RTB to verify the message frame frequency monitoring introduced in the
SF/IDS.

6.4.1. Performance Measurements

Several proposed security services (e.g., KDS, MixCAN, and S-Log) leverage the
TPM for cryptographic operations and key storage. For a total of 10 TPM commands,
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100 measurements were computed for each command, with the minimum, maximum, and
average execution time. Table 3 presents the mentioned measurements, and provides a
description for each command and its usage in the corresponding security services.

In Figure 6 the performance measurements for generating cryptographic keys and
the key loading command are displayed. For example, the tpm2_create command has an
average execution time of 10.237 s, with a maximum of 32.330 s, and a minimum of 0.806 s.
To load the generated asymmetric key generated by tpm2_create, tpm2_load shows an
average time of 0.441 s, a maximum of 0.425 s, and a minimum of 0.469 s. On the other
hand, in Figure 7a, it can be observed that the tpm2_rsaencrypt command is faster than
tpm2_rsadecrypt, with an average execution time of 0.168 s, while the latter time is 0.486 s.
Similar numbers can be observed for the tpm2_verifysignature and tpm2_sign commands.
Lastly, Figure 7b showcases the execution times for tpm2_pcrread and tpm2_pcrextend
commands used by S-Log and V-Log.

(a) (b)

Figure 6. Performance measurements of TPM commands that handle the generation of crypto-
graphic keys and the loading process into the TPM. (a) tpm2_create command. (b) tpm2_getrandom,
tpm2_create(hmac), and tpm2_load commands.

(a) (b)

Figure 7. Performance measurements of TPM commands that handle the cryptographic operations.
(a) tpm2_hmac, tpm2_rsadecrypt, tpm2_rsaencrypt, tpm2_sign, tpm2_verifysignature commands.
(b) tpm2_pcrread and tpm2_pcrextend commands.
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Table 3. Minimum (Min.), maximum (Max.) and average (Avg.) execution time in seconds of
TPM commands.

TPM Command Description Min. [s] Max. [s] Avg. [s]

tpm2_create Used in the bootstrapping process of the KDS and
S-Log to generate a pair of asymmetric keys. 0.806 32.330 10.237

tpm2_getrandom Used by Proto-LTK to generate an encryption key. 0.071 0.094 0.076

tpm2_create(hmac) Used by Proto-STK to generate an
authentication key. 0.071 0.099 0.079

tpm2_load Used by KDS and S-Log on start-up to load the
bootstrapped asymmetric keys. 0.425 0.469 0.441

tpm2_hmac Used by MixCAN to compute authentication tags. 0.790 0.874 0.823

tpm2_rsadecrypt Used by KDS for decryption. 0.464 0.511 0.486

tpm2_rsaencrypt Used by KDS for encryption. 0.158 0.191 0.168

tpm2_sign Used for computing digital signature by KDS
and S-Log. 0.536 0.584 0.559

tpm2_verifysignature Used for verification of digital signature by KDS,
S-Log and V-Log. 0.166 0.203 0.180

tpm2_pcrread Used by S-Log and V-Log to read the state of a
PCR index. 0.053 0.078 0.059

tpm2_pcrextend Used by S-Log and V-Log to extend the state of a
PCR index. 0.048 0.092 0.054

It is to be noted that the performed measurements were carried out on the RTB
hardware at an operating system level. The reader should take into consideration that the
measurements do not reflect the behavior of the TPM in real automotive environments, but
only on this particular hardware with the constraints imposed by the operating system.

6.4.2. Attack Evaluation

While in Section 5 the network-related security services were analyzed, and a set
of attacks were defined and discussed, in several cases the SF/IDS was mentioned as a
countermeasure. Prior work [20] only addressed the performance aspect of the SF/IDS.
Consequently, since the SF/IDS was improved with the capability of monitoring the
message transmission frequency, especially for messages that are transmitted based on a
cycle time, 11 variations of possible replayed attacks were conducted against the SF/IDS to
determine its correctness. The first step in conducting these attacks consisted of constructing
a trace log baseline. This process included a recording step, where a 30 s clean log file
was obtained. The baseline log trace was split into three distinct parts for repeatability.
Part 1 of the baseline trace consists of 10 s with attack-free messages, Part 2 the next 10 s
representing the time frame where the attack will be carried out, and lastly, Part 3 consists
of 10 s with attack-free messages. The first two attacks, as can be seen in Table 4, are focused
on replaying a whole part of the baseline trace file in Part-2. On the other hand, the rest of
the attacks are meant to modify the transmission and cycle time of a specific CAN frame.
For example, for the CAN frame which was manipulated in the attacks with a mean cycle
time of 30 ms, a minimum allowed delay of µ− 3σ ms was chosen, with the maximum of
µ + 3σ ms.
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Table 4. Attacks detected by the SF/IDS based on frame frequency monitoring. Each attack contains
a 30 s pre-recorded trace file with three parts: Part 1 (10 s, no attack), Part 2 (10 s, with attack) and
Part 3 (10 s, no attack).

Attack Name Attack Description Detected by SF/IDS

Part 1 replayed Part 1 replayed in Part 2 X

Part 3 replayed Part 3 replayed in Part 2 X

Remove every 2nd frame Remove every 2nd frame with CAN ID X in Part 2 X

Remove every 3rd frame Remove every 3rd frame with CAN ID X in Part 2 X

Insert frames in Part 2 Insert frame with CAN ID X between two of the same
frames in Part 2 X

Delay every 2nd frame 10% Delay every 2nd frame with CAN ID X by 10% of its
cycle time in Part 2 X

Delay every 2nd frame 20% Delay every 3rd frame with CAN ID X by 20% of its
cycle time in Part 2 X

Increase cycle time 10% Increase cycle time of every frame with CAN ID X by
10% in Part 2 X

Decrease cycle time 10% Decrease cycle time of every frame with CAN ID X by
10% in Part 2 X

Shift forward every frame 20% Shift forward by 10% the expected time slot of CAN
ID X in Part 2. Cycle time is not modified. X

Shift backwards every frame 10% Shift backwards by 10% the expected time slot of CAN
ID X in Part 2. Cycle time is not modified. X

6.5. Repository

All the developed software for the RTB is distributed under a MIT License and is
publicly available (https://github.com/terilenard/can-tpm-reference-testbed, accessed on
16 January 2023).

7. Discussions

There are several points to be addressed regarding the proposed services: in particular,
design considerations, computational impact, and their usability in a real world scenarios.
For the initially proposed protocols, a higher concern was given to limit the number of
cryptographic operations to reduce the overhead of the protocols introduced into the system.
Consequently, there was a trade-off in terms of reducing the number of messages used in the
protocols in opposition to security. In the present approach, a higher importance was given
to having robust secure protocols with the possible disadvantage of having an increased
overhead. Of course, this impact was supposed to be decreased by leveraging TPMs,
separating in this way the cryptographic intensive operation from the main processing unit.
At the same time, having additional confirmation messages and messages that prove certain
actions were successfully executed (e.g., a key was distributed or data was authenticated
successfully) represented a requirement from the point of view of the formal analysis, even
if the communication is bus oriented.

While the SF/IDS and the S-Log are not concerned with the underlying communication
and the data authentication protocol MixCAN has a low overhead, as demonstrated in
the original work [18], the number of messages leveraged to distribute keys may increase
CPU consumption and bus overhead. We propose to the system engineer to assign a CAN
identifier for KDS protocol, such that all messages from one protocol are sent with the same
priority over the bus. This will allow KDS to not interfere with high priority messages.
Additionally, the protocol messages should be sent with a cycle time. This implies that
each message from a protocol is sent at a known time cycle, giving more control to system
engineers over the impact that KDS can have on the system.

https://github.com/terilenard/can-tpm-reference-testbed
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Lastly, a point not addressed in the current work is log aggregation. Logging each
incoming security event generates, in the end, difficulties in terms of storage and the
amount of data that needs to be reported. Consequently, this represents an open problem
that needs to be addressed.

8. Future Work

A key topic that was not addressed in the work at hand is the problem of the means of
a trusted party to manage and interact with groups or fleets of vehicles. Long-term key
updates for vehicle fleets in which TPMs are used represents a challenging task which is
envisioned to be addressed by future work. For this investigation, the plan is to analyze
centralized and decentralized approaches (e.g., public-key infrastructures, digital identities),
identify the requirements of the OEM, which actors are involved in the whole process, and
finally, offer an appropriate solution to fit the findings.

While the work at hand is strictly focused on the security aspect of in-vehicle systems,
the system safety dimension requires attention. Prior works focused on identifying the key
challenges in cybersecurity, privacy and standards of automated shuttles [37], and on the
GDPR implications on data privacy targeting the same systems [38]. In parallel with the
previous direction, our future work additionally intends to improve the threat analysis
and risk assessment (TARA) method with the necessary processes to cover autonomous
mobility systems requirements.

9. Conclusions

The main contribution of the work at hand represents automotive RTB empowerment
by TPMs, incorporating multiple trusted security services. The RTB aims to replicate a
simple CAN system designed for security-related experiments. In the RTB, long-term
encryption keys and short-term authentication keys are periodically exchanged, data is
sent authenticated, the network is monitored by a stateful firewall and intrusion detection
system, and security events are logged with the TPM. As for the second contribution,
the security services proposed were improved from previously published versions in
terms of protocol aliveness, agreement, authentication of terms, protocol, and message
identification. The improved protocols were validated through a formal individual and
multi-protocol analysis using the Scyther modeling tool under the Dolve–Yao adversary
model. The analysis formally proved the correctness of the protocols. Lastly, the usage of
TPMs is demonstrated in the RTB as a means of service and control units identification, key
generation, storage, distribution, and log verification.
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Appendix A

Figure A1. Input/Output schematic of the proposed testbed. In the schematic, the following
components are showcased: a Raspberry Pi model 3B, MCP2515 CAN controller with TJA1050 CAN
transceivers, and Iridium Optiga TPM 2.0 SLB 9670.
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