
Citation: Zabołotny, W.M. Versatile

DMA Engine for High-Energy

Physics Data Acquisition

Implemented with High-Level

Synthesis. Electronics 2023, 12, 883.

https://doi.org/10.3390/

electronics12040883

Academic Editor: Alexander

Barkalov

Received: 17 January 2023

Revised: 6 February 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Versatile DMA Engine for High-Energy Physics Data
Acquisition Implemented with High-Level Synthesis
Wojciech Marek Zabołotny

Faculty of Electronics and Information Technology, Institute of Electronic Systems, Warsaw University of
Technology, Nowowiejska 15/19, 00-65 Warszawa, Poland; wojciech.zabolotny@pw.edu.pl

Abstract: FPGA-based cards for data concentration and readout are often used in data acquisition
(DAQ) systems for high-energy physics experiments. The DMA engines implemented in FPGA
enable efficient data transfer to the processing system’s memory. This paper presents a versatile
DMA engine. It may be used in systems with FPGA-equipped PCIe boards hosted in a server and
MPSoC-based systems with programmable logic connected directly to the AXI system bus. The core
part of the engine is implemented in HLS to simplify further development and modifications. The
design is modular and may be easily integrated with the user’s DAQ logic, assuming it delivers the
data via a standard AXI-Stream interface. The engine and accompanying software are designed with
flexibility in mind. They offer a simple single-packet mode for debugging and a high-performance
multi-packet mode fully utilizing the computational power of the processing system. The number
of used DAQ cards and the amount of memory used for the DMA buffer may be modified in the
runtime without rebooting the system. That is particularly useful in the development and test setups.
This paper also presents the development and testing methodology. The whole design is open-source
and available in public repositories.

Keywords: FPGA; DMA; HEP; DAQ; HLS

1. Introduction

In data acquisition systems (DAQ) for high energy physics (HEP) experiments, the
significant volume of data from the front end electronics (FEE) must be collected, submitted
to preprocessing, and transferred to the computer systems or whole grids responsible for
final processing and archiving.

Connection to the FEE often uses non-standard high-speed interfaces (Examples of
such non-standard high-speed interfaces may be GBT [1,2], and lpGBT [3,4] links widely
used for connecting FEE in CERN experiments). Data preprocessing is usually associated
with being highly parallel and fast, but with simple calculations on data received from
numerous measurement channels.

Therefore, this section of DAQ is usually implemented using the field programmable
gate array (FPGA) chips, which give the additional advantageous possibility of upgrading
the communication and processing algorithms throughout the whole experiment’s lifetime.

Finally, the preprocessed data must be concentrated and written to the computer
system’s memory in a form enabling efficient final processing. That task should be ac-
complished via direct memory access (DMA) to avoid wasting CPU time on simple data
transfer. If the FPGA responsible for the reception and processing data has direct access to
the system bus of the computer system, implementing the necessary DMA engine in that
FPGA enables efficient data handling and flexibility regarding the layout of data stored in
the memory.

The data acquisition in HEP experiments may run continuously for a long time (many
hours or even days). Therefore, the DMA engine must be capable of performing the

Electronics 2023, 12, 883. https://doi.org/10.3390/electronics12040883 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040883
https://doi.org/10.3390/electronics12040883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6833-4846
https://doi.org/10.3390/electronics12040883
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040883?type=check_update&version=1

Electronics 2023, 12, 883 2 of 23

acquisition in the continuous mode. The memory buffer for storing the acquired data must
be a circular buffer, and protections against buffer overflow must be implemented.

However, implementing complex algorithms in FPGA is a relatively complex task
requiring highly skilled engineers. Full use of the flexibility provided by FPGA can be
significantly facilitated if programmers without this expertise can be involved in creating
or modifying such algorithms. That may be possible with high-level synthesis (HLS)—a
technology enabling the automated conversion of algorithms written in C/C++ into an
FPGA implementation. HLS is successfully and widely used in data processing, but less
often in designing control blocks and hardware interfaces. This paper describes using
HLS to implement a simple yet efficient and flexible DMA engine for HEP-oriented DAQ
systems. The system requirements have been formulated based on reviewing the hardware
and software platform considerations in Sections 1.1 and 1.2. Section 2 describes the existing
solutions. Based on those requirements and prior art, Section 3 describes the concept of a
novelty DMA system. Its original features are:

• The core of the DMA engine is implemented in HLS. This enables easy modification
of the data handling.

• The DMA engine (the FPGA design and the kernel driver) is compatible with FPGAs
connected via PCI-Express in servers and MPSoC chips.

• The scatter–gather DMA buffer based on huge pages enables flexible memory man-
agement even with a standard distribution Linux kernel.

• The solution utilizes the QEMU model of the DMA engine implemented in C. That
enables efficient development and testing of the device driver and application in the
virtual environment [5].

1.1. Hardware Platform Considerations

Enabling a FPGA to fully control the DMA data transfer to the host computer’s
memory requires a tight connection between the FPGA and the system bus. Currently,
there are two hardware solutions commonly used for that. The first is used in SoC (System
on Chip) or MPSoC (Multi-Processor System on Chip) chips, where the programmable
logic (PL) is connected with the processing system (PS) in the same integrated circuit via
one or more AXI buses. The digital system implemented in PL may contain not only AXI
Slaves, but also AXI Masters, enabling the creation of the DMA engine.

The second solution uses FPGA-based extension cards connected to the computer
system’s PCI-Express (PCIe) interface. In this solution, as in the previous one, the FPGA may
implement not only bus slaves, but also bus masters, which can be used as a DMA engine.

In an MPSoC or SoC system, the DMA engine directly controls the system’s AXI
bus. In the PCIe-based solution, the AXI bus is provided by the AXI–PCIe bridge [6,7].
That bridge translates the transactions performed by the DMA engine on the AXI bus
into the equivalent transactions on the host’s PCIe bus. Thanks to that, both hardware
configurations may work with the same DMA engine.

The next necessary design choice is the selection of the input interface for the DMA
engine. For further processing in the computer system, it is beneficial that the preprocessed
and concentrated data are split into smaller portions (packets) supplemented with addi-
tional metadata, which may describe their origin, time of acquisition, and other information
necessary for the particular experiment. A natural solution for transmitting data structured
in that way inside of FPGA is the AXI-Stream [8] interface.

The concept of a versatile DMA engine based on the above considerations is shown in
Figure 1.

Electronics 2023, 12, 883 3 of 23

DMA
Engine

RAM

Computer
system

D
at

a
co

nc
en

tra
to

r
an

d
pr

ep
ro

ce
ss

or

D
at

a

Programmable logic
(PL - FPGA)

SoC or MPSoc

DMA
Engine

PCIe
Interface

RAM

Computer
system

D
at

a
co

nc
en

tra
to

r
an

d
pr

ep
ro

ce
ss

or

D
at

a

FPGA

AXI-PCIe
Bridge

AXI PCIe

a)

b) PCI-Express extension card

CPU

CPU

AXI

AXI
 Stream

AXI
 Stream

DAQ Control AXI

DAQ Control
AXI

Figure 1. Two typical hardware architectures using the DMA engine implemented in FPGA; (a) based
on MPSoC with FPGA and processing system connected directly via AXI interface, (b) based on a
FPGA-equipped PCIe extension card. The AXI-PCIe bridge enables using the same DMA engine as
in case (a). The “DAQ Control” block represents other user-defined logic in FPGA used to control
the DAQ system. It is connected to a separate AXI bus and accessible as another character device in
Linux (see Section 5).

1.2. Computer System Considerations

The operating system typically used in HEP DAQ nodes is Linux. In the hardware
platforms mentioned in the previous section, Linux uses the virtual memory implemented
with paging [9]. That simplifies memory management by eliminating problems resulting
from memory fragmentation, enables memory protection, and allows running each appli-
cation in its own virtual address space. However, from the DMA point of view, the paging
significantly complicates the operation of DMA engines. The kernel and application’s
virtual memory addresses are not identical to the physical addresses. They are translated
using the page tables and page directories (see Figure 2).

Due to the memory fragmentation during the computer system’s operation, allocating
a large physically contiguous buffer may be difficult. The large memory buffer, contiguous
in the virtual address space, may consist of multiple smaller contiguous buffers (in the
worst case, just single memory pages) scattered in the physical address space. Such a buffer
is called a scatter–gather buffer (in short, SG buffer).

Electronics 2023, 12, 883 4 of 23

32-bit linear address
31 12 11 0

page number offset

page table

page table entry

12 lower bits of
address

20 upper bits of
address

32-bit physical
 address

32-bit linear address
31 12 11 0
directory
number offset

page directory

page directory
entry

12 lower bits of
address

20 upper bits of
address

32-bit physical
 address

page
number

page table

page table entry

a)

b)

22 21

Figure 2. Translation of linear (virtual) addresses into physical addresses with paging (in a 32-bit
system for simplicity). (a) The simple one-level paging. The 20 upper bits of the virtual address
are the page number. The page’s physical address is stored in the corresponding page table entry.
The lower 12 bits of the address are the offset inside the page. That scheme is rarely used because
it requires creating large page tables (with 220 entries for the whole 32-bit address space). (b) The
two-level paging. The bits 31–22 are the page table number. The address of the associated page table
is taken from the page directory entry. There may be an empty directory entry for unused address
areas, and the associated page table is not created. That solves the problem of large page tables. The
bits 21–12 are the page number in the page table. The lowest 12 bits are the offset in the page. The
figure is based on the documentation published by Intel [10].

The DMA engine does not use virtual addresses. It uses the physical addresses or the
bus addresses additionally translated by the bus bridge. If the host computer system is
equipped with an IOMMU (I/O Memory Management Unit) [11], mapping the SG buffer
into a contiguous area in the bus address space may be possible. However, the versatile
DMA engine should not rely on its availability. Additionally, using the IOMMU for such
translations may result in reduced performance of DMA transfers [12]. Therefore, working
with a physically contiguous buffer is preferred because the DMA engine must only know
the buffer’s start address in the bus address space and the buffer’s size. On the other hand,
the non-contiguous SG buffer must be represented by a list of its contiguous buffers storing
their addresses and lengths. The Linux kernel offers a dedicated structure, sg_table, to
represent such lists.

There are three solutions for working with large DMA buffers with the described
limitations. The first two are oriented toward enabling the allocation of the large physically
contiguous buffers.

Electronics 2023, 12, 883 5 of 23

1.2.1. Boot Time Reservation

Reserving a large physically contiguous memory area may be performed when boot-
ing the operating system. The Linux kernel offers a special memmap = nn[KMG]$ss[KMG]
parameter that may be used in ACPI-based systems [13]. In the device tree-based systems,
a special reserved-memory node may be used for that purpose. With the boot-time reserva-
tion, however, the user must carefully choose the physical address of the reserved area.
Additionally, that memory remains unavailable for the operating system even if the DMA
is not used.

1.2.2. Contiguous Memory Allocation

As a solution for the above problems, the Contiguous Memory Allocator (CMA) has
been proposed [14]. CMA enables moving the pages in memory to consolidate the free
pages into larger, physically contiguous areas. It should allow the allocation of large,
physically contiguous DMA buffers. However, the CMA is not enabled in standard kernels
used in most Linux distributions. The user must recompile the kernel with a modified
configuration to use it. Additionally, there is still a risk of unsuccessful CMA allocation in
the heavily loaded system.

The third solution aims to enable the DMA engine to work with an SG buffer.

1.2.3. Working with Non-Contiguous Buffers

If the DMA engine is supposed to work with a SG buffer, it must be informed about
the addresses of all contiguous buffers creating that buffer. Three methods may be used to
perform that task (see Figure 3).

RAM

buffer 0

[...]

buffer 255

buffer 254

DMA
engine

R
eg

is
te

rs
 w

ith
 b

uf
fe

rs
ad

dr
es

se
s

an
d

si
ze

s

buffer 1

a&s buf. 1
 a&s buf. 0

buffer 2

a&s buf. 2

a&s buf. 254
a&s buf. 255

[...]

RAM

buffer 0

[...]

buffer 255

buffer 254

DMA
engine

FI
FO

 w
ith

 b
uf

fe
rs

ad
dr

es
se

s
an

d
si

ze
s buffer 1

a&s buf. 1
a&s buf. 0

buffer 2

a&s buf. 2
[...]

a&s buf. 254
a&s buf. 255

a&s buf. 0

Control bus

a) b) c)

Driver

RAM

buffer 0

[...]
buffer 255

buffer 254

buffer 1

buffer 2

DMA
engine

Descriptor of
group of buffers

a&s buf. 1
a&s buf. 0

a&s buf. 7
[...]

addr. next desc.

buffer 7

desc. 0-7

desc. 8-15

desc. 248-255

[...]

[...]

Figure 3. Possible DMA designs working with SG buffers. The large SG buffer consists of multiple
small, physically contiguous buffers. The example shows the continuous transfer where the SG buffer
is used as a circular buffer. In solution (a), the DMA engine contains a group of registers storing
the addresses of all buffers belonging to the circular buffer. For single-page buffers, it results in
huge FPGA resource consumption. In solution (b), the addresses of consecutive buffers are cyclically
written by the driver to FIFO. This solution increases the CPU load. In solution (c), the addresses of
groups of buffers are stored in the descriptors located in RAM. The DMA engine is given the address
of the first descriptor, reads it, and uses the associated buffers. When the end of the group is reached,
the next descriptor is used. Such a solution introduces breaks in the data transfer associated with
reading the descriptors. It also complicates the data flow in the DMA engine.

In the simplest approach (Figure 3a), the DMA engine may contain a set of registers
with a length sufficient to store the data (address and size) of all contiguous buffers being
parts of the SG buffer. In the worst case, the buffer may consist of several separate pages

Electronics 2023, 12, 883 6 of 23

scattered around the RAM. Creating the SG buffer consisting of single pages may even be
enforced for simplicity. In that case, we need to store only their physical addresses because
they all have the same length. However, with a typical page size of 4 KiB, a 1 GiB SG
buffer would require 262,144 pages. Storing so many addresses inside the FPGA would
consume too many resources. Therefore, such a solution is unsuitable for big buffers with
small pages. The advantage of this solution is that the DMA engine may operate fully
autonomously, and it uses the bus only to transfer the data.

The second approach (Figure 3b) requires the device driver to continuously deliver
the addresses and sizes of consecutive contiguous buffers. They are stored in FIFO, so the
data of the next buffer is available immediately when the current buffer is entirely written.
The CPU and bus are additionally loaded, transmitting the buffer’s data in this solution.

In the third approach (Figure 3c), the DMA engine reads the information about the
consecutive contiguous buffers from the computer memory. For better efficiency, those data
are usually stored in descriptors holding the data of a group of buffers (in the figure—for 8
buffers). This solution requires interrupting the transfer whenever the next descriptor must
be read. Additionally, handling the descriptors increases the complexity of the DMA engine.

2. Existing Solutions for the Implementation of DMA in FPGAs

The implementation of DMA engines in FPGAs is not a new topic. Many solutions
have been provided by the FPGA vendors or have been developed independently. Review-
ing them all would make this article unacceptably long. Therefore, the review is limited to
solutions using AXI-Stream as an input interface and applicable to AMD/Xilinx FPGAs.

2.1. Official DMA Engines from AMD/Xilinx

The AMD/Xilinx firm offers many AXI-compatible DMA engines for their
FPGAs [15–17]. The deeper analysis shows they are built around the AXI Datamover [18]
block. The possibility of using them has been investigated in [19]. The AXI Datamover uses
an additional input AXI-Stream interface to receive the transfer commands and another
output AXI-Stream interface to send the status of performed transfers. Additional pair
of interfaces is used to receive the transferred data and to write it to the target location.
Because of that, the concept shown in Figure 3b is a natural way to use it with a SG buffer.
An open-source DMA engine based on that concept has been developed, described in [19],
and is available in a public git repository [20]. Its block diagram is shown in Figure 4.

AXI
Datamover

AXI-Stream
FIFO

AXIS
Interconnect

AXI-Stream - Input data
AXI MM

Output data

Transfer commands

Transfer statuses

AXI Lite - control interface

Figure 4. Block diagram of the DMA engine based on AXI Datamover. The driver delivers the
transfer commands (with data of consecutive contiguous buffers) through the AXI FIFO MM [21]
block. The AXI Interconnect block concatenates a few words in a single data transfer command. The
statuses of the transfers are sent back to the AXI-Stream FIFO.

The AXI Datamover is continuously provided with the data of consecutive contiguous
buffers in advance, which involves the device driver and generates CPU load and traffic
on the control bus. When the end of the packet is received, the last buffer may be filled in
part. Then, the remaining buffer space is not used because the next packet is stored from
the beginning of the next buffer. That results in wasting the buffer capacity. The higher the
inefficiency is, the larger the contiguous buffers are. On the other hand, the larger buffers

Electronics 2023, 12, 883 7 of 23

reduce the load associated with sending their addresses and lengths. In particular, that
solution may be highly inefficient for a variable length of packets and a high probability of
low-length packets.

AMD/Xilinx also offers a dedicated DMA-capable IP core for PCIe [22]. The usage of
its previous version has also been investigated in [19]. It uses the concept of working with
SG buffer descriptors stored in the computer system’s RAM (as in Figure 3c). Unfortunately,
it is a closed-source, proprietary solution limited to operation with the PCIe bus.

2.2. Selected Existing Open-Source DMA Engines

From the existing open-source implementations of the DMA engines, three have been
selected for this review.

The first is the AXIS2MM DMA engine available in the WB2AXIP [23] suite by Dan
Gisselquist [24]. It receives the data from the AXI-Stream, and stores them in a buffer
available via an AXI Memory Mapped interface. It supports continuous operation. Unfor-
tunately, it works only with a physically contiguous buffer. The WB2AXIP also contains
a SG-capable DMA engine [25], but it only supports memory-to-memory transfers, not
stream-to-memory transfers.

Another two open-source DMA engines described in the next section work only
with PCIe.

2.3. PCIe SG DMA Controller

A “Simple PCIe SG DMA controller” [26] is tightly associated with PCIe. It directly
communicates with the TLP layer of the PCIe interface core in FPGA. It is designed for
an old FPGA family—Virtex 5. However, it should be easily portable to newer FPGAs.
This DMA engine can work in a continuous acquisition mode. It supports SG buffers
using method (c) from Figure 3. However, it uses simple descriptors describing only a
single buffer. Additionally, it does not work with the AXI-Stream input interface. Possible
modification by connecting the AXI-Stream FIFO as an input adapter still would not
provide the proper delivery of information about the boundaries between the AXI-Stream
packets.

2.4. Wupper

Another open-source DMA engine is the Wupper [27]. It has been developed at Nikhef
for CERN for the FELIX/ATLAS project. It is a mature and verified in-practice solution.
Wupper was intended to be a simple DMA interface for AMD/Xilinx Virtex-7 PCIe Gen 3,
but has been ported to newer FPGA families such as Kintex Ultrascale, Kintex Ultrascale+,
and Versal Prime. Wupper may work with a few (up to 8) buffer descriptors, with one
descriptor always reserved for the transfer from a computer to FPGA. However, according
to the documentation, those descriptors’ organization does not enable easy handling of SG
buffers, especially in the continuous acquisition mode.

3. Concept of a Versatile DMA Engine for HEP

Based on the facts described in the introduction and the results of the review of the
existing solutions, a concept of a versatile DMA engine for HEP may be formulated.

The engine should be compatible with the SoC/MPSoC using the AXI system bus
and with servers using the PCI-Express bus to connect FPGA-based data acquisition cards.
Therefore, the engine itself should work as an AXI Master, while a possible connection to
the PCIe bus is provided by an additional AXI-to-PCIe bridge (see Figure 1). That solution
may be further extended to other buses for which the AXI bridges are available.

The engine should support continuous data acquisition. Hence, it should work with
the circular DMA buffer, properly controlling the buffer occupancy and notifying the data
processing applications about data availability. Unnecessary use of CPU power should be
avoided, and the data notification latency should be minimized.

Electronics 2023, 12, 883 8 of 23

The engine should work correctly not only in the dedicated data acquisition computer
systems, but also in the systems used for development or data processing. It should be
easily scalable for different numbers of FPGA boards or different sizes of the DMA buffer.
Therefore, the boot-time allocation (see Section 1.2.1) should be avoided.

The maintenance of the system should be simple. Therefore, using a standard Linux dis-
tribution should be possible. That eliminates the possibility of using CMA (see Section 1.2.2).

With those limitations, the only remaining option to support large DMA buffers is
the scatter-gather (SG) operation (see Section 1.2.3). With the required limiting of the
unnecessary CPU load, the best choice is the configuration shown in Figure 3a—storing
the data of contiguous buffers in internal registers in FPGA. Unfortunately, for huge and
highly fragmented buffers, the number of required registers is enormously high (up to
262,144 registers for a 1 GiB buffer—see Section 1.2.3). The amount of stored information
may be reduced by assuming that the buffer consists of single pages. That enables storing
only their addresses, as the size is always the same. However, even with that, the resource
consumption is unacceptable. Significant improvement is possible by using bigger memory
pages. Fortunately, the x86-64 and 64-bit ARM (AARCH64) architectures allow using not
only 4 KiB pages, but also 2 MiB ones. Using such “huge pages” reduces the number of
required registers by a factor of 512. For example, the 1 GiB DMA buffer consists of 512
single-page contiguous buffers, and their addresses may be easily stored inside FPGA.

Another issue is the efficient communication with the data processing application. The
application should be able to sleep while waiting for data availability to reduce the CPU
load. The availability of a new complete AXI-Stream packet should generate the interrupt,
which via the kernel driver, should wake up the application. However, in case of high
intensity in the data stream, it should be possible to mask the interrupt and work in the
polling mode (A similar approach is used in Linux drivers for network cards [28]), avoiding
wasting CPU time for entering and leaving the interrupt context.

To enable efficient access to the individual packets, the location of the received packets
must be available for the receiving application. In addition to the huge circular buffer for
data, a smaller circular buffer for packet locations should be created in the computer system
(host) memory. A single huge page may be used for that purpose, as shown in Figure 5.

Datastream DMA engine

Master

Slave

Computer

Bus interface

RAM
Circular buffer

for data

pa
ck

et
 1

0

pa
ck

et
 5

0

[...]

packet 49

packet 50

start endp10

start endp50

[...]

[...]

Control

packet 10
packet 11

Circular buffer for
packets locations

Figure 5. Data flow in the DMA engine. The data packets are stored in the primary big circular buffer.
The locations of the received packets are stored in a smaller circular buffer, enabling quick access to
the desired packet.

Electronics 2023, 12, 883 9 of 23

4. Implementation of DMA in FPGA with HLS

As mentioned in Section 1, the HLS technology may be used to simplify implementing
complex algorithms in FPGA. In particular, HLS enables a straightforward (from the user’s
point of view) implementation of AXI-Stream and full AXI interfaces.

In particular, the implementation of a reasonably performing AXI Master in HDL is
quite a sophisticated task [29,30]. In the HLS, simply specifying the appropriate interface
for a C/C++ function argument generates a parameterized AXI master [31,32].

A very simple example code from AMD/Xilinx using the AXI Master interface to
access the data in the computer system’s memory is shown in Listing 1.

Listing 1. A very simple code using the AXI interface to read the data from memory and write the
modified data to its original location. That is a shortened source published by AMD/Xilinx at [33].

/*
* Copyright 2021 Xilinx, Inc.
* Licensed under the Apache License, Version 2.0 (the "License");

*/

#include <stdio.h>
#include <string.h>

void example(volatile int *a){

#pragma HLS INTERFACE m_axi port=a depth=50

int i;
int buff[50];

memcpy(buff,(const int*)a,50*sizeof(int));

for(i=0; i < 50; i++){
buff[i] = buff[i] + 100;

}

memcpy((int *)a,buff,50*sizeof(int));
}

Similarly, specifying the appropriate interface for a C/C++ function argument gener-
ates the AXI-Stream slave [31,34].

An implementation of a trivial DMA engine receiving the data from the AXI Stream
interface and writing them to the computer system’s memory may be performed in less
than 70 lines of C/C++ code. An example of such code is published by AMD/Xilinx in [35].
The shortened version is shown in Listing 2.

The function uses two tasks—the first for reading the data from the AXI-Stream to
the temporary buffer, and the second for writing the data from that buffer to the computer
system’s RAM via AXI Master. Both tasks are scheduled using the dataflow approach,
allowing them to run in parallel.

The block diagram of that trivial DMA engine is shown in Figure 6.

ge
tin

st
re

am

AXI Stream input

st
re

am
to

pa
ra

lle
l\

w
ith

bu
rs

t

outTop
DMA buffer

buf

count

Figure 6. Structure of the AMD/Xilinx code implementing the transfer of the AXI-Stream packet to
the DMA buffer.

Electronics 2023, 12, 883 10 of 23

Listing 2. Simple code receiving the AXI-Stream packet and storing it in the buffer inside the
computer systems memory. That is a modified source published by AMD/Xilinx in [35].

/*
* Copyright 2021 Xilinx, Inc.
*
* Licensed under the Apache License,
* Version 2.0 (the "License");
*/

#include "example.h"

void streamtoparallelwithburst(
hls::stream<data> &in_stream,
hls::stream<int> &in_counts,
ap_uint<64> *out_memory) {

data in_val;
do {

int count = in_counts.read();
for (int i = 0; i < count; ++i) {

#pragma HLS PIPELINE
in_val = in_stream.read();
out_memory[i] = in_val.data_filed;

}
out_memory += count;

} while(!in_val.last);
}

void getinstream(
hls::stream<trans_pkt >& in_stream,
hls::stream<data > &out_stream,
hls::stream<int>& out_counts)

{
int count = 0;
trans_pkt in_val;
do {

#pragma HLS PIPELINE
in_val = in_stream.read();
data out_val = {in_val.data, in_val.last};
out_stream.write(out_val);
count++;
if (count >= MAX_BURST_LENGTH || in_val.last) {

out_counts.write(count);
count = 0;

}
} while(!in_val.last);

}

void example(
hls::stream<trans_pkt >& inStreamTop,
ap_uint<64> outTop[1024]) {

#pragma HLS INTERFACE axis register_mode=both \
register port=inStreamTop

#pragma HLS INTERFACE m_axi max_write_burst_length=256 \
latency=10 depth=1024 bundle=gmem0 port=outTop

#pragma HLS INTERFACE s_axilite port = outTop \
bundle = control

#pragma HLS INTERFACE s_axilite port = return \
bundle = control

#pragma HLS DATAFLOW

hls::stream<data,DATA_DEPTH > buf;
hls::stream<int,COUNT_DEPTH> count;

getinstream(inStreamTop, buf, count);
streamtoparallelwithburst(buf, count, outTop);

}

4.1. Development of the Final HLS Solution

The simple code shown in the previous section does not meet the requirements for the
DMA engine for HEP applications, defined in Section 3. It simply reads a single AXI-Stream
packet and writes it to the memory buffer. It does not support continuous acquisition nor
supports the SG buffers. Additionally, it does not check for overflow in the output buffer.

Adding those necessary functionalities was a long iterative process. The HLS synthesis
is controlled with many options, which may be defined as so-called pragmas in the source
code or as project settings [31,36].

The previous experiences with HLS [37,38] have shown that this process requires
thorough verification not only in the C simulation (offered by the Vivado suite), but also at
the level of the finally generated RTL code. Therefore, a dedicated verification environment
has been created, described in Section 6.1. This section describes the final implementation
that uses the HLS kernel with a top-level dma1 function responsible for handling a single
AXI-Stream packet.

The structures and constants used in the implementation are shown in Listing 3. As
stated in Section 3, the DMA engine should use the approach shown in Figure 3a with
2 MiB-long huge pages.

The input AXI-Stream interface is implemented as the argument stin, while the output
AXI Master interface is represented as the argument a.

The addresses of the huge pages used as contiguous buffers are described in HLS as
the array of 64-bit unsigned integers connected to the AXI Lite interface bufs. A constant
NBUFS defines the maximum number of contiguous buffers, but the argument nof_bufs
gives their actual number (and, thence, the circular buffer size).

Electronics 2023, 12, 883 11 of 23

Listing 3. Top-level function implementing the core of the DMA engine in HLS. It is described in
Section 4.1. The complete source code is publicly available in the repository [39].

typedef ap_uint<256> AXI_VALUE;
typedef ap_uint<64> AXI_ADDR;
typedef ap_axiu<256, 1, 1, 1> AXIS_DATA;

typedef struct {
AXI_VALUE dta;

} BUF_DATA;

typedef struct {
ap_uint<32> count;
ap_uint<32> word;
ap_uint<1> eop;
ap_uint<1> nextbuf;

} BURST_MARK;

typedef struct {
ap_uint<64> base;
ap_uint<64> first;
ap_uint<64> after;
ap_uint<32> count;
ap_uint<32> packet;
ap_uint<32> nr_buf;
ap_uint<1> overrun;
ap_uint<1> eop;

} OUTPUT_CHUNK;

typedef struct {
ap_uint<32> nr_buf;
ap_uint<32> nr_pkt;
ap_uint<1> overrun;
ap_uint<1> eop;

} OUTPUT_SIGS;

typedef struct {
ap_uint<64> first;
ap_uint<64> after;
ap_uint<64> filler[2];

} PKT_DESC;

static const int BUFFER_FACTOR = 2;

static const int MAX_BURST_LENGTH = 256;

static const int DATA_DEPTH = MAX_BURST_LENGTH * BUFFER_FACTOR;
static const int COUNT_DEPTH = 2*BUFFER_FACTOR;

static const int CHUNKS_DEPTH = 2*BUFFER_FACTOR;
static const int NBUFS = 2048;
#define NPKTS (2*1024*1024/32) //Number of packets in desc. buffer
#define BUFLEN (2*1024*1024/32) //Length of buffer in words

The address of the huge page storing the packet descriptors (locations of the received
packets) is delivered via the argument descs.

The next two arguments are used to control filling the circular buffers. The cur_buf
delivers the number of the first (Because both buffers are circular, the numbers are increased
using modular arithmetics) contiguous buffer containing data not yet received by the
application. Similarly, the cur_pkt delivers the number of the first packet descriptor not
yet received by the application.

The arguments nr_buf and nr_pkt output the number of the contiguous buffer and
the number of the packet currently written by the DMA engine.

The last argument, xoverrun, outputs the information that the data loss occurred due
to an attempt to write new data when either no free contiguous buffer or no free packet
descriptor was available.

The top function dma1 schedules four subtasks (readin, prepare, writeout, and up-
date_outs) in the DATAFLOW mode.

Those subtasks are communicating via hls::stream variables. The data flow between
them is shown in Figure 7, and their functionalities are described in the following subsections.

nr of packet
pr
ep

ar
e

re
ad

in

AXI Stream input
 w
rit

eo
ut

up
da

te
_o

ut
s

outs

DMA cyclic buffer

nr of buffer

overrun

buf

bursts

chunks
current packet
current buffer

addresses of buffers
number of buffers

Figure 7. Structure of the HLS-implemented core of the DMA engine.

4.2. Readin Subtask

This task reads the data from the input AXI-Stream and packs them into “bursts” of
the predefined maximum length. The task considers that the data are packed into 2 MiB
long contiguous buffers and controls the filling of the contiguous destination buffer. The
“burst” is completed when its maximum length is reached, the contiguous destination
buffer is filled, or the last word in the AXI-Stream is received. Afterward, the “burst” data

Electronics 2023, 12, 883 12 of 23

are passed to the writeout task. Additionally, the properties are transferred to the prepare
subtask.

4.3. Prepare Subtask

This subtask is given the number of available contiguous buffers and their addresses.
It also receives information about the last contiguous buffer and the packet handled and
freed by the host. Based on that information and the “burst” properties, this task prepares
the descriptor of the write operation (called “chunk”) for the next writeout task. That
descriptor contains:

• A number of the currently transmitted packet,
• A number of the currently used contiguous buffer,
• The destination address and the length of the data,
• The information if overrun (an attempt to write a not freed buffer or packet) occurred,
• The information if the last word from the current AXI-Stream packet was received.

4.4. Writeout Subtask

This subtask receives the “chunk” descriptors from the prepare task and the associated
“burst” data from the readin task. Based on that, it writes the “burst” data to the desired
location in the host memory. At the end of the AXI-Stream packet, the packet’s start and
end locations in the circular buffer are also written to the “descriptors” contiguous buffer.
Finally, the writeout task prepares the new values of the output variables—the number of
the currently written contiguous buffer, the number of the currently written data packet
(AXI-Stream packet), and the overrun status. Those values are passed to the last subtask
update_outs.

4.5. update_outs Subtask

A dedicated subtask ensures that the output variables are updated after the packet
data are successfully stored in the circular data buffer and after the packet descriptor is
written to the circular descriptors buffer.

4.6. HDL Support Cores

Unfortunately, it was not possible to implement all the required functionality using
the HLS technology.

When the driver frees the packet and associated contiguous buffers, the “current buffer”
and “current packet” are modified by the software. That change should be immediately
visible for the DMA engine. Otherwise, false buffer overruns may be generated.

In the case of interrupt generation, the situation is even worse. The interrupt is
generated when the new packet is available, and the interrupts are not masked. The
driver keeps the number of the last packet passed to processing in the “last scheduled
packet” variable. The availability of the new packet is checked by comparison of the “last
scheduled packet” and “nr of packet”. After passing the new packet for processing, the
software updates the “last scheduled packet”. However, when this modification is not
immediately visible to the interrupt generation block, a false repeated interrupt request
will be generated. For the same reason, all changes in the interrupt masking register must
be visible immediately for the interrupt generation block.

Unfortunately, the registers defined in the HLS code as accessible via the s_axilite
interface do not provide immediate propagation of their values. To workaround the
described problems, a separate AXI-Lite slave was implemented in HDL. It provides fast
access to the “current buffer”, “current packet”, “last scheduled packet”, and interrupt
masking registers, enables writing the HLS core control signals (ap_start, ap_rst_n) and
reading its status (ap_done, ap_ready and ap_idle).

Electronics 2023, 12, 883 13 of 23

5. Software Supporting the DMA Engine

The DMA engine described in the previous section must be supported by the software
consisting of the data processing application and the device driver. The device driver
creates two separate character devices for each DAQ board available in the system: the
my_daqN (N is replaced by the number of the board) for the DMA engine and my_ctrlN
for the DAQ control logic (see Figure 1). Such a solution enables the safe separation of
controlling the DAQ system from the data processing. In particular, an error in the data
processing thread does not need to crash the DAQ control application (outside this article’s
scope), so restarting the data acquisition may be possible without full reinitialization of the
DAQ system.

The software may work in one of two operating modes. In the single-packet mode,
the arriving data packets are processed sequentially. Packets are processed in the order
of arrival, and two packets are never processed simultaneously. The application sleeps if
there are no more packets for processing. That mode is suitable for debugging, processing
the data in a simple single-threaded application, or archiving the data on disk.

In the multi-packet mode, the packets are passed to the data processing threads in
the order of arrival. If there is a free processing thread, the next packet may be scheduled
for processing before the previous ones are processed. The application sleeps if there are
no more packets available for processing. The packet scheduled for processing becomes
a property of the processing thread, which is responsible for freeing it after successful
processing. That mode enables full utilization of the data processing power of the DAQ
host. The packets may be processed in parallel on multiple CPU cores. It is also well
suited for transferring data packets independently to the computing grid for processing on
different nodes.

The flow diagrams of both modes are shown in Figure 8.

Detailed Description of the Software Operation

The software performs the following tasks:

• It prepares the huge pages-backed DMA buffer. It creates a file of the required size in
a hugetblfs filesystem (that can be done even in a shell script). Then, the created file is
mapped into the application address space.

• Whenever the data acquisition is started or restarted, the following actions must be
performed:

– The DMA driver resets the engine (due to HLS limitations, it is needed to set the
initial values of the registers).

– The DMA driver maps the buffer for DMA (if the buffer was already mapped,
the mapping is destroyed and recreated) (This operation requires using func-
tions get_user_pages_fast and __sg_alloc_table_from_pages or sg_alloc_table_
from_pages_segment, and the implementation depends on the version of the
kernel).

– The DMA driver configures the DMA engine to work with the currently mapped
buffer. In particular, it writes the bus addresses of all huge pages into the engine’s
registers.

– The DAQ control application configures the data source.
– In the multi-packet mode, the data processing application starts the processing

threads.
– The DMA driver starts the engine.
– The DAQ control application starts the data source.

• If the single-packet mode is used, the data processing loop works as follows:

– If no data packet is available, the DMA interrupts are switched on, and the
application sleeps, waiting for data or command.

– If the error occurred or the stop command has been received, the application
leaves the data processing loop.

Electronics 2023, 12, 883 14 of 23

– If the new data packet is received, the DMA interrupts are masked, and the packet
is passed to the data processing function.

– After the packet is processed, it is confirmed and freed.
– The next iteration of the loop is started.

• If the multi-packet mode is used, the data processing loop works as follows:

– If no data packet is available, the DMA interrupts are switched on, and the
application sleeps, waiting for data or command.

– If the error occurred or the stop command has been received, the application
leaves the data processing loop.

– If the new data packet is received, its number is passed to one of the data process-
ing threads via ZMQ [40], and the engine is notified that the particular packet has
been scheduled for processing. (The device driver uses dedicated ioctl commands
for that purpose: DAQ1_IOC_GET_READY_DESC for obtaining the number of
the received packet, and DAQ1_IOC_CONFIRM_SRV for writing the number
of the last scheduled packet into the last scheduled packet register in the engine).

– The software checks if other packets have been received and are awaiting process-
ing (A dedicated ioctl DAQ1_IOC_GET_WRITTEN_DESC command returns
the number of the first packet that is not ready for processing yet. So, all packets
between the returned by DAQ1_IOC_GET_READY_DESC and that one may
be scheduled for processing). In the internal loop, all the available packets are
scheduled for processing in the available threads.

– The next iteration of the loop is started.

• Actions performed by the signal processing thread in the multi-packet mode are the
following:

– The thread sleeps, waiting for a packet to be processed.
– The parts of the DMA buffer containing the packet descriptors and data of the

packet are synchronized for the CPU (A dedicated ioctl DAQ1_IOC_SYNC is
used for that purpose. Synchronizing the arbitrarily selected part of the SG buffer
in the Linux kernel requires storing a separate array of addresses of all huge pages
creating the buffer. The original sg_table structure does not support random
access).

– The start and end addresses of the packet data are read from the descriptor.
– The packet data are processed.
– After the data are processed, the packet is marked for freeing (A dedicated ioctl

DAQ1_IOC_CONFIRM_THAT command is used for that. Due to the parallel
handling of multiple packets, the driver must keep track of all packets ready to be
freed. A bitmap is used for that purpose. When the packet currently pointed by
the “current packet” register is freed, all the packets marked for freeing are also
freed. The “current packet” and “current buffer” are then updated accordingly).

– The thread is stopped if the error occurred or the stop command has been received.
Otherwise, the above operations are repeated.

• The shutdown procedure:

– The DAQ application stops the data source.
– The DMA application stops the DMA engine.
– In the multi-packet mode, the DMA application sends the STOP command to

processing threads and joins them.
– The DMA application frees the resources—unmaps, and frees the DMA buffer.

The example data processing application written according to the above description is
delivered together with the sources of the driver and is available in the repository [41].

Electronics 2023, 12, 883 15 of 23

Prepare DMA buffer

Prepare DMA engine

Prepare data source

Start DMA

Process packet

Sleep waiting for
data or command

stop
command re-

ceived?

data packet
available?

Confirm and free
packet

Stop data source

Stop DMA engine

Free resources

Stop

Pass packet for
processing

Sleep waiting for
data or command

stop
command re-

ceived?

data packet
available?

Confirm scheduling
of the packet

Stop the data source

Stop DMA engine

Free resources

Stop

Start data source

Prepare DMA buffer

Prepare DMA engine

Prepare data source

Start DMA

Start data source

Join processing
threads

Start processing threads

Get packet
location in the

buffer

Process
packet

Free packet

Wait for packet
or command

stop
command re-

ceived?

Stop
thread

Get packet
location in the

buffer

Process
packet

Free packet

Wait for packet
or command

stop
command re-

ceived?

Stop
thread

[...]

Processing threads

a) b)

Yes

No

Yes

No

Yes

Yes Yes

Yes

No

No

No No

Figure 8. Two modes of operation of the data acquisition software; (a) single-packet mode—packets
are received and processed sequentially, and the next packet is only handled after the previous one
is fully processed and confirmed. This mode may be well-suited for recording the acquired data
or debugging the system. (b) Multi-packet mode—packets are passed for processing to the data
processing threads as they arrive. Multiple packets may be processed at the same time. This mode
enables full utilization of multiple CPU cores in the system. It may be perfect if different data packets
are processed independently (e.g., transferred to different nodes in the computing grid).

6. Tests and Results

The DMA engine and accompanying software were thoroughly tested during the de-
velopment. The initial idea of the core was tested as an entirely virtual device implemented
in C in QEMU sources [5]. At this stage, the basic assumptions regarding the architecture,

Electronics 2023, 12, 883 16 of 23

structure of registers, and driver organization were tested. That emulation environment
enabled testing the first version of the driver with different versions of the kernel and
different hardware platforms. That contributed to creating the code that compiles on a
wide range of kernel versions, starting from 5.4, and works on the x86-64 and AARCH64
architectures used in PCIe-equipped servers and MPSoC systems.

The emulation was maintained throughout the whole development and testing period.
The emulated machine could host multiple DMA engines to verify that the driver supports
the simultaneous handling of multiple devices. The initial model of the DMA engine was
continuously updated to follow the development of the HLS-implemented engine used in
the actual hardware. The final version of the model was implemented in two versions—
one connected via the PCIe bus [42], and another connected directly to the system bus
(emulating the AXI bus) [43]. The driver was slightly modified to support the DMA engine
directly connected to the system bus, and the correct operation was confirmed in emulation.
Of course, verification in the actual MPSoC system should be done in the future.

6.1. Tests in the RTL Simulations

The HLS technology generates the RTL code from the C/C++ description. However,
it is a complex process that may be significantly affected even by minor variations of the
C/C++ code and the settings used (so-called pragmas). Therefore, frequent verification of
the generated RTL code was essential to developing the DMA engine in HLS. Complete
synthesis and implementation of the generated code take significant time. The capabilities
of debugging the core operation in hardware are also limited. The Integrated Logic Analyzer
(ILA) [44] allows only a relatively short recording of a preselected subset of internal signals.
Modifying this subset requires repeated synthesis and implementation.

Therefore, testing of the generated RTL code was done in HLS simulation. As the PCIe
interface simulation is very time-consuming, the simulation was limited to the AXI bus.
Verifying the DMA engine working as an AXI Master required a high-performance AXI
Slave [45]. Hence, the testbench was created based on the AXI cores developed by Dan
Gisselquist for his ZipCPU [23]. Simulation of the computer running the control software
also consumes too much time and resources. Therefore it was replaced with a simple
controller initializing the DMA core. The block diagram of the main part of the simulation
environment is shown in Figure 9.

HLS-implemented
DMA engine

AXI
controller

AXI GPIOs

AX
I-L

ite
 b

us

AXI

packet
and buffer
numbers

AXI

Data

FIFO

High-performance
AXI to simple bus

bridge

AXI Simple

bus Bus

monitor
Simulated

data source

AXI-

Stream

Figure 9. The test environment used for simulation. The AXI controller initializes the DMA engine.
The high-performance AXI to simple bus bridge was implemented based on the “demofull” core
from [23]. The simulated environment is available in the git repository [39] in the test_env directory.

The RTL simulations helped to convert the initial simple demonstration code provided
by Xilinx (see Listing 2) into the fully-fledged DMA engine working in continuous mode
with a large SG buffer (described in Section 4.1 and the following sections).

Those simulations have revealed the problem of fully utilizing the AXI bandwidth. It
appeared that the HLS-generated AXI Master does not start sending the next chunk of data
before the writing of the previous one is finished and confirmed by the AXI bus. Enabling
the generation of outstanding write transactions with the num_write_outstanding param-
eter does not help. The only viable solution was an increase of the chunk length to increase

Electronics 2023, 12, 883 17 of 23

the ratio of time of writing the chunk to the time of waiting for the confirmation. Of course,
such a workaround increases the FPGA memory usage and the data transfer latency. The
results of simulations for different chunk lengths are shown in Figures 10 and 11.

Figure 10. Results of simulation for a chunk length of 256 words. Waveform displayed with GTKWave.
Approximately 74% of the AXI bus bandwidth is used.

Figure 11. Results of simulation for a chunk length of 2048 words. Waveform displayed with
GTKWave. Approximately 93% of the AXI bus bandwidth is used.

6.2. Tests in the Actual Hardware

The HLS-implemented DMA engine has been successfully synthesized with the
Vivado-HLS and Vivado (The DMA engine was prepared for integration with projects
using the 2020.1 version of Vivado-HLS and Vivado. Therefore, the same version was used
to synthesize, implement and test it) environment for two hardware platforms:

• KCU105 [46] AMD/Xilinx board, equipped with Kintex Ultrascale XCKU040-2FFVA1156E
FPGA,

• TEC0330 [47] board from Trenz Electronic equipped with Xilinx Virtex-7 XC7VX330T-
2FFG1157C FPGA.

To fully load the board and communication channel, the pseudorandom data from the
artificial data generator were transmitted (see Figure 12). The block diagram of the demo
project is shown in Figure 12, and the sources are available in the repository [39].

AXI-PCIe
Bridge

HLS-implemented
DMA engine

Simulated data
source

HDL-
implemented

support core

AXI slave
registers

AXI

DMA transfer

packet and
buffer numbers

overrun flag

AXI-
Stream

Control and status signals

Run signal

IRQ
request

AXI-Lite

control

bus

Host
PCIe

IRQ enable

and status

Figure 12. Block diagram of the demo project testing the DMA engine with simulated data source in
the actual hardware.

Electronics 2023, 12, 883 18 of 23

The results of synthesis for both platforms and two lengths of the data chunks (Lengths
of 256 and 2048 words were used, as in the simulation in Section 6.1, to compare simulated
and actual performances) are shown in Table 1. The AXI bus clock frequency was set to
250 MHz as required for an 8xGen3 AXI–PCIe bridge working with a 256-bit wide data bus.
The correct timing closure was obtained in all cases.

Table 1. Resource consumption of the DMA engine for tested hardware platforms and two lengths of
the data chunks. Absolute and percentage (in parenthesis) consumption is given. The artificial data
source was included in the design, but the ILA blocks used for debugging were excluded.

KCU105 TEC0330
LUTs Flip Flops Block RAMs LUTs Flip Flops Block RAMs

Available 242,400 484,800 600 204,000 408,000 750
Used for

256-words
chunks

9909 (4.09%) 15,204 (3.14%) 45 (7.5%) 12,503 (6.13%) 15,928 (3.90%) 45 (6%)

Used for
2048-words

chunks
9858 (4.07%) 15,213 (3.14%) 69.5 (11.58%) 12,445 (6.10%) 15,946 (3.91%) 69.5 (9.27%)

For tests, the KCU105 board was placed in an 8xGen3 PCIe slot of a PC computer with a
PRIME B360M-A motherboard, 32 GiB of RAM, and Intel® Core™ i5-9400 CPU @ 2.90 GHz.
The TEC0330 board was placed in an 8xGen3 PCIe slot of a Supermicro server with an
X10SRi-F motherboard, 64 GiB of RAM, and Intel® Xeon® CPU E5-2630 v3 @ 2.40 GHz.

In both boards, a reliable operation with 8-lanes PCIe Gen 3 was obtained (Trenz
Electronic advertises TEC0330 as 8-lanes PCIe Gen 2 capable. However, the FPGA chip
used in the board supports PCIe Gen 3, and correct operation in 8xGen3 configuration has
been verified in exhaustive tests of three different boards).

The data processing application verified the correctness of all transferred words. The
correct operation was confirmed in tests lasting up to 8 h. The firmware compiled for
the maximum length of a data chunk equal to 256 words provided low utilization of the
available PCIe bandwidth. Therefore, the tests were repeated with the length of the data
chunk increased to 2048 words. The results are summarized in Table 2. The measurements
of the transfer speed agree with the results obtained in the RTL simulations (see Section 6.1).
The bandwidth utilization is lower than in simulations because the PCIe bridge introduces
additional latency that delays the write transaction’s confirmation. Using the 2048 word-
long data chunk provides acceptable performance with reasonable resource consumption.
However, the limited utilization of the bus bandwidth requires further investigation.

Table 2. Transmission speed and 8xGen3 PCI-Express bandwidth utilization in tested hardware
platforms.

KCU105 TEC0330
Absolute Percentage Absolute Percentage

Available 7.877 GB/s 100% 7.877 GB/s 100%
Used for

256-words
chunks

4.731 GB/s 60.1% 4.721 GB/s 59.9%

Used for
2048-words

chunks
6.724 GB/s 85.4% 6.691 GB/s 84.9%

7. Discussion and Conclusions

The main aim of the work was achieved. A versatile DMA engine was implemented
in HLS with minimal supporting HDL code. The accompanying device driver and data-
processing application were created. The correct operation of the system in the actual

Electronics 2023, 12, 883 19 of 23

hardware was confirmed with the PCIe-connected FPGA boards hosted in x86-64 com-
puters. Its correct operation with a FPGA connected directly to the system bus (AXI) was
confirmed in simulations.

7.1. Innovation and Research Contribution of the Paper

In comparison with the existing solutions described in Section 2, the described system
offers the following advantages:

• Using the SG DMA buffer consisting of huge pages and storing the complete descrip-
tion of the huge buffer inside the programmable logic is a new concept not found in
the alternative solutions. It significantly simplifies handling the large DMA buffers,
which otherwise require one of the below supporting features:

– Periodically transmitting the addresses of the small contiguous buffers consisting
of small standard pages,

– Reserving the memory at the boot time or using a special version of the Linux
kernel with CMA (for allocating a huge physically contiguous buffer),

– Using a special version of hardware equipped with advanced IOMMU.

• Unlikely the DMA based on the AXI Datamover (see Section 2.1), it fully utilizes the
DMA buffer. There is no unused space in the last buffer occupied by the AXI-Stream
packet. The start and end position of the packet is stored in the packet descriptors’
buffer.

• The presented solution can operate in two hardware configurations: AXI-connected
programmable logic (like in MPSoC chips) and PCIe-connected FPGAs. That feature
distinguishes it from solutions based on a dedicated DMA-capable IP core for PCIe, a
“Simple PCIe SG DMA controller”, and Wupper.

A significant contribution of the paper is investigating the applicability of the HLS
technology for implementing a DMA engine. The results have shown that HLS may be
usable for designing hardware controllers. However, certain functionalities (including
real-time handling of control and status signals and interrupt generation) require additional
support modules written in HDL. HLS may be used to reduce the workload associated with
designing specific parts of the controller (for example, the datapath and AXI interfaces),
but cannot fully eliminate the need for an FPGA-skilled engineer.

The described project uses the workflow based on a new design and testing method-
ology with the device model implemented in QEMU [5]. That approach enabled the
development and testing of software components (device driver and data processing appli-
cation) in conditions that were not possible in the available hardware configurations. For
example, testing the simultaneous operation of multiple FPGA boards in the same server
or testing the driver in the AARCH-64 platform.

7.2. Additional Features Useful in HEP Data Acquisition

The described system offers almost entirely zero-copy operation. The packet data
placed into the DMA buffer may be either analyzed locally without copying or passed
for transmission to another processing node in the computing grid environment. The
system supports the parallel processing of multiple packets, enabling full utilization of the
computing power of the host computer.

When used for development, the system’s features improve the speed of development
and testing. The user may control resources used by the DMA engine without rebooting
the computer. Using the huge pages for the SG buffer enables changing the amount of
memory allocated for the DMA buffer according to the current needs. The user may decide
at the runtime which of the installed DAQ boards should be used. That prevents wasting
resources on the installed but unused boards.

Electronics 2023, 12, 883 20 of 23

7.3. Availability of the Sources

The important feature of the presented DMA engine is its open-source character. The
sources of all components created by the author are available in public git repositories:
the HLS/HDL design in [39], the driver and data processing application in [41], and the
QEMU-based emulation environment with the author’s models in [42,43]. That is very
important because the system, even though usable, still has an experimental character.
Therefore, feedback from users is essential.

7.4. Practical Use of the System

The developed system has already been used in practice. The TEC0330 board, used
as one of the test platforms in this project, is the basis for a GERI(The name GERI is an
abbreviation of “GBTxEMU Readout Interface”) readout board. The DAQ firmware for
GERI was initially developed for the BM@N experiment [48]. Later, it was adapted for
other experiments and integrated with the described DMA engine. GERI receives the hit
data sent by the STS-XYTER [49] readout ASIC and delivered via the GBTxEMU [50] board.
The data received from several (up to 7) GBTxEMU boards are concentrated, supplemented
with the metadata describing their source, packed into 256-bit words, and delivered via the
AXI-Stream interface to the DMA engine.

The BM@N experiment uses a trigger. Therefore, the data of hits occurring in a
predefined period surrounding the trigger pulse is grouped into so-called “event” and
transmitted as a single AXI-Stream packet. In other experiments, GERI may be used with a
trigger-less readout. In that case, the arriving data are split into the AXI-Stream packets
based on their timestamp or time of their arrival.

The firmware was already used by a team preparing the STRASSE detector [51] for
the PFAD experiment [52]. The group has achieved the first positive results.

The use of the GERI board with the developed DMA engine is also planned in certain
projects related to the CBM experiment [53]. For example, the Indian team working on the
MUCH detector [54] for local tests needs GERI to replace a standard CBM readout board,
which cannot be used in India due to export restrictions.

Of course, the presented DMA engine may also be used outside the HEP experiments.
It may be a useful solution for any FPGA-based application where the fast DMA transfer of
data available as AXI-Stream packets is needed.

7.5. Future Work

Future work should focus on fixing the discovered deficiencies of the HLS-generated
AXI Master to improve the bus bandwidth utilization. If that problem is resolved in newer
versions of HLS, porting the design to the newer Vitis-HLS environment may be necessary
(Currently, the design requires Vivado and Vivado-HLS 2020.1 because that is the version
used by other projects with which it should be integrated).

The engine’s operation in FPGA directly connected to the system bus has been verified
only in the simulation. Therefore, the implementation of the engine on an MPSoC running
Linux should be performed in the near future. Another area for future improvements is
integrating the HLS-implemented device with QEMU directly.

Funding: This research was partially supported by the statutory funds of Institute of Electronic
Systems. This project has also received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 871072.

Data Availability Statement: Not applicable.

Acknowledgments: The author acknowledges support from coworkers from FAIR/GSI. The tests
in the actual hardware were partially performed in the FAIR/GSI STS lab, and were supported by
Christian J. Schmidt, Jörg Lehnert and David Emschermann.

Conflicts of Interest: The author declares no conflict of interest.

Electronics 2023, 12, 883 21 of 23

Abbreviations
The following abbreviations are used in this manuscript:

FPGA Field programmable gate array
DMA Direct memory access
DAQ Data acquisition system
HEP High-energy physics
SoC System on chip
MPSoC Multi-processor system on chip
TLP Transaction Layer Packet in the PCI Express interface
KiB 1024 bytes
MiB 1024*1024 bytes
GiB 1024*1024*1024 bytes

References
1. Baron, S.; Ballabriga, R.; Bonacini, S.; Cobanoglu, O.; Gui, P.; Kloukinas, K.; Hartin, P.; Llopart, X.; Fedorov, T.; Francisco, R.; et al.

The GBT Project. In Proceedings of the Topical Workshop on Electronics for Particle Physics, Paris, France, 21–25 September 2009.
[CrossRef]

2. Marin, M.B.; Baron, S.; Feger, S.; Leitao, P.; Lupu, E.; Soos, C.; Vichoudis, P.; Wyllie, K. The GBT-FPGA core: Features and
challenges. J. Instrum. 2015, 10, C03021. [CrossRef]

3. Soós, C.; Détraz, S.; Olanterä, L.; Sigaud, C.; Troska, J.; Vasey, F.; Zeiler, M. Versatile Link PLUS transceiver development. J.
Instrum. 2017, 12, C03068. [CrossRef]

4. Mendez, J.M.; Baron, S.; Kulis, S.; Fonseca, J. New LpGBT-FPGA IP: Simulation model and first implementation. In Proceedings of
the Topical Workshop on Electronics for Particle Physics—PoS(TWEPP2018); Sissa Medialab, Antwerp, Belgium, 17–21 September
2019; p. 059. [CrossRef]

5. Zabolotny, W.M. QEMU-based hardware/software co-development for DAQ systems. J. Instrum. 2022, 17, C04004. [CrossRef]
6. AXI Bridge for PCI Express Gen3 Subsystem v3.0. Available online: https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-

gen3 (accessed on 5 February 2023).
7. DMA/Bridge Subsystem for PCI Express v4.1. Available online: https://docs.xilinx.com/r/en-US/pg195-pcie-dma (accessed

on 5 February 2023).
8. AMBA AXI-Stream Protocol Specification. Available online: https://developer.arm.com/documentation/ihi0051/latest (accessed

on 5 February 2023).
9. Corbet, J.; Rubini, A.; Kroah-Hartman, G.; Rubini, A. Linux Device Drivers, 3rd ed.; O’Reilly: Beijing, China; Sebastopol, CA, USA,

2005. Available online: https://lwn.net/Kernel/LDD3/ (accessed on 5 February 2023).
10. Intel® 64 and IA-32 Architectures Software Developer Manuals. Available online: https://www.intel.com/content/www/us/e

n/developer/articles/technical/intel-sdm.html (accessed on 5 February 2023).
11. An Introduction to IOMMU Infrastructure in the Linux Kernel. Available online: https://lenovopress.lenovo.com/lp1467.pdf

(accessed on 5 February 2023).
12. 32/64 bit, IOMMU and SWIOTLB in Linux. Available online: http://xillybus.com/tutorials/iommu-swiotlb-linux (accessed on

5 February 2023).
13. The Kernel’s Command-Line Parameters. Available online: https://www.kernel.org/doc/html/latest/admin-guide/kernel-pa

rameters.html (accessed on 5 February 2023).
14. Suryavanshi, A.S.; Sharma, S. An approach towards improvement of contiguous memory allocation linux kernel: A review.

Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 1607. [CrossRef]
15. AXI DMA Controller. Available online: https://www.xilinx.com/products/intellectual-property/axi_dma.html (accessed on 5

February 2023).
16. AXI Central DMA Controller. Available online: https://www.xilinx.com/products/intellectual-property/axi_central_dma.html

(accessed on 5 February 2023).
17. AXI Central DMA Controller. Available online: https://www.xilinx.com/products/intellectual-property/axi_video_dma.html

(accessed on 5 February 2023).
18. AXI Datamover. Available online: https://www.xilinx.com/products/intellectual-property/axi_datamover.html (accessed on 5

February 2023).
19. Zabołotny, W.M. DMA Implementations for FPGA-Based Data Acquisition Systems. Photonics Applications in Astronomy,

Communications, Industry, and High Energy Physics Experiments; SPIE: Bellingham, DC, USA, 2017; p. 1044548. [CrossRef]
20. Simple AXI4-Stream. PCIe Core for Virtex 7. Available online: https://gitlab.com/WZab/versatile-dma1 (accessed on 5 February 2023).
21. AXI4-Stream FIFO. Available online: https://docs.xilinx.com/v/u/en-US/pg080-axi-fifo-mm-s (accessed on 5 February 2023).
22. DMA for PCI Express (PCIe) Subsystem. Available online: https://www.xilinx.com/products/intellectual-property/pcie-dma.h

tml (accessed on 5 February 2023).

http://doi.org/10.5170/CERN-2009-006.342
http://dx.doi.org/10.1088/1748-0221/10/03/C03021
http://dx.doi.org/10.1088/1748-0221/12/03/C03068
http://dx.doi.org/10.22323/1.343.0059
http://dx.doi.org/10.1088/1748-0221/17/04/C04004
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://developer.arm.com/documentation/ihi0051/latest
https://lwn.net/Kernel/LDD3/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://lenovopress.lenovo.com/lp1467.pdf
http://xillybus.com/tutorials/iommu-swiotlb-linux
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
http://dx.doi.org/10.11591/ijeecs.v25.i3.pp1607-1614
https://www.xilinx.com/products/intellectual-property/axi_dma.html
https://www.xilinx.com/products/intellectual-property/axi_central_dma.html
https://www.xilinx.com/products/intellectual-property/axi_video_dma.html
https://www.xilinx.com/products/intellectual-property/axi_datamover.html
http://dx.doi.org/10.1117/12.2280937
https://gitlab.com/WZab/versatile-dma1
https://docs.xilinx.com/v/u/en-US/pg080-axi-fifo-mm-s
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html

Electronics 2023, 12, 883 22 of 23

23. Gisselquist, D. WB2AXIP: Bus Interconnects, Bridges, and other Components. Available online: https://github.com/ZipCPU/
wb2axip (accessed on 5 February 2023).

24. Gisselquist, D. AXIS2MM—AXI Stream to AXI Memory Mapped Interface. Available online: https://github.com/ZipCPU/wb
2axip/blob/master/rtl/axis2mm.v (accessed on 5 February 2023).

25. Gisselquist, D. AXISGDMA a Scatter-Gather DMA Implementation. Available online: https://github.com/ZipCPU/wb2axip/bl
ob/master/rtl/axisgdma.v (accessed on 5 February 2023).

26. PCIe SG DMA Controller. Available online: https://opencores.org/projects/pcie_sg_dma (accessed on 5 February 2023).
27. Wupper: A PCIe Gen3/Gen4 DMA Controller for Xilinx FPGAs. Available online: https://opencores.org/projects/virtex7_pcie_

dma (accessed on 5 February 2023).
28. Corbet, J. NAPI Polling in Kernel Threads. 2020. Available online: https://lwn.net/Articles/833840/ (accessed on 5 February 2023).
29. Gisselquist, D. Building a Basic AXI Master. 2020. Available online: https://zipcpu.com/blog/2020/03/23/wbm2axisp.html

(accessed on 5 February 2023).
30. Gisselquist, D. Examples of AXI4 Bus Masters. 2021. Available online: https://zipcpu.com/blog/2021/06/28/master-examples

.html (accessed on 5 February 2023).
31. Vivado Design Suite User Guide, High-Level Synthesis. Available online: https://www.xilinx.com/content/dam/xilinx/suppor

t/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf. (accessed on 5 February 2023).
32. AXI4 Master Interface. Available online: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface (accessed

on 5 February 2023).
33. Vitis HLS Introductory Examples—Using AXI Master. Available online: https://github.com/Xilinx/Vitis-HLS-Introductory-Exa

mples/blob/master/Interface/Memory/using_axi_master/example.cpp (accessed on 5 February 2023).
34. AXI4-Stream Interfaces. Available online: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces (accessed

on 5 February 2023).
35. Vitis HLS Introductory Examples—AXI Stream to Master. Available online: https://github.com/Xilinx/Vitis-HLS-Introductory

-Examples/blob/master/Interface/Streaming/axi_stream_to_master (accessed on 5 February 2023).
36. HLS Pragmas (Vitis). Available online: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas (accessed on 5

February 2023).
37. Zabołotny, W.M. Implementation of heapsort in programmable logic with high-level synthesis. In Proceedings of the Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 26 May–4 June
2018; Romaniuk, R.S., Linczuk, M., Eds.; SPIE: Wilga, Poland, 2018; p. 245. [CrossRef]

38. Zabolotny, W.M. Implementation of OMTF trigger algorithm with high-level synthesis. In Proceedings of the Photonics
Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 27 May–2 June
2019; Romaniuk, R.S., Linczuk, M., Eds.; SPIE: Wilga, Poland, 2019; p. 22. [CrossRef]

39. hls_dma. A Simple Yet Versatile HLS-Implemented DMA Engine. Available online: https://gitlab.com/WZabISE/hls_dma
(accessed on 5 February 2023).

40. Hintjens, P. ZeroMQ, 1st ed.; O’Reilly: Beijing, China, 2013.
41. Driver for the Wzdaq1 AXI/PCIe DAQ System. Available online: https://gitlab.com/WZab/wzdaq_drv (accessed on 5 February 2023).
42. QEMU Repository with Model of PCIe-Connected HLS DMA Engine. Available online: https://github.com/wzab/qemu/tree/

wzdaq-hls (accessed on 5 February 2023).
43. QEMU Repository with Model System Bus Connected HLS DMA Engine. Available online: https://github.com/wzab/qemu/t

ree/wzdaq-hls-sysbus (accessed on 5 February 2023).
44. Integrated Logic Analyzer (ILA). Available online: https://www.xilinx.com/products/intellectual-property/ila.html (accessed

on 5 February 2023).
45. Gisselquist, D. Building the Perfect AXI4 Slave. 2019. Available online: https://zipcpu.com/blog/2019/05/29/demoaxi.html

(accessed on 5 February 2023).
46. Xilinx Kintex UltraScale FPGA KCU105 Evaluation Kit. Available online: https://www.xilinx.com/products/boards-and-kits/

kcu105.html. (accessed on 5 February 2023).
47. TEC0330-PCIe FMC Carrier with Xilinx Virtex-7 FPGA. Available online: https://shop.trenz-electronic.de/en/Products/Trenz

-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/ (accessed on 5 February 2023).
48. Dementev, D.; Guminski, M.; Kovalev, I.; Kruszewski, M.; Kudryashov, I.; Kurganov, A.; Miedzik, P.; Murin, Y.; Pozniak, K.;

Schmidt, C.J.; et al. Fast Data-Driven Readout System for the Wide Aperture Silicon Tracking System of the BM@N Experiment.
Phys. Part. Nucl. 2021, 52, 830–834. [CrossRef]

49. Kasinski, K.; Rodriguez-Rodriguez, A.; Lehnert, J.; Zubrzycka, W.; Szczygiel, R.; Otfinowski, P.; Kleczek, R.; Schmidt, C.
Characterization of the STS/MUCH-XYTER2, a 128-channel time and amplitude measurement IC for gas and silicon mi-
crostrip sensors. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers, Detect. Assoc. Equip. 2018, 908, 225–235.
. [CrossRef]

50. Zabołotny, W.; Byszuk, A.; Dementev, D.; Emschermann, D.; Gumiński, M.; Kruszewski, M.; Miedzik, P.; Poźniak, K.; Romaniuk,
R.; Schmidt, C.; et al. GBTX emulator for development and special versions of GBT-based readout chains. J. Instrum. 2021,
16, C12022. [CrossRef]

https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://opencores.org/projects/pcie_sg_dma
https://opencores.org/projects/virtex7_pcie_dma
https://opencores.org/projects/virtex7_pcie_dma
https://lwn.net/Articles/833840/
https://zipcpu.com/blog/2020/03/23/wbm2axisp.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
http://dx.doi.org/10.1117/12.2502093
http://dx.doi.org/10.1117/12.2536258
https://gitlab.com/WZabISE/hls_dma
https://gitlab.com/WZab/wzdaq_drv
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://www.xilinx.com/products/intellectual-property/ila.html
https://zipcpu.com/blog/2019/05/29/demoaxi.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
http://dx.doi.org/10.1134/S1063779621040213
http://dx.doi.org/10.1016/j.nima.2018.08.076
http://dx.doi.org/10.1088/1748-0221/16/12/C12022

Electronics 2023, 12, 883 23 of 23

51. Liu, H.N.; Flavigny, F.; Baba, H.; Boehmer, M.; Bonnes, U.; Borshchov, V.; Doornenbal, P.; Ebina, N.; Enciu, M.; Frotscher, A.; et al.
STRASSE: A Silicon Tracker for Quasi-free Scattering Measurements at the RIBF. arXiv 2023, arXiv:2301.09276.

52. Frotscher, A. The (p,3p) Two-Proton Removal From Neutron-Rich Nuclei and the Development of the STRASSE Tracker; E-Publishing-
Service der TU Darmstadt: Darmstadt, Germany, 2021. [CrossRef]

53. Ablyazimov, T.; Abuhoza, A.; Adak, R.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.;
Ahmad, S.; et al. Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at
FAIR. Eur. Phys. J. A 2017, 53, 60. [CrossRef]

54. Kumar, A.; Ghosh, C.; Chatterjee, S.; Sikder, G.; Dubey, A.K.; Saini, J.; Nandy, E.; Singhal, V.; Negi, V.S.; Chattopadhyay, S.; et al.
Testing of triple GEM prototypes for the CBM Muon Chamber system in the mCBM experiment at the SIS18 facility of GSI. J.
Instrum. 2020, 15, C10020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.26083/TUPRINTS-00019775
http://dx.doi.org/10.1140/epja/i2017-12248-y
http://dx.doi.org/10.1088/1748-0221/15/10/C10020

	Introduction
	Hardware Platform Considerations
	Computer System Considerations
	Boot Time Reservation
	Contiguous Memory Allocation
	Working with Non-Contiguous Buffers

	Existing Solutions for the Implementation of DMA in FPGAs
	Official DMA Engines from AMD/Xilinx
	Selected Existing Open-Source DMA Engines
	PCIe SG DMA Controller
	Wupper

	Concept of a Versatile DMA Engine for HEP
	Implementation of DMA in FPGA with HLS
	Development of the Final HLS Solution
	Readin Subtask
	Prepare Subtask
	Writeout Subtask
	update_outs Subtask
	HDL Support Cores

	Software Supporting the DMA Engine
	Tests and Results
	Tests in the RTL Simulations
	Tests in the Actual Hardware

	Discussion and Conclusions
	Innovation and Research Contribution of the Paper
	Additional Features Useful in HEP Data Acquisition
	Availability of the Sources
	Practical Use of the System
	Future Work

	References

