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Abstract: In the production process of strip tandem cold rolling mills, the flatness control system
is important for improving the flatness quality. The control efficiency of actuators is a pivotal
factor affecting the flatness control accuracy. At present, the data-driven methods to intelligently
identify the flatness control efficiency have become a research hotspot. In this paper, a wavelet
transform longitudinal denoising method, combined with a genetic algorithm (GA-WT), is proposed
to handle the big noise of the measured data from each signal channel of the flatness meter, and
Legendre orthogonal polynomial fitting is employed to extract the effective flatness features. Based
on the preprocessed actual production data, the adaptive moment estimation (Adam) optimization
algorithm is applied, to intelligently identify the flatness control efficiency. This paper takes the actual
production data of a 1420 mm tandem cold mill as an example, to verify the performance of the new
method. Compared with the control efficiency determined by the empirical method, the flatness
residual MSE 0.035 is 5.4% lower. The test results indicate that the GA-WT-Legendre-Adam method
can effectively reduce the noise, extract the flatness features, and achieve the intelligent determination
of the flatness control efficiency.

Keywords: control efficiency; data noise reduction; Adam optimization; data-driven

1. Introduction

Cold-rolled strips are widely used in the fields of automobile manufacturing, aerospace,
household appliance panels, and so on [1], because of their high geometric accuracy and
great mechanical properties. With the development of technology, cold-rolled strips have
become thinner and thinner, and the geometric shape and dimensional accuracy require-
ments are becoming higher and higher [2,3]. In order to improve the quality of the strips,
modern rolling mills adopt an automatic gauge control system (AGC) to solve the gauge
problem, and an automatic flatness control system (AFC) to solve the flatness problem. At
present, the gauge control basically meets the requirements, but the flatness problem is
becoming more and more complicated [4]. Due to the large number of actuators required
for flatness control, and the strong coupling and hysteresis between the actuators [5], flat-
ness control is still a great challenge in practice. The cold tandem rolling mill contains
multi-stand flatness controls, and the final stand is a closed-loop feedback control. The
control efficiency reflects the adjustment ability of the actuators to the flatness in a closed-
loop feedback control. Distributing the flatness deviation to each actuator reasonably can
improve the flatness control accuracy [6]. In actual production, the control efficiency of
each actuator varies with different process parameters, especially, when the ratio of the
width to thickness is larger, it is more unstable. The control efficiency is often obtained by
an empirical method which has been used since setting up the factory. However, there are
errors, inevitably, for specific working conditions, and the update speed is slow. Therefore,
obtaining an accurate control efficiency is significant in the research on flatness control.

To the best of our knowledge, there are two main methods used to obtain the control
efficiency: the experimental method and the finite element method [7]. The experimental
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method obtains the control efficiency by changing the setting value of the actuator one by
one to obtain the change of the flatness. Although it is more accurate, the high cost and the
limited working conditions make it infeasible. Compared with the experimental method,
the finite element simulation has the advantage of being more economical, having a wider
application, and more flexible simulation of various rolling conditions [8]. However, the
finite element method needs many assumptions in the analysis of the rolling process, which
leads to errors between the calculation results and the actual situations. Meanwhile, the
calculation process is slow, so it is not suitable for the requirements of online real-time
control [9]. Thanks to a large amount of rolling process data stored by steel companies, a
lot of information related to the production process can be revealed with the development
of big data and sensor technology [10]. However, the use of the rolling process data is
not sufficient. Therefore, based on the rolling process data, mining the information with
the goal of analyzing the relationship between the flatness and the process, provides not
only a new way to improve the flatness control accuracy but also a new approach for the
intelligent recognition of the flatness control efficiency.

The actual rolling production data has the characteristics of noise, outliers, deviations,
and so on. In order to calculate the control efficiency, it is necessary to analyze and process
the data. Thus, it is extremely important to reduce the noise of the production data. Wavelet
transform, a key noise reduction method at home and abroad, has the advantages of multi-
resolution, fast operation speed and small storage space. In addition, it has been widely
used in the fields of image compression, data denoising, and edge detection.

Y. Kim et al. proposed cepstrum-assisted empirical wavelet transform (CEWT) to
decompose the signal in the fault diagnosis of planetary gear trains. The CEWT solved the
problem of empirical wavelet transform (EWT), which required physical understanding to
isolate fault-related signals and improve performance of fault diagnosis [11]. F. Dengand et al.
proposed a new peak detection algorithm based on continuous wavelet transform and
image segmentation, which has made progress in identifying weak peaks, overlapping
peaks, and removing false peaks [12].

M. Zolfaghari found that the electricity production data in the prediction is non-
stationary and non-linear, and traditional forecasting methods display a poor robustness.
Therefore, they proposed an AWT-LSTM-RF hybrid model, combining adaptive wavelet
transform (AWT), long short-term memory network (LSTM), and random forest (RF)
algorithms for the prediction. The results showed that the hybrid model of AWT-LSTM-RF
is better than the benchmark model. At the same time, the wavelet transform algorithm
for the treatment of the input data can improve the predictive ability of RF [13]. Denoising
the actual data under the wavelet transform alone leads to signal distortion, therefore,
the threshold of wavelet coefficients can be optimized in combination with the genetic
algorithm, to remove noise as much as possible while retaining the characteristics of the
signal. The flatness meter has dozens of sensor channels and these sensor channels can
measure the flatness along the width direction at the same time. Figure 1 shows the
measurement signal of the strip flatness coil. Because of the noise interference in the actual
signal, the characteristics of the flatness cannot be expressed directly. Therefore, data
processing is required. Simply denoising each signal channel can only solve the noise
problem of a single sensor channel, and the strip flatness represented by the width direction
sensor still has no obvious strip flatness features. So it is necessary to fit in the width
direction with a Legendre orthogonal polynomial to obtain the strip flatness represented
by the width direction sensor signal. Based on the strip flatness features extracted after
denoising, Legendre fitting, and the corresponding actual production process data, an
optimized algorithm is used to intelligently identify the strip flatness control effect. The
Adam optimization algorithm is an extension of the stochastic gradient descent method. It
has the advantages of simplicity, directness, high efficiency, small memory, and handling
sparse gradients in solving non-convex optimization problems.
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Figure 1. Three−dimensional strip flatness.

This work chooses the Adam optimization method to identify the flatness control
efficiency. Based on the actual production process data of a tandem cold rolling mill, the
influence of the different actuators on the flatness is analyzed. The GA-WT-Legendre-Adam
intelligent identification method for flatness adjustment and control effects is proposed and
compared with the control efficiency determined by the empirical method. The analysis
results show that the method proposed in this paper can effectively reduce the influence of
noise, and the flatness residual MSE calculated by the recognized flatness control efficiency
is reduced by 5.4% compared with the empirical method. This noise reduction method
can use the industrial data of online production to realize the online identification of the
flatness control efficiency.

2. Flatness Closed-Loop Control System

A cold tandem rolling mill consists of a five-stands six-high UCM (Universal Crown
Mill). Among them, the first four stands use a preset model to make preliminary adjust-
ments to the thickness and flatness of the strip. The fifth stand uses a closed-loop feedback
control strategy to adjust the flatness, which is the most critical part in the flatness control
system. The flatness control system is shown in Figure 2. The flatness closed-loop feedback
control system is established in the rolling stabilization stage. The closed-loop feedback
control model calculates the adjustment of the actuator through the deviation between the
measured flatness and the target flatness. Then a control signal is sent to the actuator and
the new flatness deviation is detected at the same time. Continuous dynamic adjustments
for the actuator in real time are essential for obtaining a stable and good flatness [14,15]. At
present, the five-stands cold tandem rolling mill includes intermediate roll bending (IRB),
intermediate roll shifting (IRS), work roll bending (WRB), tilting and segment cooling, and
other actuators [16,17]. Among them, tilting can eliminate the first order flatness deviation.
WRB, IRB, and IRS can eliminate the secondary and the fourth order flatness deviations.
Elimination of the higher order flatness deviation requires segmented cooling [18]. The
control performance of each type of actuator can be reflected on the control efficiency
curve. The general segmented cooling of work rolls cannot be solved by formulas, and the
response speed is slow. It is often used to eliminate the remaining flatness deviation after
the adjustment of other actuators. Therefore, this paper only takes the influence of tilting,
WRB, IRB, and IRS into account.
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Figure 2. Flatness control system.

The basis of the flatness control is the control efficiency, which can effectively reflect
the control performance of the actuators on the flatness. Because of its simplicity and fast
calculation process, it can play a key role in a unit with a variety of control methods. The
control efficiency can be optimized by making full use of the rolling production process
data to obtain a more precise flatness control [19]. The control efficiency, described by the
following Formula (1), means the change of the flatness deviation caused by the change of
each unit of the actuator:

eff ij =
∆ f latij

∆Actj
(1)

where eff ij is the actuator efficiency of the jth actuator in the ith segment of the width
direction, ∆Actj is the adjustment of the jth actuator and ∆ f latij is the flatness change
caused by the jth actuator in the ith segment of the width direction.

The multi-variable optimal flatness control algorithm, based on control efficiency,
studies the effect of the actuator on the flatness deviation of each measurement section
in the width direction. The control amount of each actuator can be solved in connection
with the flatness deviation of each measurement section to get the optimal control for the
entire system. Therefore, as long as the control efficiency of the flatness is obtained, the
adjustment of each actuator under the optimal flatness control can be calculated using
Formula (2), to guarantee the minimum value of the performance index J.

J =
n

∑
i=1

[
Tar f lati −

(
m

∑
j=1

eff ij · ∆Actj

)]2

(2)

Tar f lati is the target flatness deviation in the ith segment of the width direction, m is
the number of flatness control technologies, and n is the number of flatness measurement
channels in the width direction.

Among the required actuators, the response speed of the tilting is the fastest, which
mainly eliminates the asymmetric flatness deviation, so the control strategy mainly refers
to the control of the roll bending and roll shifting. Due to the large number of different
control methods, various control goals and the coupling effects of them, choosing either
the sequential or parallel calculation needs to be considered for adjustment in the flatness
control. The cold tandem rolling mill that provides the data source for this paper adopts
a sequential solution strategy, also known as a relay solution, which is based on the least
squares principle of the priority sequence table. The execution mechanism is calculated
hierarchically based on the sequence in the priority sequence table. The objective function
of an executive agency can be expressed as

Jj = (R f latij − ∆Actj × eff ij)
2 (3)
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where Jj is the objective function of the jth actuator; R f latij is the remaining flatness
deviation after the adjustment of the first j− 1 actuators.

In order to minimize the objective function Jj, the partial derivative of the objective
function is calculated, as in Equation (4), to obtain the adjustment of the jth actuator.

∂Jj

∂eff j(x)
= 0 (4)

The priority is determined by the sensitivity of the actuator. Generally, it has the
sequence of WRB, IRB, and IRS. The sequential solution strategy makes the best use of the
actuators to eliminate the flatness deviation. When the front actuator cannot completely
eliminate the flatness deviation, the remaining flatness deviation is eliminated by the
latter actuator. Because this kind of control strategy calculates the control quantity of each
actuator in sequence, according to the artificially prescribed sequence, there is no unsolvable
situation. It successfully avoids the matrix solving process and the limit problem of the
actuator, which are not suitable for online and real-time use. From the above calculation
formula, it is obvious that accurate control efficiency is the core content of the flatness
closed-loop control system, which is different from the empirical method that has a long
update cycle and is not suitable for specific working conditions. The data-driven method
can dynamically obtain the flatness control functions of different steel specifications from
the data more accurately and with a greater flexibility, thereby the accuracy of the closed-
loop feedback control of the current steel specifications can be improved.

3. Establishment and Test of Noise Reduction Model

Using actual production data to establish a data-driven model for the intelligent
recognition of the flatness control efficiency can reflect the real performance of the flatness
control mechanism, and realize the adjustment of the control efficiency with the change of
working conditions. However, the data actually collected at the production site contains
noise, has a wide range of fluctuations, and thus the true situation of the data is obscured. It
is necessary first to extract meaningful flatness features to establish a data-driven intelligent
identification model of flatness control efficiency.

Wavelet transform is a time-frequency localization analysis method, in which the
wavelet window area is constant and the time and frequency domain window ranges are
variable. It solves the shortcoming of the short-time Fourier transform, which adopts a fixed
sliding window function and cannot change the time resolution. Wavelet transform uses a
short-time window when analyzing high-frequency signals and a long-time window when
analyzing low-frequency signals. This achieves the adaptive change of the time-frequency
window and has the abilities of local analysis and refinement.

The wavelet of continuous wavelet transform is a short-duration time function. Sup-
pose that ψ(t) is an integrable function and ψ(t) ∈ H2(R). ψ(t) is a basic wavelet or
wavelet mother function, if the Fourier transform satisfies:

Cψ =
∫ +∞

−∞

∣∣∣∣∧ψ(ω)

∣∣∣∣2w−1dω < ∞ (5)

By shifting and scaling the wavelet ψ(t), a set of wavelet basis functions
{

ψa,b(t)
}

can
be obtained:

ψa,b(t) = |a|−
1
2 ψ

(
t− b

a

)
(6)

where a, b ∈ R and a > 0. b is the translation factor indicating the position where the
function is translated along the t axis and a is the scale factor of a wavelet basis function.

For a signal f (t) ∈ L2(R), its continuous wavelet transform is:

W f (a, b) =
〈

f , ψa,b
〉
= |a|−

1
2

∫
R

f (t)ψ
(

t− b
a

)
dt (7)



Electronics 2023, 12, 875 6 of 15

where W f (a, b) is the coefficient after wavelet transform of the signal f (t). Through the
inverse transform of W f (a, b), we can obtain:

f (t) =
1

Cψ

∫
R+

∫
R

1
a2 W f (a, b)ψ

t− b
a

dadb (8)

In practical applications, the wavelet transform needs to be discretized. Generally, the
scale factor and translation factor of the continuous wavelet transform are discretized. The
scale factor is a = aj

0 and the translation factor is b = kb0aj
0, j, k ∈ Z. The step value is a

fixed value other than 1, and usually a0 > 1, then the function can be written as

ψj,k(t) = a−
j
2

0 ψ

(
t− kb0aj

0

aj
0

)
= a−

j
2

0 ψ

 +∞∫
−∞

a−j
0 t− kb0

 (9)

The corresponding discrete wavelet transform can be written as

(
Wψ f

)
(a, b) =

〈
f , ψa,b

〉
= a−

j
2

+∞∫
−∞

f (t)ψ
(

a−j
0 t− kb0

)
dt (10)

Because the wavelet transform has the characteristics of multi-resolution, it can ef-
fectively remove the noise while preserving the characteristic information of the original
signal as much as possible. The formula for wavelet denoising is as follows:

s(n) = f (n) + σe(n) (11)

where s(n) is the actual noisy signal, f (n) is the effective signal, n is the sampling time, σ is
the noise intensity and e(n) is the noise component.

Wavelet denoising requires processes such as multi-layer decomposition of noisy
signals, threshold processing of wavelet coefficients, and reconstruction of the wavelet
inverse transform. The more decomposition layers of a noisy signal there are, the easier
it is to eliminate the noise signal, but the error is greater after reconstruction. So it is very
important to choose an appropriate number of decomposition layers. The appropriate
number of decomposition layers can be calculated using Formula (12):

max_level = log2

(
ldata/l f ilter

)
(12)

where max_level is the number of decomposition levels, ldata is the length of the data, and
l f ilter is the length of the filter.

The processing of the wavelet coefficient threshold is a key factor to improve the effect
of wavelet denoising. Common threshold functions include the hard threshold and the
soft threshold. Since the soft threshold function can shrink large coefficients, it can reduce
the discontinuity problems in the hard threshold noise reduction process. At the same
time, it has a good adaptability and an excellent noise reduction effect. Therefore, the soft
threshold function is selected in this paper as follows:

wλ =

{
[sgn(w)](|w| − λ) |w| ≥ λ

0 |w| < λ
(13)

where w is the wavelet coefficient, λ is the threshold, and wλ is the wavelet coefficient after
threshold processing.

From (13), it can be found that, how to choose an appropriate threshold is the key to
wavelet denoising. In order to obtain the optimal wavelet coefficients, this paper combines a
genetic algorithm to optimize the threshold. After the wavelet coefficients are decomposed
by the wavelet transform, the genetic algorithm is used to select an appropriate threshold,
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remove the noise in the high frequency, and retain the useful information. Then the wavelet
inverse transform is reconstructed to obtain the noise-reduced data. Figure 3 shows the
noise reduction process of GA-WT (Genetic Algorithm-Wavelet).
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To establish the GA-WT model, it is necessary to select an appropriate wavelet basis
function. In this paper, the db8 basis function is selected, and the number of decomposition
layers calculated by Formula (12) is six. The low-frequency wavelet coefficients are reserved,
and the optimal threshold is selected by the genetic algorithm for high-frequency wavelet
coefficients. The initial population of the genetic algorithm is 200, the crossover probability
is 0.8, the number of iterations is 50, and the mutation probability is 0.003.

In order to verify the performance of the model, a standard data set is established.
White noise is added to obtain simulation data. The commonly used EEMD (Ensemble
Empirical Mode Decomposition) noise reduction method, and the wavelet transform
method without genetic algorithm optimization, are compared with the GA-WT method
proposed in this paper. The Signal to Noise Ratio (SNR) and Root Mean Square Error
(RMSE) are used to measure the noise reduction performances of these three methods.
The SNR is defined as the ratio of the effective component of the reconstructed signal to
the noise. A larger ratio indicates a better noise reduction performance. The calculation
formula is:

SNR = 10lg


N
∑

n=1
x2(n)

N
∑

n=1
[x(n)− y(n)]

2

 (14)

where y(n) is the original signal, x(n) is the signal after denoising, and N is the signal length.
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The RMSE reflects the similarity between the reconstructed signal and the original
signal. A smaller value of RMSE indicates that the reconstructed signal is closer to the
original signal. It is defined as:

RMSE =

√√√√√ N
∑

n=1
[x(n)− y(n)]

2

N
(15)

According to the GA-WT model, the appropriate wavelet basis function needs to be
selected firstly. This paper chooses the db8 basis function, and the number of decomposition
layers is 6, from Formula (12). The low frequency part is retained, and the genetic algorithm
is used to select the optimal soft threshold for the high frequency part. Figure 4 shows the
comparison of these three methods before and after denoising. It is obvious that these three
methods can basically restore the signal trend. In detail, the wavelet transform based on the
genetic algorithm performs better and reconstructs the original data more precisely. The
unoptimized wavelet transform and EEMD fluctuate greatly, and the noise is not removed
as much as possible. Even some valid information is deleted at the same time.
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length. 
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The SNR comparison of these three methods is shown in Table 1. The SNR of GA-WT
is 18.98 db, which is higher than the 14.41 db of the unoptimized wavelet transform and
12.42 db of EEMD. At the same time, the RMSE of GA-WT is 0.39 IU. This is lower than
0.67 IU of the wavelet transform without optimization and 0.87 IU of EEMD. It shows that
the noise reduction performance of GA-WT is the best, so the GA-WT method is chosen in
this paper to reduce the noise of the measured flatness data.

Table 1. Comparison of the three methods.

Method SNR/db RMSE/IU

GA-WT 18.98 0.39
WT 14.41 0.67

EEMD 12.42 0.87
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4. Intelligent Recognition of Flatness Control Efficiency Based on Data-Driven Model
4.1. Data Preprocessing

Modern rolling mills are equipped with a variety of actuators with different control
capabilities. This paper mainly studies the control effects of tilting, WRB, IRB, and IRS. The
experimental data is the actual data produced by a 1420 mm UCM cold tandem rolling mill.
The steel grade is AQ0510B1, the strip width is 1150 mm, and the exit thickness is 0.8 mm. A
total of 1514 sampling points are selected in the stable stage of the rolling process, and each
sampling point includes variables such as 40 sections of flatness measurement data, rolling
force, tilting, roll bending force, and roll shifting, etc. After a preliminary observation of the
data, it is found that the width direction of the flatness fluctuates sharply, so it is difficult
to extract the effective flatness features. There exists noise in the rolling direction of each
signal channel, so GA-WT is adopted for each signal channel in the rolling direction of the
strip to obtain the flatness after noise reduction. The denoising flatness data of some certain
signal channels, such as the 29th channel, which is near the strip edge channel, and the
12th channel, which is near the strip center channel, are shown in Figure 5.
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After the noise reduction, the fluctuation of the flatness composed of all signal channels
in the width direction at the same time, is reduced. However, the flatness features are
still not obvious. In general, Legendre polynomials or Chebyshev polynomials are used
to describe the shape defects. The integral value of the even-degree polynomial of the
Chebyshev polynomial is not zero along the strip width direction, which cannot satisfy the
self-equilibrium condition of the residual stress of the strip [20]. The Legendre polynomial
can satisfy the self-equilibrium condition of the residual stress in the plate width direction.
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Therefore, it is necessary to perform Legendre orthogonal polynomial fitting on the flatness
in the width direction, which can be effective to extract the flatness features of the strip. Due
to the limitation of the control ability of the actuator, the fourth-order Legendre orthogonal
polynomial is used for fitting, which can remove the influence of higher-order terms. The
Legendre orthogonal polynomial is shown as:

y1 = ±x (16)

y2 = ±
(

3
2

x2 − 1
2

)
(17)

y3 = ±1
2

(
5x3 − 3x

)
(18)

y4 = ±1
8

(
35x4 − 30x2 + 3

)
(19)

where x is the sampling points in the width direction of the strip, y1 is the first order
flatness, y2 is the second order flatness, y3 is the third order flatness, and y4 is the fourth
order flatness.

Figure 6 shows that the original signal width direction is severely oscillating, which
masks the characteristics of the flatness shape. After longitudinal denoising, the oscil-
lation amplitude is weakened, but there are still fluctuations. Then after the Legendre
orthogonal polynomial fitting, the data transition is smoother, in line with the current
control performance of the actuator. At the same time, the influence of the high-order shape
deviation is excluded, so the flatness control efficiency can be calculated by a Legendre
orthogonal polynomial.
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4.2. Optimization Method

Gradient descent is one of the most commonly used methods to optimize model
parameters, and Adam is an optimization method that can be used to improve the gradient
descent method. The Adam algorithm has a fast calculation speed, uses the momentum
method to select the optimization direction, and uses the RMSProp algorithm to select the
learning rate [21]. With the idea of moment estimation, the Adam optimization algorithm
dynamically adjusts the learning rate by modifying the first-order and second-order mo-
ment estimation of the gradient. The Adam algorithm calculates the current time gradient
as follows:

gt = ∇J(w) (20)

where J(w) is the objective function to be optimized.
The first moment estimation at the current moment is shown as follows:

Mt = β1 ·Mt−1 + (1− β1) · gt (21)
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where t is the time step, Mt−1 is the first moment estimate at the previous moment, and
β1 ∈ [0, 1) is the hyperparameter, which is the exponential decay rate of the instanta-
neous estimation.

The second moment at the current moment is estimated as follows:

Vt = β2 ·Vt−1 + (1− β2) · gt
2 (22)

where Vt−1 is the second moment estimate at the previous moment and β2 ∈ [0, 1) is the
hyperparameter, which is the exponential decay rate of the instantaneous estimation.

The second-order moment estimation is actually calculated according to the average
value of the exponential movement. The second-order moment estimation is initialized
to a 0 vector, that is, at the beginning of the iteration, Vt is close to 0, which requires the
estimation of the second-order moment. The moment uses the exponentially averaged
original moment of the gradient squared at the decay rate β2, that is, the centerless variance.
Let g1, g2 . . . , gt be the gradient of the subsequent time steps, then Equation (22) can be
written as:

Vt = (1− β2)
t

∑
i=1

βt−i
2 · gi

2 (23)

Then the relationship between the expected value E[Vt] of the second-order moment
estimation at the time step and the expected value of the second-order moment E

[
g2

t
]

is
the expectation on both sides of Equation (23):

E[Vt] = E
[
(1− β2)

t
∑

i=1
βt−i

2 · gi
2
]

= E
[
g2

t
]
· (1− β2)

t
∑

i=1
βt−i

2 + ζ

= E
[
g2

t
]
· (1− β2

t) + ζ

(24)

When the true second-order moment E
[
g2

t
]

is a constant value, ζ is 0. Otherwise, the
exponential decay rate β2 is usually selected by adding the past moment to the current
moment gradient with a small weight, so ζ is a minimum value. In the case of sparse
gradients, in order to reliably estimate the second moment, it is necessary to choose a
smaller β2 to average many gradients. Since β2 is small, the lack of an initialization bias
correction will lead to a much larger initial step size.

Then the deviation correction of the second-order moment estimation Vt is shown
as follows:

V̂t =
Vt

1− βt
2

(25)

In the same way, the deviation correction of the first-order moment estimation Mt is
shown in Equation (26):

M̂t =
Mt

1− βt
1

(26)

Update the control amount by Formula (27):

wt = wt−1 − η
M̂t

sqr(V̂t) + ε
(27)

where η ∈ (0, 1] is the learning rate and ε is a very small constant to avoid the situation
where the second moment estimation Vt is zero during the calculation process.
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4.3. Intelligent Recognition of Flatness Control Efficiency

The objective function that defines the intelligent recognition of the flatness control
efficiency is shown in Equation (28):

J(w) =

n
∑

i=1
(Tar f lati −

4
∑

j=1
∆Actj · effij)

2

2n
(28)

In order to minimize the objective function J(w), calculate its gradient at the current position:

gt =
∂J(w)

∂∆Act
= −


w1
w2
w3
w4

 · (Tar f lat−
4
∑

j=1
∆Actj · effj)

T

n
(29)

where w1, w2, w3, w4 are respectively the adjustment amounts of tilting, WRB, IRB, and IRS.
Figure 7 shows the results using the Adam algorithm and the empirical method. The

results of the two methods both show that the tilting has the adjustment ability of the
asymmetric term; and the work roll bending roll, the middle roll bending roll, and the
middle roll shifting roll have the adjustment ability of the symmetric term.
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Substituting the control efficiency of the two methods into the control system, calculate
the flatness residual after flatness control and defines the MSE of the flatness residual as
shown in Equation (30):

MSE =

m
∑

k=1


n
∑

i=1

(
Tar f lati−

4
∑

j=1
wj ·effij

)2

n


m

(30)
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where m is the number of sampling points with length, n is the number of flatness meter
sensors in the width direction, and the other parameters remain unchanged.

The flatness residuals obtained by the two methods are shown in Figure 8. It can be
seen that the flatness residuals calculated by the two methods are very small, especially,
the control efficiency of Adam’s method has smaller flatness residuals at certain sampling
points. The MSEs of the flatness residuals are shown in Table 2. It can be seen that the MSE
of the flatness deviation calculated by the control efficiency of the Adam algorithm is 0.035,
and the MSE of the flatness deviation calculated by the control efficiency of the empirical
method is 0.037. The MSE of the proposed method is reduced by 5.4% compared to the
empirical method, so the regulation effect based on the Adam algorithm is more accurate.
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Table 2. MSE under the two methods.

Method MSE

Adam 0.035
Empirical 0.037

5. Conclusions

(1) This paper employs a GA-WT denoising method to deal with the large measure-
ment noise in each signal channel of the flatness meter. Compared with the unprocessed
wavelet transform, the SNR of GA-WT is increased by 31.7% and the RMSE is reduced by
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41.8%. Compared with EEMD, the SNR of GA-WT is increased by 52.8% and the RMSE is
reduced by 55.2%.

(2) GA-WT is used to perform longitudinal denoising in the strip length direction for
each signal channel of the flatness meter. Legendre orthogonal polynomial fitting is used
on all the flatness signal channels in the width direction, after longitudinal denoising. The
method proposed can extract the flatness features, and reflect the real flatness, which can
be controlled by the flatness control actuators.

(3) Based on the processed flatness data and the adjustment of the actuator, compared
with the empirical method, the control efficiency calculated by the Adam algorithm is
0.035. This is 5.4% lower than the empirical method, which indicates that the GA-WT-
Legendre-Adam method can effectively extract flatness features and obtain a more accurate
control efficiency.

(4) Production data is characterized by high noise and low quality. In the future, noise
reduction and calculation accuracies will be improved further by improving the quality of
the actual production data.
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