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Abstract: The rapid evolution of coronaviruses in respiratory diseases, including severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), poses a significant challenge for deep learning models to
accurately detect and adapt to new strains. To address this challenge, we propose a novel Continuous
Learning approach, CoroTrans-CL, for the diagnosis and prevention of various coronavirus infections
that cause severe respiratory diseases using chest radiography images. Our approach is based on the
Swin Transformer architecture and uses a combination of the Elastic Weight Consolidation (EWC)
and Herding Selection Replay (HSR) methods to mitigate the problem of catastrophic forgetting.
We constructed an informative benchmark dataset containing multiple strains of coronaviruses and
present the proposed approach in five successive learning stages representing the epidemic timeline
of different coronaviruses (SARS, MERS, wild-type SARS-CoV-2, and the Omicron and Delta variants
of SARS-CoV-2) in the real world. Our experiments showed that the proposed CoroTrans-CL model
achieved a joint training accuracy of 95.34%, an F1 score of 92%, and an average accuracy of 83.40%
while maintaining a balance between plasticity and stability. Our study demonstrates that CoroTrans-
CL can accurately diagnose and detect the changes caused by new mutant viral strains in the lungs
without forgetting existing strains, and it provides an effective solution for the ongoing diagnosis of
mutant SARS-CoV-2 virus infections.

Keywords: continual learning; coronaviruses; swin transformer

1. Introduction

Coronavirus disease 2019 (COVID-19) has become the most widespread respiratory
infectious disease of the 21st century [1], infecting more than 657,060,111 people and
causing 6,669,951 deaths worldwide as of 17 December 2022 [2]. The rapid mutation and
emergence of immune escape variants such as Delta and Omicron have made testing
for the virus a challenging task for public health workers. Currently, real-time reverse
transcription-polymerase chain reaction (RT-PCR) testing have a false-negative rate in
experimental testing, requiring repeat testing to reduce misdiagnosis [3,4]. Chest computed
tomography (CT) can be used to improve sensitivity in diagnosing COVID-19 cases [5,6],
with the main findings in chest CT being ground-glass opacities, pulmonary consolidation
and ‘leaving stone’ signs after SARS-CoV-2 infection [7]. These findings, together with
RT-PCR results, clinical symptoms, and epidemiological history, are the sole basis for the
diagnosis or exclusion of COVID-19 pneumonia.

To achieve automatic early warning for COVID-19, some studies have attempted
to develop models that can automatically identify COVID-19 patients by learning lesion
characteristics using artificial intelligence technology. Most of these studies have used con-
volutional neural networks (CNNs) to automatically identify COVID-19 patients based on
chest CT images [8,9]. Although CNNs have demonstrated their ability to solve various clas-
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sification problems, they are not ideal for tasks requiring high-level categorization where
global features such as patterns, multiplicity and distribution need to be considered [6].

Since 2017, there have been significant advances in deep learning algorithms, ap-
plications and technologies, such as the Transformer architecture proposed by Ashish
et al. [10], which has become a highlight in the field of deep learning and deep neural
networks. The Transformer architecture has evolved and expanded beyond its original
language tasks to other domains such as bioinformatics, where it is the key technology
for DeepMind’s protein structure prediction model, AlphaFold [11]. More recently, the
Transformer architecture entered the field of computer vision with the proposal of the
Vision Transformer (ViT) by Dosovitskiy et al. [12], which has replaced CNNs in many
complex tasks. Unlike the traditional convolution of CNNs, the main architecture of ViT
consists of multiple stacks of Transformer blocks based on a self-attention mechanism. The
multi-headed attention mechanism in the Transformer architecture can establish long-range
dependencies on a target to extract more powerful features and capture global context
information, making it suitable for disease detection in complex environments [13,14]. In
addition, ViT’s closer alignment with human cognitive features allows it to outperform
CNNs in generalization under most distributed transformations (DS), with a top-1 correct
rate that is 5–10% higher than the corresponding CNNs for the same or fewer number
of parameters [15]. Other Transformer-based computer vision models include the Swin
Transformer [16] and CrossViT [17]. Some recent studies using these architectures have
achieved better classification results [13,18].

CNNs and ViT have demonstrated high performance in COVID-19 detection, out-
performing general radiologists in certain tasks. However, many of these models are
primarily based on fixed datasets and static environments that do not consider the gradual
provision of information over time and therefore cannot adapt or learn new knowledge. In
some cases, these models completely fail or show significant performance degradation on
previously learned tasks, leading to problems of catastrophic forgetting [19] and limited
intelligence. McCloskey and Cohen [20] were the first to identify catastrophic forgetting in
neural network models. They found that when neural networks are trained on a new task
or category, they often forget the information learned in the previous training task. The
weights of the latest task can overwrite the weights of the previous task, leading to a decline
in model performance, which is known as the stability–plasticity dilemma [21]. In contrast
to neural networks, the human learning capacity consists of a rich set of neurocognitive
and brain memory mechanisms that facilitate the development of learning skills and the
consolidation of long-term memory [22].

Inspired by cognitive science, Continual Learning, also referred to as Lifelong Learning,
is a research area that aims to address such problems in artificial intelligence [23]. Its goal is
to increase the adaptive capacity of models so that they can learn different tasks at different
times (plasticity) without forgetting the characteristics of previous tasks (stability), as well
as to make trained models more general. Based on the method of historical information
retention, Continual Learning methods can be classified into three categories: rehearsal
methods, regularization methods, and parameter isolation methods. Rehearsal approaches
work by retaining some historical data or high-level representations. When learning a
new task, the old task data are simultaneously replayed to reduce model forgetting [24,25].
Regularization methods constrain the optimization direction of the model on the new task
in a way that minimises catastrophic forgetting. This includes adding distillation losses
to the old model as the target, optimizing constraints on essential model parameters, and
projecting the gradient direction of the parameters [26,27]. Parameter isolation methods
extend the old model to new tasks by isolating the parameters of the old and new models
to reduce the occurrence of catastrophic forgetting [28,29].

Currently, there is a lack of research and application of Continual Learning methods for
artificial intelligence-based solutions in COVID-19 detection based on CT and X-ray images.
To address these issues, we undertook this study and summarise our main contributions
as follows:
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1. We established a benchmark dataset of CT and chest X-ray images of pneumonia
for Continuous Learning in medical image classification tasks. The dataset included
normal, wild-type SARS-CoV-2, SARS-CoV-2 Omicron and Delta variant, and other
viral pneumonia infection CT images, as well as normal, MERS, SARS, wild-type
SARS-CoV-2, SARS-CoV-2Omicron and Delta variant, other viral pneumonia, and
bacterial pneumonia infection chest X-ray images.

2. We designed a five-stage incremental learning task based on the real-world epidemic
timeline of different coronaviruses (SARS, MERS, wild-type SARS-CoV-2, and the
Omicron and Delta variants of SARS-CoV-2). We compared several models using
three deep learning architectures (CNNs, ViT and MLP) and found that the Swin
Transformer model with the highest classification accuracy on learning was the most
suitable feature extraction backbone for our study. We also propose a novel imag-
ing approach, CoroTrans-CL, based on the Swin Transformer architecture and the
Continuous Learning strategies of regularization-based and rehearsal-based learn-
ing approaches to recognise CT and chest X-ray images of coronavirus infections,
which cause severe respiratory infections, and to mitigate the problem of catastrophic
forgetting and performance stagnation.

3. To address the issue of representative sample selection, we used the Herding Selection
strategy to minimise the feature centre distance of sub-samples from the full dataset.
We also conducted extensive ablation experiments to compare the effects of different
Continual Learning methods and different sample selection strategies on the results
in order to verify the effectiveness of each key component.

This paper is structured as follows. We review some of the literature on artificial
intelligence in the fight against the COVID-19 pandemic in Section 2, and we describe the
sources and construction methods for our datasets and our proposed approach, as well as
performance evaluation metrics and model parameter settings for our experimental study,
in Section 3. The experimental results and discussion are presented in Sections 4 and 5,
respectively. Finally, in Section 6, we conclude the paper with comments on future work.

2. Related Works

In this section, we review the primary research methods used for current COVID-19
case detection. CNNs are the most commonly used approaches for automated COVID-19
diagnosis. Previous studies have mainly used pre-trained networks such as variants of
Very Deep Convolutional Networks (VGG) [30], Residual Network (ResNet) [31], Densely
Connected Convolutional Networks (DenseNet) [32], Google Inception Network (Incep-
tion) [33], Deep Learning with Depth-Wise Separable Convolutions (Xception) [34], Efficient
Convolutional Neural Networks for Mobile Vision Applications (MobileNet) [35], and Re-
thinking Model Scaling for Convolutional Neural Networks (EfficientNet) [36] as deep
learning frameworks. These models adapt to the new task of COVID-19 patient detection
and classification by modifying or adding custom layers and by transferring knowledge
from previous experience. For example, Brunese et al. [37] proposed two models using
the VGG-16 network as a backbone model based on transfer learning. The first network
is used to identify whether the target is healthy or has pneumonia. If the first network
gives a positive prediction, the second network is used to identify COVID-19. The VGG-16
network achieved 98% accuracy for three-class classification. ResNet is another common
CNN architecture that avoids gradient disappearance problems compared with earlier
architectures such as VGG. Using a Residual Network, Narin et al. [38] classified COVID-19
cases and healthy cases with ResNet-50, achieving the highest accuracy (98%) for binary
classification. Other studies have used more efficient architectures such as DenseNet and
EfficientNet. Wang et al. [39] developed a COVID-19 pneumonia classification pipeline
using DenseNet-121, which achieved an AUC with an overall performance of 0.88–0.99
across different datasets. Shamila et al. [40] used the EfficientNet architecture to build a
classification model with 95% accuracy and a 93% F1 score on the test set.
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Although CNNs are effective for image classification in deep learning, they have
some conceptual limitations. During maximum pooling, CNNs lose information about the
location of entities. They also do not consider some spatial relationships between simple
objects and require a large receptive field to capture long-range dependencies, which leads
to the development of large kernels or highly massive networks and results in a complex
model that is difficult to train [13]. To overcome these limitations of CNNs, some researchers
have used other architectures such as capsule neural networks (Capsnets) [41] and ViT [12]
for COVID-19 classification. Sabour et al. proposed Capsnets [42], a new neural network
architecture that uses location and orientation information to perform object recognition, to
address the shortcomings of CNNs. Toraman et al. [41] proposed a five-convolutional layer
Capsnets model with 16, 32, 64 and 128 kernels in the first four layers and 32 capsules in
the fifth layer. After 10-fold cross-validation and 50 epochs of training, the model achieved
84.22% accuracy for multiclassification.

Recent research in COVID-19 detection has focused on the Transformer architec-
ture [10]. Dosovitskiy et al. [12] applied the standard Transformer architecture to image
recognition and proposed the use of self-attention in ViT to approach or outperform the
state-of-the-art (SOTA) model on several image recognition benchmarks. A few studies
have proposed the use of ViT in COVID-19 recognition algorithms. Shome et al. [14] created
a dataset of 30,000 images and trained the ViT model on it, achieving 92% accuracy and 98%
AUC, outperforming CNNs such as EfficientNet-B0, Inception-V3 and ResNet-50 in multi-
classification. Mondal et al. [13] proposed a network based on the ViT-B/16 architecture
and achieved the highest accuracy of 98.1%, outperforming most existing methods.

3. Materials and Methods
3.1. Datasets

The evaluation of our proposed approach involved the creation of a comprehensive
benchmark image dataset, CL-COVIDset, specifically designed for continuous learning in
medical image classification tasks. This dataset included a variety of images, including
CT scans and X-rays, representing different types of coronavirus infections and other viral
and bacterial pneumonia infections. The datasets used to create the CL-COVIDset are
publicly available. The CT images in the CL-COVIDset consist of normal scans [43] and
scans showing infections caused by the wild-type SARS-CoV-2 strain [43] and its Omicron
and Delta variants [44]. The dataset also included CT images of other viral pneumonia
infections [43]. X-ray images in the CL-COVIDset also included normal scans and those
showing infections caused by MERS [45], SARS [45], wild-type SARS-CoV-2 [45], the
Omicron and Delta variants [44], other viral pneumonia infections [46,47], and bacterial
pneumonia [48] infections.

The CL-COVIDset consisted of three sets: a training set, a validation set, and an
evaluation set (see Table 1). The use of the validation set allowed us to fine-tune our model,
and the model was finally tested for performance on the evaluation set. The performance
of the model on the evaluation set was assessed using observed and unobserved data and
distributions. To facilitate the use of CL-COVIDset by the wider research community, we
have made it publicly available on the Kaggle platform at the following link: https://www.
kaggle.com/datasets/mustai/continual-learning-of-covid19 (accessed on 31 January 2023).

https://www.kaggle.com/datasets/mustai/continual-learning-of-covid19
https://www.kaggle.com/datasets/mustai/continual-learning-of-covid19
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Table 1. Details of the CL-COVIDset dataset.

Image Types Class Images
Dataset

Train and Val Evaluation Total
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3.2. Methods
3.2.1. Methodology of CoroTrans-CL

Figure 1 illustrates the proposed methodology, CoroTrans-CL, for disease detection. It
is divided into three components: data augmentation, the CoroTrans model with a feature
extraction backbone and a classification head, and the Continual Learning strategy.
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The data augmentation module is used to increase the diversity of the input data
by applying various transformations to the images, including random rotation, cropping,
blurring and noise addition. This helps to improve the generalizability of the model by
exposing it to a wider range of data variations. To further increase the randomness of the
data, the module applies a random order command to shuffle the order in which these
transformations are applied. The resulting augmented dataset is then normalised using the
mean and standard deviation.

The CoroTrans model is an artificial intelligence system designed to perform disease
classification tasks. The architecture of the model consists of two main layers, namely,
a feature extraction backbone network layer and a disease classifier layer. The feature
extraction backbone network layer is responsible for encoding the input data into a feature
representation, which is then used as input for the disease classifier layer.

This layer can be thought of as the core or foundation of the model, providing a
basic structure upon which additional functionality can be built, similar to the concept
of a ‘backbone’ in a network. The disease classifier layer, on the other hand, uses the
feature representation generated by the feature extraction backbone network layer to
perform the actual disease classification. This layer can be implemented using various
techniques, such as using a neural network as the classifier, where the neural network can
be trained to classify the input based on the feature representation generated by the feature
extraction layer.

• Feature Extraction Backbone

The encoder backbone is a hierarchical structure consisting of four stages. The patch
partition stage divides the input RGB image into non-overlapping patches, each of which is
treated as a token. These patches are then processed through multiple Swin Transformer
blocks [16] that consist of interconnected Window and Shift Window Multi-Head Self-
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Attention (W-MSA and SW-MSA)-based Transformer blocks. These blocks enhance the
computational performance of the Window and Shift Window methods and are governed
by computational Equations (1) to (4), including the LayerNorm, Window Attention, Shifted
Window Attention, and MLP modules. The Swin Transformer is a novel attention-based
transform architecture specifically designed for the efficient processing of image data. It
exploits the local structure of images by partitioning them into patches and only applying
self-attention within each patch rather than over the entire image. This allows the Swin
Transformer to effectively model the long-range dependencies present in images while
maintaining a high degree of computational efficiency. In CoroTrans-CL, the patch size
is 4 × 4 and the feature dimension of each patch is 4 × 4 × 3, resulting in patch tokens
with a (H/4, W/4, 4 × 4 × channel) shape. The use of the Swin Transformer has been
shown to significantly improve the performance of image classification tasks compared
with other Transformer architectures. This is due in part to its ability to effectively model
local structure and long-range dependencies, as well as its high computational efficiency.
The block design of the Swin Transformer, consisting of interconnected Window and Shift
Window Multi-Head Self-Attention-based Transformer blocks, has also been shown to
be an effective method for improving performance, particularly in the context of image
processing.

x̂i = W −MSA
(

LN(xi−1)
)
+ xi−1, (1)

xi = MLP
(

LN(x̂i)
)
+ x̂i, (2)

x̂i+1 = SW −MSA
(

LN(xi−1)
)
+ xi, (3)

xi+1 = MLP
(

LN(x̂i+1)
)
+ x̂i+1, (4)

where x̂i is (S)W-MSA’s output, xi is the output of MLP, and i represents the block’s position.
The output shapes of the tokens are (224/8, 224/8, 2C), (224/16, 224/16, 4C), and (224/32,
224/32, 8C) for stages 2, 3, and 4, respectively. The resolution of the output features is 7 × 7,
and the channel has 768 dimensions, as does the output of the encoder stage.

• Disease Classification Head

The CoroTrans model features a disease classification head that was specifically de-
signed for the identification of various pathologies present in chest X-ray and CT images.
The classifier is implemented as a multi-layer perceptron consisting of several linear layers.
The input to the classifier is a one-dimensional feature vector of 768 dimensions derived
from the image data, which is transformed by the linear layers to predict the target pathol-
ogy among 11 classes. The final output of the classifier represents the prediction of the
model, providing a diagnostic tool for physicians.

Continual Learning, also known as Lifelong Learning, refers to the ability of artificial
intelligence models to sequentially adapt and learn new tasks without forgetting previously
trained tasks [22]. This approach is particularly relevant in addressing the challenges
posed by rapidly evolving environments, such as the COVID-19 pandemic, where new
information and data are constantly being generated. Continual Learning strategies aim to
improve the adaptability of AI models by allowing them to gain new knowledge for new
tasks without forgetting previous information. Formally, sequential learning can be defined
as the ability of a model to learn individual distributions D1,. . . , Dn, at T1, T2 . . . , moments
while being tested on a set containing all distributions. The goal of Continual Learning is to
collect data from the new distribution Dn+1 at Tn+1 and to update the model parameters θ
while the model simultaneously adapts to all distributions D1, . . . , Dn+1. In this study, we
employed HSR [25] and EWC [27] as a combined COVID-19 Continual Learning strategy
(HSR-EWC):
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• Herding Selection Replay.

The classical replay strategy is a widely used technique to address the challenge of
forgetting in Continuous Learning scenarios [49,50]. It involves storing and replaying
relevant samples from previous training sets as experience, with the aim of improving the
adaptability of the model to learn new tasks without forgetting previously acquired knowl-
edge. A specific implementation of the classical replay strategy is the HSR method [25,51],
which involves selecting representative examples that are as close as possible to the centre
of the feature space. Algorithm 1 describes the representative image selection process of
the HSR strategy.

Algorithm 1: Herding Selection Replay.

Input: Image set of CL-COVIDset, set α = {α1,α2, . . . ,αk} of class label y; The number of
classes is n; Maximum size of the replay memory buffer; Swin Transformer backbone model S for
feature extraction;

Training model S to obtain the feature maps θ and feature function ϕ of the extracted CT and
X-ray images;

Initialise L to an empty list.
Calculate the mean µ of the samples in the class by θ;
for 1, 2, . . . , m do

Lm ← arg min
α∈α

‖µ− ϕ(α)−∑m−1
i=1 ϕ(Li)
n ‖

end for
L← (L1, . . . , Lm);

Output: Exemplar buffer list L;

The HSR method involves up-sampling using the feature extraction backbone during
the training phase, followed by calculating the mean of the samples in each class. The
distance of each individual sample to the class mean is then calculated and the closest
distance ranking is generated. For each class, the top n most representative samples are
selected based on this ranking to form a representative subset of samples that are stored
in memory. The total number of representative samples in memory (set to N = 200 in this
study) is equally divided between the learned classes, with the number of classes being
dynamically adjusted according to the learning process. An advantage of the HSR method
is that the final sample means are close to the actual class means, allowing the samples to
better represent the classes to which they belong [52]. This contrasts with other methods,
which can result in sample means that are far from the actual class means, leading to the less
effective representation of the classes. The HSR approach has been shown to be effective in
improving the Continuous Learning capabilities of artificial intelligence models.

• Elastic Weight Consolidation.

EWC enables Continual Learning by reducing the plasticity of synapses important to
previous tasks [27]. As shown in Figure 2, the parameters (weights and biases) of tasks TA
and TB are denoted as θA and θB, respectively, and the sets of parameters that reduce the
errors for tasks A and B are Θ∗A and Θ∗B, respectively. It is possible to find a solution with
θA ∈ ΘA and θB ∈ ΘB.

Under a Bayesian perspective, if the data are divided into two independent parts, the
DA of TA and DB of TB, the posterior distribution p(θ|D) is estimated with (5).

log p(θ|D) = log p(DB|θ) + log p(θ|DA)− log p(DB), (5)

As it is not possible to compute the true posterior probability, the EWC assumes
that it is a Gaussian distribution with a mean given by the parameter θ∗A and the Fisher
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information matrix F is used to estimate diagonal precision [53]. The loss function is built
in (6).

l(θ) = lB(θ) + ∑
i

λ

2
zi
(
θi − θ∗A, i

)2, (6)

where lB(θ) is the loss function specific to task TB, 〉 is the weight vector of the index, θ∗A, i
denotes the parameter after learning task TA, F denotes the Fisher information matrix, and
λ is the parameter which determines the relative importance of the old and new tasks. [54].

When task B arrives, EWC uses parameter θ close to θ∗A in Equation (6), and when a
third task Tc arrives, EWC continues to make the parameter θ close to θ∗AB, where θ∗A,B is
the parameter learned from tasks TA and TB. Extending to all T tasks, the optimization
objectives of EWC are given in (7).

θ∗T = argmin
θ

{
− log p(DT |θ)−

1
2 ∑

i
(∑

t<T
(λtzt,i)(θi − θ∗T−1, i)

2

}
(7)
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3.2.2. Performance Evaluation Metrics

In this study, we used a number of Continual Learning evaluation metrics to assess the
performance of the models. One such metric was average accuracy [55], which measures
the average accuracy of a model after class-incremental training for the first task up to
T. This metric is calculated with formula (8). Average accuracy is a widely used metric
in the Continual Learning literature, as it provides a comprehensive view of a model’s
performance across all tasks. Unlike other metrics, such as per-task accuracy, which only
consider performance on individual tasks, average accuracy takes a model’s performance
on all tasks into account, providing a more comprehensive assessment of a model’s ability
to continuously learn new tasks without forgetting previously acquired knowledge.

Average Accuracy =
1
T
T
∑
i=1

pT , i, (8)
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where pj, i is the Top1 accuracy of the model on the held-out test set of task Ti after the
model is trained on task Tj. The precision, sensitivity and F1 score are defined as:

Precision =
True Positives

True Positives + False Positive
, (9)

Sensitivity =
True Positives

True Positives + False Negative
(10)

F1− score =
2× (Sensitivity× Precision)

Sensitivity + Precision
(11)

To assess the overall performance of the models in this study, the average of each
metric was calculated using the MACRO method [39]. The confusion matrix is a valuable
tool for analysing the error types of a model, as it provides a breakdown of the number of
true positive, true negative, false positive and false negative predictions made by a model.
This information is useful for identifying patterns in a model’s errors and for developing
strategies to improve a model’s performance.

3.2.3. Experimental Setup

In this study, we compared the performance of several state-of-the-art deep learning
models as the backbones for CT and chest X-ray image classifiers. The models used for
comparison included an all-MLP Architecture for Vision (MLP-Mixer) B/16 [56], a multi-
layer perceptron model with a mixer block architecture (ResNet-50) [31], a widely used
convolutional neural network (CNN) model with a residual architecture (Efficientnet-
b4) [36], a CNN model with an efficient architecture designed to improve performance
while reducing the number of parameters and computational complexity (ViT-S/16) [12],
a vision Transformer model with a small patch size and BERT Pre-Training of Image
Transformers (BeiT) v2 [57], and a hybrid Transformer model that combines the strengths
of both CNNs and Transformers. In addition to these models, we also included our own
model for comparison.

To evaluate the classification ability of our proposed model (CoroTrans) and the other
models, we performed a joint learning experiment. The experiment involved simultane-
ously training all models on all classes of images. In this setup, each model is trained for a
certain number of iterations, called epochs. In our experiment, the models were trained
for 30 epochs. The training process for the models involved updating their parameters
to minimise the difference between the predicted output and the actual output. This
process as conducted using an optimisation algorithm. In our experiment, we used the
Adaptive Moment Estimation Decoupling Weight Decay (AdamW) optimiser. The Adam
optimiser [58] is a popular optimisation algorithm that is widely used in deep learning
and is particularly well-suited to training large neural networks. It is a combination of two
other optimisation techniques, namely, the Adaptive Gradient Algorithm (AdaGrad) and
Root Mean Square Propagation (RMSProp). The Adam optimiser has several advantages
over other optimisation techniques, including the ability to adaptively adjust the learning
rate on a per-parameter basis. This means that the optimiser can adjust the learning rate
for different parameters based on the past gradients of the parameters, resulting in faster
convergence. In addition, Adam has a momentum term that helps to smooth the gradients,
allowing the optimiser to converge faster and more stably. AdamW is a modified version of
the Adam stochastic optimisation algorithm that improves upon the traditional implemen-
tation of weight decay. This is achieved by decoupling the weight decay calculation from
the gradient update operations, allowing the weights to be updated in a more effective and
efficient manner. The learning rate is another important hyperparameter in the training
process. It controls the step size at which the optimiser updates the model parameters.
A high learning rate causes the model to make rapid updates to the parameters and the
training process can quickly converge, though with the risk of overshooting the optimal
solution, while a low learning rate causes the model to make smaller updates, leading to
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slower convergence but with less risk of overshooting. In our experiment, we used an
initial learning rate of 3 × 10−5. To further assess the performance of each model, we used
a 5-fold cross-validation strategy to derive the average scoring accuracy of each model on
the validation set, providing a robust assessment of their performance.

We then conducted a series of class incremental learning experiments, as shown in
Figure 3, in which the models were trained on successive sets of images corresponding to
different types of coronavirus infection. To this end, we conducted experiments on five
levels of Continuous Learning that accurately reflected the epidemic timeline of different
coronaviruses (namely, SARS, MERS, wild-type SARS-CoV-2, and the Omicron and Delta
variants of SARS-CoV-2) in the real world. The results of these experiments were compared
with the baseline results obtained by training the models on all previous classes in addition
to the new class each time (the upper bound). The aim of these experiments was to assess
the ability of the models to adapt to new information without forgetting previously learned
knowledge.
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Figure 3. Using AI to simulate the discovery of coronaviruses: a contrast between joint and class-
incremental learning experiments: (a) joint learning; (b) class-incremental learning experiment in
which trials were conducted in five successive learning phases reflecting the actual epidemic timeline
of different coronaviruses (namely, SARS, MERS, wild-type SARS-CoV-2, and the Omicron and Delta
variants of SARS-CoV-2) in the real world.

Finally, we compared several state-of-the-art Continual Learning methods for their per-
formance in adapting to new information without forgetting previously learned knowledge.
The methods we considered included Gradient Episodic Memory (GEM) [59], a method that
stores past gradients and adjusts the learning rate for each example based on the distance
between the current gradient and the past gradients; GDumb [24], a method that stores a
fixed number of examples from each task and performs gradient descent on these examples
at the beginning of each task; Average Gradient Episodic Memory (AGEM) [60], a method
that stores and averages previous slopes to provide a continuous representation of the
understanding acquired in previous tasks—this representation is then used to streamline
the learning process for the current task, ensuring that the network retains essential data
from previous tasks while avoiding harmful interference; CopyWeights with Re-init Star
(CWRStar) [61], a rehearsal-free Continuous Learning approach in deep learning, which
is a notable way of dealing with forgetting in the Single-Incremental Task–New Classes
situation that involves the implementation of a double memory in the fully connected
layer; Cumulative (the upper bound), a method that stores all past examples and trains on
them in addition to the current task; and Random Replay, a method that randomly samples
past examples to train on at the beginning of each task. These methods represent three
different strategies for Continuous Learning: gradient-based, example-based, and random
sampling. We compared the performance of these methods using a five-step incremental
learning task involving the sequential learning of different coronavirus classes. The capacity
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hyperparameter of the buffer for all replay methods was uniformly set to store a maximum
of 200 samples.

The experiments were conducted using the Tesla A100, V100 and P100 GPU graphics
cards, and they were implemented using PyTorch (https://pytorch.org/ (accessed on 31
January 2023)), the PyTorch image model library (https://github.com/fastai/timmdocs/
(accessed on 31 January 2023)), and the PyTorch Continuous Learning framework (https://
avalanche.continualai.org/ (accessed on 30 January 2023)) [52]. The use of GPU technology
has become increasingly common in deep learning due to its ability to increase the efficiency
of the training and inference process through parallel processing. PyTorch, a widely used
open-source deep learning framework, provides a high-level interface for training and
deploying deep learning models. The timmdocs library developed by fastai is a suite
of PyTorch utilities and callbacks for training image classification models. In addition,
the avalanche framework is a PyTorch-based toolkit for the design and evaluation of
Continuous Learning algorithms.

4. Results
4.1. Joint Training Results
4.1.1. Accuracy Results

The results presented in Table 2 show the superiority of our approach, CoroTrans,
a Swing Transformer Network-based model, over the other evaluated models in terms
of precision, recall, F1 score and accuracy as performance metrics in joint training. Our
approach, CoroTrans, showed exceptional performance with a precision of 97.18%; in
addition, our approach achieved an accuracy of 95.34%, further highlighting the effec-
tiveness of CoroTrans in identifying coronavirus-infected respiratory diseases in medical
images in joint training. Notably, the performance gain of CoroTrans over other models
was significant, with average improvements of 20% in precision, 20% in recall, 20% in
F1 score and 16% in accuracy over other models. These results illustrate the potential of
our proposed approach to provide a comprehensive and accurate prediction model for
Coronavirus-infected respiratory disease.

Table 2. Comparison of baseline models and proposed approach.

Backbone Model
Evaluation Metrics

Precision Recall F1 Score Accuracy

MLP-Mixer B/16 0.7994 0.7724 0.7806 0.7919
Efficientnet-b4 0.8967 0.8855 0.8887 0.8843

ResNet-50 0.9202 0.9146 0.9167 0.9244
ViT-B/16 0.9371 0.9276 0.9312 0.9300
BeiT-v2 0.9443 0.9323 0.9373 0.9412

CoroTrans(Ours) 0.9718 0.9716 0.9716 0.9534

4.1.2. Various Diseases Classification Results

The results, as shown in Figure 4 and Table 3, demonstrate the robustness and validity
of our proposed model, CoroTrans, for the classification of different diseases. The F1
scores for all diseases were higher than 92%, highlighting the model’s ability to accurately
discriminate between different disease classes. In particular, CoroTrans showed a superior
ability to detect wild-type SARS-CoV-2 and other viral pneumonias in both CT and X-
ray images.

The model achieved F1 scores of 98.32% for CT images and 100% for X-rays for the
identification of wild-type SARS-CoV-2, a significant improvement over the other compared
models. In addition, the model achieved high F1 scores of 98.73% and 100% for CT and
X-ray images, respectively, for the identification of other viral pneumonias. Furthermore,
the model’s performance in identifying the Omicron and Delta variants of SARS-CoV-2
(with F1 scores of 89.06% and 96.97% respectively), while not as high as its performance in

https://pytorch.org/
https://github.com/fastai/timmdocs/
https://avalanche.continualai.org/
https://avalanche.continualai.org/
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other disease classes, demonstrates its ability to accurately identify these variants, which
are known to be more difficult to diagnose.
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Table 3. Results of CoroTrans classification for different diseases.

Image Types Class
Evaluation Metrics

Precision Sensitivity F1 Score

CT

Normal 0.9261 0.9228 0.9244
Wild-type SARS-CoV-2 0.9915 0.9750 0.9832

Omicron and Delta Variants of SARS-CoV-2 0.8860 0.8953 0.8906
Other Pneumonias 0.9832 0.9915 0.9873

X-Ray

Normal 0.9677 1.0000 0.9836
Wild-type SARS-CoV-2 1.0000 1.0000 1.0000

Omicron and Delta Variants of SARS-CoV-2 0.9796 0.9600 0.9697
SARS 0.9630 0.9630 0.9630
MERS 0.9600 0.9796 0.9697

Other Viral Pneumonias 1.0000 1.0000 1.0000
Bacterial Pneumonia 1.0000 1.0000 1.0000

4.1.3. Comparison of Model Feature Extraction

t-Distributed Stochastic Neighbour Embedding (t-SNE) [62] is a dimensionality re-
duction and visualization technique for high-dimensional data that is particularly useful
for visualizing the structure of complex datasets and has been widely used in the field
of machine learning to visualise the representations learned by deep neural networks. In
our study, we used t-SNE to visualise the disease features learned by our proposed model,
CoroTrans, as well as other models based on three major deep learning architectures: CNNs,
ViT, and MLP.

We extracted the output of the last layer of the feature extractor in each model to obtain
a multidimensional feature vector and projected it into a two-dimensional space using
t-SNE. The resulting scatter plots, shown in Figure 5, indicate that the feature distributions
obtained by the MLP-Mixer B/16, EfficientNet-b4 and ResNet-50 models did not result in a
clear boundary between different disease classes.
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In contrast, the feature distributions obtained by the ViT-B/16, BeiT-v2 and CoroTrans
models had clear boundaries between different classes of features, with CoroTrans showing
the clearest separation of each class compared with other techniques. These results indicate
that our model effectively captured the relevant features of the images, leading to improved
classification performance.

4.2. Continual Learning Results
4.2.1. Average Accuracy and Confusion Matrix Results

The results presented in Table 4 demonstrate the effectiveness of our proposed method,
CoroTrans-CL, in mitigating catastrophic forgetting in Continuous Learning tasks. Using
the HSR-EWC strategy, our method achieved superior performance compared with other
evaluated strategies such as AGEM, CWRStar, GEM, GDumb and Random Replay. In
particular, when applied to the Swin Transformer backbone, our method achieved an
accuracy of 83.40%, while the next best strategy, Random Replay, achieved an accuracy of
66.04%. This result indicated a significant improvement in performance, around 30% better
than other models. In addition, it is worth noting that the average accuracy of our method
was the closest to the upper performance limit of the Cumulative method of all evaluated
methods. These results highlight the effectiveness of our proposed approach in dealing
with catastrophic forgetting and maintaining performance in Continuous Learning tasks.
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Table 4. A comparison of the average accuracy of different strategies.

Architecture

Baseline Evaluation Strategies

Cumulative
(the Upper Bound) AGEM CWRStar GEM GDumb Random

Replay
HSR-EWC (Our

CL Strategy)

ResNet-50 0.4776 0.2323 0.3209 0.2155 0.3256 0.3269 0.2323
Efficientnet-b4 0.4813 0.2668 0.3218 0.2780 0.0914 0.2351 0.3461

BeiT-v2 0.8834 0.2267 0.3256 0.4646 0.6772 0.3414 0.5718
MLP-Mixer B/16 0.8657 0.3461 0.3358 0.3563 0.4039 0.5765 0.6604

ViT-B/16 0.8983 0.2257 0.3619 0.7453 0.6922 0.653 0.7724
CoroTrans

(Our Model) 0.9375 0.2304 0.3479 0.4403 0.5373 0.694 0.8340

4.2.2. Incremental Learning Processes Results

The results of our study, as depicted in Figure 6, illustrate the incremental learning
process of the CoroTrans-CL across several Continual Learning strategies. As seen in
the figure, other methods such as AGEM, CWRStar, GEM, GDumb, and Random Replay
experienced sharp declines in average accuracy, indicating catastrophic forgetting. This
is particularly problematic in the context of a medical deep learning model, as it renders
the model ineffective in adapting to new, unseen classes of data. On the other hand, our
proposed CoroTrans-CL approach, the Swin Transformer backbone combined with the HSR
strategy, exhibited a slow degradation of performance, similar to the way the human brain
learns. This slow degradation in accuracy maintained the model’s ability to recognise new,
unseen classes of data without compromising performance on previous classes. This ability
to continuously learn and adapt to new virus strains without forgetting previous strains is
critical in the fight against coronavirus mutations and pandemics, as it allows for real-time
adaptation to new strains while maintaining performance on previous strains.
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4.2.3. Ablation Experiments

In our study, we conducted ablation experiments to evaluate the contribution of
each component of our proposed method, which combined EWC and HSR to mitigate
catastrophic forgetting. Specifically, we compared the performance of three different
combinations of methods:

Hybrid 1, where the model was trained using only EWC.
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Hybrid 2, where the model was trained using EWC and Replay.
Our method, where the model was trained using EWC, Replay, and Herding Selection.
These ablation experiments were conducted to gain insight into the individual contri-

butions of each component of our proposed method and to determine which combination
of methods resulted in the most effective performance. The results presented in Table 5
are essential for understanding the architecture of the model. Understanding the precise
impact of each component of the proposed method on incremental learning performance is
crucial for making informed decisions about the structure and design of the model.

Table 5. Ablation analysis of average accuracy results.

Methods Average Incremental Accuracy

Hybrid 1 (EWC) 0.2248
Hybrid 2 (EWC + Replay) 0.7220

Our method (EWC + Replay + Herding Selection) 0.8340

Hybrid 1, using only EWC, was able to maintain the weights of the previously learned
classes. However, as the gap between the new and old classes increased, so did the
confusion between the old and new classes, leading to a significant decrease in the final
incremental average accuracy.

Hybrid 2, which combined EWC and Replay, showed improved performance over
Hybrid 1, as the increased storage of example samples helped to reduce confusion between
old and new classes. However, as the selection of examples was random, the samples
lacked feature representativeness and recognition accuracy was not high after several stages
of incremental training.

Our method, which included the addition of the Herding Selection method, improved
on Hybrid 2 by using a Herding Selection algorithm to select representative samples near
the mean feature after averaging the features extracted by the backbone network. This
resulted in a limited number of subsamples that effectively represented the entire sample
and led to significantly improved performance and slow forgetting during incremental
learning, resulting in the highest final incremental average accuracy.

4.2.4. Comparison of Different Sample Selection Strategies

To analyse the effects of different exemplar selection strategies on incremental learning
performance, we compared three different exemplar selection strategies.

Hybrid 1: Random Exemplar Selection strategy, which randomly selected the exem-
plars in the dataset.

Hybrid 2: Closest to Centre strategy, which is a greedy algorithm that selected the
remaining exemplar that is closest to the centre of the feature space based on the already
selected elements.

Our method: Herding Selection strategy, which selected the remaining exemplar that
brought the centre of the already selected exemplars as close as possible to the overall
centre of the feature space by iteratively adjusting the selection criteria.

The results of our experiments, shown in Figure 7, show that the Herding Selection
strategy was the most effective method for selecting exemplars in incremental learning tasks.
The strategy, which is based on a Herd Selection algorithm, minimised the distance between
the feature centres of the selected exemplars and the overall feature centres of the sample.
This resulted in a better representation of the replayed samples, which consequently led to a
higher average accuracy in the final increment. In contrast, the Random Exemplar Selection
strategy, which used stochastic sampling to retain information from old classes, suffered
from a lack of representativeness as the gap between the random sub-sample space and the
total space gradually increased with increment. The Closest to Centre strategy performed
well in the initial stages, but as the incremental training stage gradually increased, the
representativeness of the samples selected by the algorithm decreased and recognition
accuracy accordingly decreased.
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5. Discussion

Our proposed Continuous Learning approach, CoroTrans-CL, based on the Swin
Transformer architecture, was developed for the diagnosis and prevention of coronavirus
infection using chest radiography images. During the joint training phase, we employed
a robust evaluation strategy by using 5-fold cross-validation, a widely accepted method
for evaluating the performance of machine learning models. In this approach, the training
data were divided into five equally sized subsets called ‘folds’, and the model was trained
on four of these folds, with the remaining fold used as a validation set. This process was
repeated five times, with each fold being used as a validation set only once. The advantage
of this method, especially for smaller datasets, is that it allows for a more comprehensive
evaluation of a model’s performance. The performance of our proposed model CoroTrans
was validated by a 5-fold cross-validation on the evaluation set, achieving an accuracy of
95.34% in the conclusive results. This outstanding result demonstrates the superior feature
extraction capability of our model.

The results presented in Table 2 show that the CoroTrans-CL model had high precision
and recall values, with a precision of 97.18%, a recall of 97.16%, and an F1 score of 97.16%,
indicating low numbers of both false positive and false negative predictions. These results
demonstrate the model’s ability to accurately identify infected images while minimizing
the number of uninfected images misclassified as infected. In addition, Table 3 illustrates
the performance of the CoroTrans model for different diseases, such as normal scans, wild-
type SARS-CoV-2, the Omicron and Delta variants of SARS-CoV-2, and other pneumonia
infections. The F1 scores for all diseases were greater than 92%, indicating the ability of
the model to accurately discriminate between different disease classes and to minimise the
number of false positive and false negative predictions. It is worth noting that the high
performance of the CoroTrans-CL model in terms of precision, recall and accuracy suggests
that it is capable of effectively identifying coronavirus-infected images while minimizing
the number of false positive and false negative predictions. Our confusion matrix results
further demonstrate the robustness and validity of CoroTrans for the classification of
various diseases.

The utilization of the ViT architecture in medical image analysis has been found to
be particularly advantageous in this task, as it allows for the processing of input images
of arbitrary resolution. The self-attention mechanism enables the model to focus on the
most informative regions of the input images, leading to better performance. Additionally,
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the Transformer architecture allows for the utilization of a vast number of parameters,
leading to improved representation capability. A comparison of the ability of model feature
extraction (t-sne) indicated that our model outperformed the comparative CNNs and MLP
model architectures in terms of feature extraction, as evidenced by the t-SNE visualization.
This emphasises the significance of using Swin Transformer as a feature extraction backbone
in our model, as its hierarchical architecture enables the extraction of features at multiple
scales, thus leading to improved performance in medical image recognition tasks. These
factors collectively contributed to the superior performance of our model CoroTrans in
identifying images of different coronavirus infections.

The results of our proposed method in the context of Continual Learning, as pre-
sented in Section 4.2, reveal its superior performance compared with other comparative
approaches. In particular, the mean accuracy of 83.40% achieved by our proposed method
in the Continual Learning setting highlights its ability to effectively adapt to new data and
task variations while maintaining its performance on previously learned tasks. In addition,
to gain insight into the influence of image resolution on the precision of our proposed
approach, we evaluated the classification results of Continuous Learning using a standard
resolution image (224 × 224) and an enhanced resolution image obtained by adapting it
to a larger resolution image (384 × 384). As expected, the higher resolution resulted in
a further increase in the overall accuracy of the model recognition, reaching an overall
accuracy of 84.70% after five stages of Continuous Learning, an increase of 1.3 percentage
points compared with the mean accuracy for the standard resolutions.

Rehearsal-based methods, such as our proposed HSR strategy, have been found to
be more effective in addressing the issue of catastrophic forgetting as they actively store
and replay examples from previous tasks, allowing models to retain previous knowledge.
In contrast, regularization-based methods, such as EWC, primarily focus on constraining
a model’s parameters to prevent excessive changes but do not actively store previous
knowledge. The Random Replay strategy, while being a rehearsal-based approach, still
suffers from severe forgetting due to the random selection of examples that may not be
representative of the previous tasks. Our HSR approach, on the other hand, utilises a
Herding Selection algorithm, which selects a small representative sample of examples
based on their similarity to the previous tasks, thus allowing the model to effectively retain
previous knowledge and minimise forgetting during the learning process. Furthermore, the
results of the incremental learning processes presented in Section 4.2.2 further support the
effectiveness of our proposed method in addressing the issue of catastrophic forgetting. The
gradual decline in performance observed in our proposed method, in contrast to the severe
forgetting exhibited by other comparative methods, aligns with the process of memory
learning in the human brain and helps to maintain a balance of plasticity and stability.

The results of our ablation experiments and comparison of different sample selection
strategies demonstrate the effectiveness of our proposed method, which combines EWC,
Replay, and Herding Selection to mitigate catastrophic forgetting in incremental learning
tasks. Our study shows that a hybrid approach using multiple strategies is more effective
in addressing the problem of catastrophic forgetting than relying on a single strategy alone.
In particular, our proposed method improved on the performance of other studied methods
by using a Herding Selection algorithm to select representative samples that effectively
represent the entire sample. This led to significantly improved performance and slow
forgetting during incremental learning, resulting in the highest final average incremental
accuracy. Furthermore, the comparison of different sample selection strategies showed that
HSR was a more effective method for selecting exemplars in incremental learning tasks, as
it minimised the distance between the feature centres of the selected exemplars and the
feature centres of the whole sample. The results of our study provide valuable insights into
the design and structure of incremental learning models and demonstrate the potential of
our proposed method to address the challenge of catastrophic forgetting in such models.
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6. Conclusions

In this paper, we propose a novel approach to detect lung CT and X-ray images
of different coronaviruses that cause major respiratory diseases, such as SARS, MERS,
wild-type SARS-CoV-2, and the Omicron and Delta variants of SARS-CoV-2, using a
Transformer-based deep learning model. We combined regularization-based and rehearsal-
based methods to address the challenge of Continuous Learning. Our approach achieved
impressive performance, with a joint training accuracy of 0.9534, an F1 score of over 92%,
and an average accuracy of 83.40% in the Continuous Learning environment. The proposed
approach is a promising solution to address the challenges posed by continuously mutating
viruses. In future work, we plan to further investigate the segmentation and lesion detection
tasks in the CT and X-ray imaging of coronavirus-infected lungs based on the Continuous
Learning methods proposed in this paper.
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