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Abstract: The range migration algorithm (RMA) based on Fourier transformation is widely applied in
millimeter-wave (MMW) close-range imaging because of its few operations and small approximation.
However, its interpolation stage is not effective due to the involved intensive logic controls, which
limits the speed performance in a graphics processing unit (GPU) platform. Therefore, in this paper,
we present an acceleration optimization method based on the hybrid GPU and central processing
unit (CPU) parallel computation for implementing the RMA. The proposed method exploits the
strong logic-control capability of the CPU to assist the GPU in processing the logic controls of the
interpolation stage. The common positions of wavenumber-domain components to be interpolated
are calculated by the CPU and stored in the constant memory for broadcast at any time. This avoids
the repetitive computation consumed in a GPU-only scheme. Then the GPU is responsible for the
remaining matrix-related steps and outputs the needed wavenumber-domain values. The imaging
experiments verify the acceleration efficiency of the proposed method and demonstrate that the
speedup ratio of our proposed method is more than 15 times of that by the CPU-only method, and
more than 2 times of that by the GPU-only method.

Keywords: millimeter-wave imaging; RMA; close-range imaging; GPU; CPU

1. Introduction

Recently, synthetic aperture radar (SAR) technology has been widely applied in
millimeter-wave (MMW) imaging applications [1–3]. One of the most popular imag-
ing algorithms at present is the range migration algorithm (RMA), which is well suited to
MMW close-range imaging because of its few operations and small approximation [4–6].

The practical application of radar close-range imaging is a task suffering from a heavy
computational burden. Therefore, almost all imaging systems spend great efforts studying
the real-time performance of the algorithm on the hardware with parallel processing
capability. Since the beginning of this century, the graphics processing unit (GPU) due to its
powerful parallel processing capability has received increasing attention. The introduction
of the compute unified device architecture (CUDA) programming model by NVIDIA,
makes the GPU available to do parallel computing with the general purpose [7].

Plenty of studies have explored parallel computing strategies on CPUs and GPUs to
address imaging problems. Yin Q. [8] proposed a GPU-based framework of the parallel
inversion method for polarimetric SAR imagery. This optimization method utilizes the
parallel computing advantage of the GPU to process the imagery with a large amount of
computation, making the computational efficiency of the algorithm be improved by about
100 times. Cui Z. [9] proposed a constant false alarm rate with convolution and pooling
(CP-CFAR) method to improve the detection efficiency via GPU parallel acceleration in the
airborne SAR images and the operation speed can reach more than 18 times. Liu G. [10]
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proposed a parallel simulation system for the muti-input muti-output (MIMO) radar based
on the GPU architecture and its simulation achieves a speedup of 130 times compared
with the serially sequential CPU method. Gou L. [11] proposed to accelerate the video
SAR imaging using a GPU on the CUDA platform, which effectively solves the real-time
problem. In general, the previous work shows that GPUs do significantly improve the
computational efficiency of SAR imaging.

The primary stages of the RMA for SAR three-dimensional (3D) imaging are fast
Fourier transformation (FFT) and interpolation. Because that CPUs and GPUs have open
sources to quickly implement FFT, the computational complexity of the interpolation
becomes the key to limiting the implementation speed. There are a variety of interpolation
methods to convert the non-uniform wavenumber domain to a uniform one, such as
linear interpolation, Newton interpolation, cubic spline interpolation, etc. Compared
to linear interpolation, the cubic spline interpolation has less approximation and better
continuity [12]. Although the Newton interpolation method can ensure the accuracy and the
overall continuity of the interpolation function, its interpolation curve is not stable enough
at the edges and not smooth enough out of the interpolation nodes [13]. Cubic spline
interpolation is a segmental interpolation method, which can effectively avoid Runge’s
phenomenon [14], and thus can maintain both the accuracy of its interpolation points
and the smoothness of its interpolation curve. Therefore, the cubic spline interpolation
algorithm is used in this paper.

In implementing cubic spline interpolation in the GPU platform, a fixed number of
scattering points are required to estimate the expected value at the desired position, which
results in lots of repetitive calculations over the whole scattering-point data set. These heavy
tasks not only take up more video memories, but also increase the access time of the CUDA
core. Therefore, compared with the straightforward migration of the RMA in a GPU-only
platform, this paper proposes a hybrid CPU and GPU platform to accelerate cubic spline
interpolation in the RMA for MMW imaging using parallel computing. By decomposing
and analyzing the cubic spline interpolation in detail, the steps of the interpolation are
separated better match the hardware according to the calculation characteristics of each
step. For those steps which involve logical judgments but only require simple computation,
the CPU is adopted. Facing the steps that require large-scale matrix operations, the GPU
is adopted as the host processor, while the CPU takes the auxiliary role to deal with
data transfer and calculate variables related to the original positions of the wave-number
domain. In such a way, the proposed method reduces both the response time and waiting
for the time of the GPU to perform the interpolation, thereby improving the speed of the
RMA implementation. The experiments demonstrate that the proposed approach has high
timeliness. It can obtain a speedup ratio at least 2 times faster than the traditional GPU-only
acceleration method and at least 15 times faster than the CPU-only method.

2. Acceleration Method
2.1. Three-Dimensional (3D) Range Migration Algorithm

The diagram of the considered MMW close-range imaging system is shown in Figure 1.
The motion trajectory of the transceiver is linear. Let (x′, y′, R0) be a spatial sampling
position of the transceiver, where x′ ∈ [−Lx/2, Lx/2] and y′ ∈

[
−Ly/2, Ly/2

]
, Lx denotes

the aperture length in the azimuth dimension (i.e., X dimension), Ly denotes the aperture
length in the height dimension (i.e., Y dimension) and R0 indicates the distance between
the observation plane and the target origin.
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Figure 1. Close-range imaging.

Assuming that the transceiver emits stepped-frequency (SF) signals, at the p-th fre-
quency, the response measured at the transceiver is

s
(
x′, y′, kp

)
=
∫∫∫
x,y,z

σ(x, y, z)e−j2kpRdxdydz , (1)

where σ(x, y, z) denotes the reflectivity function of the scatterer at the position (x, y, z),
kp = 2π fp/c denotes the wave-number, c denotes the speed of light, fp denotes the p-
th operating frequency, fp = f0 + (p− 1)∆ f , f0 and ∆ f denote the starting frequency
and the frequency step, respectively, p = 1, 2, . . . , P and P is the number of the trans-
mitted stepped frequency, R denotes the distance between the target and the transceiver,

i.e., R =
√
(x− x′)2 + (y− y′)2 + (z− R0)

2. The RMA imaging algorithm is shown in
Algorithm 1 [15–17].

Although kx, ky and kp are uniform, the wave-number component in the Z dimension,

i.e., kz =
√

4k2
p − k2

x − k2
y, is non-uniform. The wave-number domain for a certain height

is shown in Figure 2. Therefore, the 3rd stage in Algorithm 1 is necessary to achieve the
conversion from a non-uniformity of kz to a uniform one. As Algorithm 1 shows, the echo
data s(x′, y′, kp) is transformed into the image data σ̂(x, y, z) through a series of stages, i.e.,
two-dimensional (2D) Fourier transforms (FT), phase compensation, interpolation, and 3D
inverse FT. Highly complete program libraries such as faster Fourier transform in the west
(FFTW) and CUDA fast Fourier transform (CUFFT) can efficiently perform FFT operations
on the CPU and GPU, respectively. Although CUDA provides a ready-made library of FFT
to call, a zero-frequency component transfer operation is required before and after the FT
in the program. This operation can be considered a 3D data replication. The time overhead
of the data replication operation in the memory is greater than that in the video memory.
Moreover, the FFTW library has a very short running time on the CPU. In this paper, the
FFTW library is used to achieve efficient operations of the involved Fourier transform.
Therefore, the acceleration of interpolation is crucial for imaging.
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Algorithm 1 3D RMA imaging

Input:
Echoes collected over the frequency band and the whole spatial observation plane,
s
(

x′, y′, kp
)
, p = 1, 2, . . . , P, x′ ∈ [−Lx/2, Lx/2], y′ ∈

[
−Ly/2, Ly/2

]
;

Output:
1: Take the spatially 2D FT of s

(
x′, y′, kp

)
along x′ and y′ to form the angular spectrum at

each frequency,

S(kx, ky, kp) =
∫∫

x′ ,y′

s(x′, y′, kp)e−j(kx x′+kyy′)dx′dy′ (2)

where kx and ky denote the wave-number component corresponding to the X-
dimension and Y-dimension, respectively.

2: Apply the phase compensation to the angular spectrums based on the method of
stationary phase,

S(kx, ky, kz) = S(kx, ky, kp)e−jkzR0 (3)

where kz denotes the wave-number component corresponding to the Z-dimension, and,

and kz =
√

4k2
p − k2

x − k2
y.

3: Turn the non-uniform S(kx, ky, kz) to the uniform Ṡ(kx, ky, k̇z) by cubic spline interpola-
tion, where Ṡ(kx, ky, k̇z) denotes the spectrum value at the position (kx, ky, k̇z) and k̇z
denotes the desired uniform sampling position of the wave-number component in the
Z-dimension.

4: Take the 3D inverse FT of Ṡ(kx, ky, k̇z) to achieve the imaging,

σ̂(x, y, z) =
1

(2π)3

∫∫∫
kx ,ky ,kz

Ṡ(kx, ky, k̇z)ej(kx x+kyy+kzz)dkxdkydkz (4)

5: return: σ̂(x, y, z)

Figure 2. The wave-number domain of a certain height.

2.2. Cubic Spline Interpolation

To discuss the interpolation, the Algorithm 1 would be discretized. The transceiver
is sampled uniformly in the azimuth and height dimensions, and the (m, n)-th sampling
position is denoted as (xm, yn), where xm = −Lx/2 + (m− 1)dx ,m = 1, 2, . . . , M, xm ∈
[−Lx/2, Lx/2]; yn = −Ly/2 + (n− 1)dy, n = 1, 2, . . . , N, yn ∈

[
−Ly/2, Ly/2

]
; dx and dy

denote the sampling intervals in the azimuth and height dimensions, respectively. Then,
stacking all the samples of S

(
kx, ky, kz

)
in Equation (3) gives,
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S =



S(kx,1, ky,1, kz,(1,1,1)) · · · S(kx,1, ky,1, kz,(1,1,P))
...

. . .
...

S(kx,M, ky,1, kz,(M,1,1)) · · · S(kx,M, ky,1, kz,(M,1,P))
...

. . .
...

S(kx,M, ky,N , kz,(M,N,1)) · · · S(kx,M, ky,N , kz,(M,N,P))


MN×P

(5)

where kz,(m,n,p) =
√

4k2
p − k2

x,m − k2
y,n. The 1D interpolation of S is done along the kz-

dimension. Let sm,n be the column vector of the (m + (n − 1)M)-th row, i.e., sm,n =
[S(kx,m, ky,n, kz,(m,n,1)), . . . , S(kx,m, ky,n, kz,(m,n,P))]

T . Since kx, ky have been uniformly sam-
pled and they are invariant in each row, the variables kx and ky can be omitted in sm,n for
simplification. Therefore, for each row, let s ∈ CP×1 be the column vector for generalization,
and s = [s1, s2, . . . , sP]

T . The p-th element of s corresponds to the wave-number domain
component at kz,p, and kz,p is non-uniform. Let ṡ ∈ CQ×1 denote the vector of points
after interpolation, i.e., ṡ = [ṡ1, ṡ2, . . . , ṡQ]

T , and the q-th element of ṡ corresponds to the
wave-number domain component at the desired k̇z,q, where k̇z,q is uniform, q = 1, 2, . . . , Q.
It is worth noting that the original set {kz,p, p = 1, 2, . . . , P} is different in different rows.
Even though kz,p depends on the determined kx,m and ky,n in the (m + (n− 1)M)-th row,
the positions to be interpolated is fixed denoted by the common set as {k̇z,q, q = 1, 2, . . . , Q}.
The cubic-spline equation at the q-th point to be interpolated can be constructed in the
following form Ref. [18,19],

ṡq = ap + bp(k̇z,q − kz,p) + cp(k̇z,q − kz,p)
2 + dp(k̇z,q − kz,p)

3 (6)

where kz,p < k̇z,q < kz,p+1, ap, bp, cp, dp are the zero-order term coefficient, the primary term
coefficient, the secondary term coefficient, and the tertiary term coefficient of (k̇z,q − kz,p),
respectively. The cubic spline function is shown in Algorithm 2 [18–20].

2.3. GPU-Only Method

The scheme for computing the cubic spline interpolation in a GPU-only platform is
shown in Figure 3.

Figure 3. Cubic spline interpolation in the traditionally GPU-only platform.

In Algorithm 2, although the computations of all the M× N vectors of s satisfy the
program parallelization in the GPU platform, the straightforward migration of the cubic
spline interpolation in the GPU would cost a lot of time. This is because that kernel
functions in the GPU need to find the adjacent points kz,i of the interpolation point k̇z,q and
the wave value si of kz,i. Especially in step 7, kernel functions need to find the address of
each ṡq in advance. This traditionally parallel design requires kernel functions of the GPU
to run through the entire interpolation process and increases the workload of the video
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random-access memory (RAM). This method also causes the CPU to stand by for a long
time. This is not in line with the solution of the efficient use of the hardware. Although
GPUs have a large number of cores, their cores’ structure is too simple to be as fast as CPUs
for single instruction single data (SISD) processing.

2.4. The Hybrid GPU and CPU Acceleration Method

Since the structural characteristics of the CPU make it better for SISD processing, we
use the CPU to perform step 1, step 2, and step 3 of the Algorithm 2 which are suited for
the SISD computation model, and put the other steps into the GPU for processing. In step 7,
when kernel functions interpolate each row of the echo data S through a parallel processing
scheme, the GPU-only method causes additional waiting time for kernel functions to find
the ṡq. The proposed method utilizes the sequential addressing ṡq of k̇z,q. This way avoids
extra waiting time for different kernel functions to find ṡq, thus speeding up the whole
program. The optimized schematic block diagram is shown in Figure 4.

Algorithm 2 Cubic spline function
Input:

The originally non-uniform sampling positions in kz-dimension, i.e., kz,p, p = 1, 2, . . . , P; 1D
column vector to be interpolated, s ∈ CP×1; The desired uniform positions k̇z,q, q = 1, 2, . . . , Q;

Output:
1: Calculate the z-dimension difference, denotes hi, i = 1, 2, . . . , P− 1;

hi = kz,i+1 − kz,i (7)

2: Construct the tridiagonal matrix H from the obtained hi

H =


1 0 0 · · · · · · 0
h1 2(h1 + h2) h2 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · · · · hP−2 2(hP−2 + hP−1) hP−1
0 · · · · · · 0 0 1

 (8)

3: Decompose H using Gaussian elimination to obtain the upper triangular matrix L and the lower
triangular matrix U.

4: Calculate the matrix g based on the following formula,

g = 6
[
0 s3−s2

h2
− s2−s1

h1

s4−s3
h3
− s3−s2

h2
· · · sP−sP−1

hP−1
− sP−1−sP−2

hP−2
0
]T

(9)

5: Construct the vector w, w = [w1, w2, . . . , wP]
T based on the following formula, where wp denotes

the quadratic differential value of sp, i.e., wp = s′′p .

w = U−1L−1g (10)

6: Determine the coefficients in Equation (6) from the obtained hi and wi based on the following
equation:

ai = si (11)

bi =
si+1 − si

hi
− hiwi

2
− hi(wi+1 − wi)

6
(12)

ci =
wi
2

(13)

di =
wi+1 − wi

6hi
(14)

7: Estimate the spectrum of ṡq correspond to k̇z,q, baesd on Equation (6),

ṡq = ai + bi
(
k̇z,q − kz,i

)
+ ci

(
k̇z,q − kz,i

)2
+ di

(
k̇z,q − kz,i

)3 (15)

where kz,i < k̇z,q < kz,i+1.
8: return: ṡ = [ṡ1, ṡ2, . . . , ṡQ]

T
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Figure 4. The proposed method.

The pseudo code is shown in the Algorithm 3:

Algorithm 3 Hybrid CPU-GPU method pseudo code of cubic spline interpolation

Input:
The originally non-uniform sampling positions in kz-dimension, i.e., kz,p, p =

0, 2, . . . , P− 1; 1D column vector to be interpolated, s ∈ CP×1; The desired uniform
positions k̇z,q, q = 0, 2, . . . , Q− 1;

Output:
1: for p[0 : P− 2] do
2: h[p] = kz,p+1 − kz,p ←− Calculation of wave number domain steps, i.e., Equation (7)
3: end for
4: for p[1 : P− 3] do
5: H1[p] = h[p− 1]
6: H2[p] = (h[p− 1] + h[p]) ∗ 2
7: H3[p] = h[p]←− Calculation of the three diagonals of the tridiagonal matrix H, i.e.,

Equation (8)
8: end for
9: H1[P− 3] = 0.0, H2[0] = H2[P− 1] = 1.0, H3[0] = 0.0

10: U[0] = H2[0]
11: for p[1 : P− 4] do
12: L[p] = H1[p]/U[p− 1]
13: U[p] = H2[p]− H3[p− 1] ∗ L[p]
14: end for
15: L[0] = H1[P− 4]/U[P− 5]
16: Use the function cudaMemcpyToSymbol to send L, U, h to constant memory.
17: id←− blockDim.x ∗ blockIdx.x + threadIdx.x (GPU running part)
18: g[id] = 6 ∗ ( s[id+1]−s[id]]

h[id] − s[id]−s[id−1]
h[id−1] )←− Computing the array g, i.e., Equation (9)

19: Uw[id] = g[id]− L[id] ∗Uw[id− 1]←− Computing the array Uw. The array Uw is an
intermediate step in the computation of the array w.

20: w[P− 4] = Uw[P− 4]/U[P− 4]
21: w[id] = (Uw[id]− H3[id] ∗ w[id + 1])/U[id]←− Computing the array w, i.e., Equation

(10).
22: w[id] = w[id− 1], w[0] = 0.0, w[P− 2] = 0.0←− Add 0 to both ends of array w.
23: a[id] = s[id]
24: b[id] = s[id+1]−s[id]

h[id] − h[id]∗w[id]
2 − h[id]∗(w[id+1]−w[id])

6
25: c[id] = w[id]/2
26: d[id] = w[id+1]−w[id]

6∗h[id] ←− Calculation of spline curve coefficients, i.e., Equation (11) to
Equation (14)

27: if kz,p < k̇z, q < kz,p+1

28: ṡq = a[id] + b[id] ∗
(
k̇z,q − kz,i

)
+ c[id] ∗

(
k̇z,q − kz,i

)2
+ d[id] ∗

(
k̇z,q − kz,i

)3 ←− Cal-
culation of the spatial wave number at the interpolation point, i.e., Equation (15)

29: end if
30: return: ṡ = [ṡ0, ṡ1, . . . , ṡQ−1]

T
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The pseudo-code corresponds to Algorithm 2. The step 1 to step 3 of the Algorithm 2
are calculated in the CPU. The CPU transfers the matrices L and U to the video memory
after completing step 3. Generally, this task can be approached with different mechanisms:
global memory, shared memory, texture memory, and constant memory. To avoid the
time-consuming impact of access conflicts on the overall cubic spline interpolation, the
matrices L and U are stored in constant memory.

Generally speaking, the memory is much larger than the video memory. In the
implementation of CUDA kernel functions, the data is transferred from the memory to
the video memory, which requires data transfer time. The data are then read from the
video memory and processed using multiple threads, which requires computation time.
Therefore, the time consumed to execute the algorithm is the sum of the data transfer time
and the computation time. Before running the signal processing, it is necessary to reduce
the data transfer time. For large amounts of data, it is not possible to transfer the data in
the CPU buffer to the GPU at one time. Therefore, it needs to be transferred in chunks. If
it is desired to perform kernel function operations on the GPU at the same time as data
transfer, streams can be introduced for asynchronous parallel processing of data to improve
computational performance.

Therefore, in our close-range 3D imaging, the proposed method in this paper utilizes
asynchronous parallelism for data processing, which is different from the common serial
execution method. Actually, the implementation of the asynchronous parallel scheme is
shown in Figure 5, which compares the running time of both the serial execution and the
4-stream asynchronous parallel execution. As Figure 5 shows, 4 streams are created in the
GPU, and the data transferred from the CPU is equally distributed to each stream. In such
a way, the data transfer and processing among different streams would not interfere with
each other. This allows the data interaction between memory and video memory to be
executed in parallel with the computation of kernel functions. This approach ensures that
the GPU core is busy most of the time while effectively alleviating the drawback of a long
time for data transfer between the memory and video memory.

Figure 5. Asynchronous parallel execution and serial execution.

Because of the semi-threaded bundle broadcast feature of the constant memory, the
GPU reads constant memory much faster than global memory. Therefore, the choice of
constant memory saves a theoretical 93.75% of read time. The left steps 4–7 would be
achieved in the GPU. These 1D data in each row meet the parallelism requirement and can
be processed in parallel by the GPU’s single instruction multiple data (SIMD) processing
capability.

3. Experimental Results and Analysis

Simulation experimental configuration: Inter(R) Core(TM) i5-7400 CPU @ 3.00GHz
processor; 64-bit operating system; 16G memory (RAM); 1 NVIDIA GTX 1050 4G GDDR5
discrete graphics card; 1 PNA network analyzer. The measurement parameters used in the
experiment are listed in Table 1. The single point simulation experimental scenarios and
results are shown in Figure 6.
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Table 1. Measurement parameters used in the simulation and the experiment.

Parameters Value

Center frequency 92.5 GHz
Frequency bandwidth 35 GHz

Sweeping frequency points 201
azimuth dimension samples number 161
azimuth dimension sampling interval 1.5 mm
azimuth dimension aperture length 0.24 m
height dimension samples number 161
height dimension sampling interval 1.5 mm
height dimension aperture length 0.24 m

Antenna beamwidth 30◦

Antenna-to-target distance 0.3 m

(a) (b) (c)

Figure 6. Azimuth amplitude results. (a) is the CPU implementation result; (b) is the GPU imple-
mentation result; (c) is the result of the proposed method implementation.

To verify the correctness of the results, the 3D RMA close-range imaging algorithm
is implemented by CPU-only, GPU-only and our proposed method, respectively. In this
paper, MATLAB, a commercial mathematical software from MathWorks, is used as the
imaging display platform. According to Figure 6, results obtained from the simulation, the
difference among these 3 methods is quite small. Next, the actual imaging experiments
are performed, which the same parameters as the simulation model parameters. The
experimental scenarios and results are shown in Figures 7 and 8. It is clearly observed from
the comparison in Figure 8 that the imaging algorithm can be implemented properly on
different platforms. Thus, it confirms the feasibility of our proposed approach.

Figure 7. Experimental scene.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Imaging results comparison. (a–c) are the front, top and side views obtained by CPU-
only method, respectively; (d–f) are the front, top and side views obtained by GPU-only method,
respectively; (g–i) are the front, top and side views obtained by the proposed method, respectively

The amplitude-level comparison between the two methods is shown in Figure 9. In
Figure 9, the 3D surface is created using MATLAB’s built-in mesh function so that the
energy distribution of the main view in Figure 8 can be visualized. From this, the imaging
results calculated by these two methods can be found without significant differences. The
absolute error is only about 1.11628× 10−6, which confirms that the proposed method can
meet the functional requirements.

(a) (b) (c)

Figure 9. Amplitude-level comparison. (a) is the imaging target energy map obtained by the CPU-
only method; (b) is the imaging target energy map obtained by the GPU-only method; and (c) is the
imaging target energy map obtained by the proposed method.
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Figure 10 depicts the time consumption by different platforms with various data sizes.
Table 2 summarizes the speedup ratios of the conventional GPU-only method and the
hybrid CPU+GPU method compared to the CPU-only method.

Figure 10. Comparison of the time consumption by different platforms.

Table 2. Speedup ratio of the traditional GPU-only method and the hybrid CPU + GPU method
compared to the CPU-only method.

Methods
Data Volume 128 × 128 192 × 192 256 × 256 320 × 320

Traditional GPU method 8.33 9.16 9.17 9.34
CPU+GPU hybrid method 15.20 17.02 17.57 18.30

Since the GPU programs have a start-up overhead, the benefits of the GPU-based
parallel acceleration can only be realized when the amount of data is large enough. From
Table 2, we can have that the program with the traditional GPU parallel acceleration method
gets more than 8 times the speedup ratio compared to the CPU-only method. The hybrid
CPU + GPU method makes the speedup ratio reach more than 15 times, and the results
demonstrate that the larger the data size is, the better acceleration the method can reach.

4. Conclusions

In this paper, we conduct an in-depth study of hardware optimization for the 3D RAM
implementation on the CUDA platform with the programmable GPU and elaborate a hybrid
GPU and CPU strategy to achieve parallel computing. Especially for the interpolation stage
which has the greatest influence on the imaging time efficiency, this paper uses four streams
to optimize the data transfer and selects different video memory for storage according
to the data characteristics, optimizes the matrix storage method, and accomplishes the
effective execution of RMA. The calculation results using the NVIDIA GTX 1050 graphics
card demonstrate that the calculation speed of the MMW 3D close-range imaging based
on our acceleration optimization is greatly improved compared to the CPU-only platform
and the traditional GPU-only method. Lastly, we accompany our contribution with the full
source code of a working prototype (the code and explanatory notes can be accessed via
the following URL: https://github.com/miao3rd/miao_c.git accessed on 24 January 2023).

https://github.com/miao3rd/miao_c.git
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