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Abstract: Deep neural network (DNN) has shown great potential in direction-of-arrival (DOA)
estimation. In high dynamic signal-to-noise (SNR) scenarios, the estimation accuracy of the weaker
sources may degrade significantly due to insufficient training samples. This paper proposes a deep
neural network framework with sliding window operation. The whole field-of-view (FOV) is divided
into a series of sub-regions via sliding windows. Each sub-region is assumed to contain one source
at most. Thus, the single-source data can be used to train all the networks, alleviating the need for
the training samples and the prior information on the number of sources. A detector network and
an estimator network are followed for each sub-region, enabling high estimation accuracy and the
number of sources. Simulation and real data experiment results show that the proposed method
can achieve excellent DOA and source number estimation performance. Specifically, in the real
data experiment, the results show that the RMSE of the proposed method reaches 0.071, which is at
least 0.03 lower than FFT, MUSIC, ESPRIT, and a deep learning method namely deep convolutional
network (DCN), cannot estimate the lower SNR source in high dynamic SNR scenarios.

Keywords: array signal processing; direction-of-arrival (DOA) estimation; deep neural network
(DNN); supervised learning

1. Introduction

Direction-of-arrival (DOA) estimation is an essential task in array signal processing due
to the extensive applications in radar, wireless communications, and acoustics [1]. Model-
based DOA estimation approaches have been comprehensively investigated, including
Fourier Transform (FT), subspace methods, and compressed sensing (CS) [2]. FT is easy to
implement with high computational efficiency and robustness [3]. However, its angular
resolution is restricted by the size of the array. Subspace methods, such as multiple signal
classification (MUSIC) [4] and estimation of signal parameters via rotational invariance
techniques (ESPRIT) [5], can break the resolution barrier. They utilize the orthogonality
between the signal subspace and the noise subspace, which usually requires multiple
snapshots to estimate the covariance matrix and the underlying subspaces [6]. CS methods
solve the angular observation equation by introducing certain sparse regularizations such
as L0 or L1-norm [7,8]. The accuracy and resolution are improved at a much higher
computational cost [9].

Despite the wide applications, model-based approaches are susceptible to adverse
conditions, such as low signal-to-noise ratio (SNR) and array imperfections. Recently,
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owing to the powerful nonlinear fitting capabilities, deep neural network (DNN) has
been introduced to DOA estimation [10,11]. As a data-driven approach, DNN can deal
with adverse situations given sufficient training samples. The key concept of existing
DNN methods is discretizing the field of view (FOV) and transforming DOA estimation
into a multi-label classification task. To cope with the low SNR conditions, the networks
are trained across a range of low SNRs and outperform their competitors in the low
SNR regime [12,13]. To obtain good adaptation to array imperfections, autoencoders are
constructed to reduce the influence of noise and array imperfections, after which the
network performs satisfyingly in imperfection adaptation [14]. In addition, a new deep
learning architecture is proposed based on the imperfect array, and the output of the
network is a vector for the spectrum estimation, which can avoid discretizing the spatial
domain [15]. Furthermore, to deal with the grid mismatch, some networks are proposed
to exploit the Toeplitz property and reconstruct the covariance matrix, and model-based
approaches, such as MUSIC or root-MUSIC, are applied to obtain gridless DOA [16,17].

DNN has shown great potential in adverse conditions. However, high dynamic SNR
is still a limiting factor in the accuracy of DOA estimation. DNN requires enough training
samples that cover all the practical situations. When the number of sources is large, it is
difficult to cover all possible combinations of positions and amplitudes. When the SNRs of
the sources vary significantly, weaker sources achieve much lower accuracy or may even be
missed. Moreover, the number of sources is usually needed as the prior information. The
number of the resulting training samples is huge, which leads to very high computational
costs as well [13].

In this paper, we propose a DNN framework with a sliding window (DNN-SW)
for DOA estimation to cope with the high dynamic SNR scenarios. The entire FOV is
divided into a series of overlapping angular sub-regions through the sliding window
operation. The core network consists of a detector network and an estimator network. The
detector determines whether the sub-region contains a source, and the estimator informs
its angle. This paper assumes that there is only one source in each sub-region. Based on
the assumption, single-source data is used to train the networks, and the requirement of
the training sample is alleviated. Compared with existing methods based on DNN, the
DOA estimation task is jointly accomplished by multiple networks, and each network only
estimates the angle of the current sub-region, greatly simplifying the task of each network
and improving network performance in high dynamic scenarios. Furthermore, the number
of sources can be obtained adaptively according to the number of sub-regions in which the
source exists, which adapts to the number of sources.

The rest of the paper is organized as follows. In Section 2, we present the signal model.
In Section 3, we introduce the input data preprocessing and network structure in detail,
including the sliding window module, detection module, DOA estimation module, and
angle merging. In Section 4, we offer the results of the simulation to prove the advantageous
performance of the proposed method by comparing the other approaches and collecting
the real data for verification. Finally, conclusions are summarized in Section 5.

2. Signal Model

In this paper, the single snapshot scenario is considered [18]. As shown in Figure 1,
we consider a uniform line array (ULA) with N elements in the narrow-band mode. It
is assumed that there are K far-field sources from θ = [θ1, θ2, . . . , θK]

T , θk indicates the
direction of the kth source, and the received signal can be formulated as

x =
K

∑
k=1

a(θk)Sk + n = A(θ)S+n. (1)
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where S = [S1, S2, . . . , SK]
T represents the amplitude of the sources and n(t) is a N × 1

vector denoting the statistically independent white Gaussian noise vector with zero mean
value and unknown variance σ2

n . The steering vector a(θk) can be expressed as

a(θk) =
[
1, ej 2π

λ d sin (θk), · · · , ej 2π
λ (N−1)d sin (θk)

]T
. (2)

where λ = c/ f is the wavelength of the transmitted signal, f is the carrier frequency and c
is the speed of the light. Additionally, d describes the array element space. As for A(θ), it is
the array manifold matrix, which can be written as

A(θ) =


1 1 · · · 1

exp
(

j2π d
λ sin θ1

)
exp

(
j2π d

λ sin θ2

)
· · · exp

(
j2π d

λ sin θK

)
...

...
. . .

...
exp

(
j2π

(N−1)d
λ sin θ1

)
exp

(
j2π

(N−1)d
λ sin θ2

)
· · · exp

(
j2π

(N−1)d
λ sin θK

)

 (3)
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tor network determines whether a source exists in the corresponding sub-region, which 
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sub-regions. Therefore, an angle merging module is applied to give the final results. 

Figure 1. The system model for the DOA estimation with the far-field narrowband source.

3. The Proposed Method

The structure of DNN-SW is shown in Figure 2. it is divided into several overlapping
sub-regions and assume the sources are located in different sub-regions independently.
Specifically, there are four main modules in the proposed network. First, in the sliding
window module, the FOV is split into a series of overlapping sub-regions in which there is
one source at most. Then, the detection module and DOA estimation module are followed.
The detection module contains multiple detectors for each sub-region. The detector network
determines whether a source exists in the corresponding sub-region, which is formed as
a binary classification task. Similar to the detection module, the estimation module also
includes multiple estimator networks to obtain the angles of the sources. Since the sub-
regions are overlapped, one source can be detected and estimated in several sub-regions.
Therefore, an angle merging module is applied to give the final results.
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3.1. Input Data Preprocessing

To retain the amplitude and phase information of the single snapshot signal x [19],
we extract four parts of information from x, including the real part, imaginary part, angle
value, and modulus. The input vector X can be described as

X =
[
Re
(
xT) Im

(
xT) ∠

(
xT) abs

(
xT)]. (4)

3.2. Sliding Window Module

To alleviate the negative influence of different sources in the high dynamic SNR
scenario, the sliding window module is proposed. By detecting and estimating the sources
separately through the network, the information of each source can be focused on and easily
extracted. Furthermore, based on this structure, the detectors and estimators are trained
using single-source data. Compared to other methods [11–14], we can greatly reduce the
number of training samples and the training time cost. Here, the range of the FOV is
[ϕmin, ϕmax), it is divided into several overlapping sub-regions, as shown in Figure 3. In
this paper, the range of the sub-region δ1 is set to be close to ∆θ3dB (the 3 dB beamwidth
of the array), resulting in the situation that at most one source can be estimated in each
sub-region. According to [20], ∆θ3dB can be calculated by

∆θ3dB =
0.886λ

d(N − 1) cos(θm)
(5)

where, θm is the center of the beamwidth. Moreover, δ2 is the step size when dividing the
FOV. To alleviate the missing problem of sources and improve the estimation accuracy, each
source is set in multiple sub-regions for repeated detection and estimation, resulting in
δ2 ≤ δ1/2. Thus, in this paper, δ2 is configurated to be δ1/2, and the number of sub-regions
L is

L =

⌈
ϕmax − ϕmin − δ1

δ2
+ 1
⌉

. (6)
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3.3. Detection Module

The structure of this module is shown in Figure 2. L detector networks are constructed
to accomplish the detection task in L sub-regions. The data is fed into the L detectors to
decide which sub-regions the sources are located in. Since this is a supervised task, the
training and testing details are introduced, respectively. During the training process, take
the ith detector as an example; given the jth training data Xtrain

j , the output d̃ij can be
obtained

d̃ij = fW

(
fW−1

(
· · · f1

(
Xtrain

j

)))
, (7)

where f 1 to f W are W fully connected layers. f 1 to f W−1 are all followed by a rectified linear
unit (ReLU) layer. Finally, the Tanh layer is applied to generate the final detection. The
ReLU layer and Tanh layer are defined as

ReLU(x) = max(0, x) (8)

Tanh(x) =
ex − e−x

ex + e−x (9)

Furthermore, dij represents the ground-truth label of the sample Xtrain
j . If Xtrain

j is
in the ith sub-region, the label dij is set to 1; otherwise, dij is set to 0. For each detector,
the mean square error is served as the loss function for backpropagation to evaluate the
detection performance. The objective function can be written as

loss1 =
1
J

J

∑
j=1

(
dij − d̃ij

)2
, (10)

where J denotes the number of all the training samples. The parameters of the network are
updated by minimizing (10) through the adaptive moment estimation (Adam) optimizer.

In the testing process, a threshold Th1 is designed to judge whether the source lies in
ith sub-region. Its value is determined by the statistical analysis results of training samples
to guarantee a satisfying detection. The details will be discussed in the simulation section.
When a testing sample Xtest

j is put into the ith detector, yij is the detection result, which is
defined as

yij =

{
1, if d̃ij > Th1
0, else

. (11)

When yij = 1, the source is considered in this sub-region, otherwise, it does not exist
in this sub-region.
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3.4. DOA Estimation Module

After detecting which sub-regions the sources are in, the DOA estimation module is
built to achieve the specific angle estimation task. As shown in Figure 2, similar to the
detection module, L estimator networks are established for the L sub-regions. For each
estimator, the sub-region is further divided into a series of grids with the step of δ3 and the
number of grids M is bδ1/δ3c. During the training process, to avoid the negative effects
of error detection, estimators are trained independently of the detectors. We take the ith
estimator into account, given the sample Xtrain

j , the input data of this estimator is dij×Xtrain
j ,

which means only the data in the ith sub-region is trained. In the estimating phase, the
label is encoded by the one-hot encoding method, which is a vector that represents the
probabilities of all the alternative angles. The ground-truth label Pij of Xtrain

j for the ith

estimator can be written as Pij =
[
pij1, pij2, . . . , pijM

]T . If the source locates in the mth

grid, pijm is 1, otherwise, pijm is 0. When training, the estimation results of the estimator
~
Pij

can be expressed as

~
Pij = fZ

(
fZ−1

(
· · · f1

(
dij × Xtrain

j

)))
=
[
p̃ij1, p̃ij2, · · · , p̃ijM

]T , (12)

where f1 to fZ are Z fully connected layers. f1 to fZ−1 are followed by a ReLU layer and fZ
is followed by a Softmax layer. The Softmax layer is defined as

Softmax
(

p̃ijm
)
=

exp
(

p̃ijm
)

∑
h

exp
(

p̃ijh

) . (13)

According to the ground-truth label Pij and the predicted label
~
Pij, cross-entropy is

selected as the loss function

loss2 = −1
J

J

∑
j=1

M

∑
m=1

pijm log
(

p̃ijm
)
, (14)

where J denotes the number of training samples. The parameters of the estimator are
updated by minimizing (14) through the Adam optimizer.

In the testing process, for the ith estimator, the sample Xtest
j is served as the input data

based on the detection result. The input can be formulated as yij × Xtest
j . Only when yij is

1, does the output of the estimator makes sense. The location with max probability is used
to calculate the estimated angle θ̃ij, and it can be expressed as

θ̃ij = argmax
(~

Pij

)
+ (j− 1)× δ2 + ϕmin. (15)

3.5. Angle Merging

Through the detection and DOA estimation module, the source is first detected, and
then the specific angle is obtained. However, although the adjacent overlapping sub-
regions allow the detection results to be more accurate and complete, the same source will
be detected and estimated repeatedly in multiple sub-regions. Namely, several angles may
be obtained according to one source. An angle merging algorithm is proposed to solve the
angle redundancy problem. The estimated angles from the same source are considered
to have minor differences so that they can merge into one angle as the final output. The
fusion threshold Th2 is introduced to decide whether the angles should be fused. Since
high-resolution DOA estimation is not considered in this paper, Th2 is set to be a little lower
than ∆θ3dB. If the difference between the estimated angles

∣∣∣θ̃l − θ̃h

∣∣∣ is lower than Th2, they
will be merged by

θ̃′ =
1
2

(
θ̃l + θ̃h

)
i f abs

(
θ̃l − θ̃h

)
< Th2. (16)
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After the merging algorithm, the final angles estimated are obtained, and the number
of sources can be acquired automatically.

4. Experiment

In this section, we conduct the DOA estimation based on the simulation data and
real data to evaluate the proposed method. First, the simulation data is used to verify the
effectiveness and advantages of our method. Then, we collected real radar signals to assess
the performance of DNN-SW in practical application.

4.1. Simulation Settings

In the simulations, the FOV is the range of [−60◦, 60◦), and a 40-element uniform
linear array with λ/2 inter-element spacing is considered. According to (5), since the ∆θ3dB
of different beamwidth centers are different, in this paper, the center of FOV is set as the
beamwidth center θm. When θm is 30◦, ∆θ3dB is 3.01◦. The range of sub-region δ1 is set to 3◦

and the step size δ2 is set to 1.5◦. As a result, the sub-region number L is 79. Additionally,
the sampling interval δ3 is specified as 0.1◦ so that the grid number for each sub-region
M is 30 and the grid number for FOV is 1200 categories of direction in total. The detailed
parameters are listed in Table 1.

Table 1. Parameter Settings.

Parameter Value

Sensor array

Configuration ULA
Inter-element spacing d = λ/2

The number of the element N = 40

Sub-region

FOV [ϕmin, ϕmax) = [−60◦, 60◦)
Range of sub-region δ1 = 3◦

Step of sub-region δ2 = 1.5◦

Interval of the FOV δ3 = 0.1◦

Threshold of detector 1 Th1 = 0.25
Threshold of angle merging 1 Th2 = 2◦

Detector and Estimator Network

Hidden layers, # Detector Network 16, 1
Hidden layers, # Estimator Network 128, 256, 30

Activation function > Detector: Tanh; Estimator: Softmax
1 The value of Th1 and Th2 are described in Section 4.3.

For the training dataset, the SNR of the source is 15 dB, and 30 samples are collected in
each direction. Therefore, there are 36,000 training samples in total. For each detector and
estimator, the size of training data is 36,000 and 900, respectively. For all the experiments,
the SNR is defined in [13]

SNR = 10 log10
min

(
σ2

1 , . . . , σ2
K
)

σ2
n

, (17)

where σ2
i represents the power of the ith source, i = 1, . . . , K. σ2

n represents the power of
the noise.

For each detector, the number of neurons per layer of the network is {16, 1} with a
batch size of 128 during 100 training epochs. Similarly, for each estimator, the number
of neurons per layer of the network is {128, 256, 30} with a batch size of 128 during 200
training epochs. Moreover, the learning rate is configured to 0.001 for all networks.

The simulations are carried out in a workstation with MATLAB R2022a, Intel Xeon
Gold 6240 processor at 2.60GHz, and NVIDIA A100 Tensor Core GPU. The detector net-
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works and estimator networks are based on Pytorch 1.11.0 and Python 3.9.12. Based on the
conditions in the training process, the average running time of all the 79 detection networks
and estimator networks is about 90.2 s and 5.6 s, respectively. In the testing process, each
detection network and each estimator network respectively cost 3.09 us and 3.89 us, which
is obtained by calculating the average running time of 1000 testing samples.

4.2. Evaluation Metrics

In the simulations, to objectively and effectively evaluate the performance of the DNN-
SW, two evaluation metrics are utilized, including Acc and root mean square error (RMSE).
Since the number of sources is unknown, Acc is an important metric to evaluate DNN-SW.
It describes the percentage of the number of testing samples whose source numbers are
estimated correctly by the network [21]. It can be formulated as

Acc =

(
1
m

m

∑
i=1

pi

)
× 100%, (18)

where

pi =

{
1, i f num(

~
θi) = num(θi)

0, others
. (19)

Here, θi and
~
θi denotes the ground truth and the prediction directions of the ith testing

sample, respectively, i = 1, 2, . . . , m, where m denotes the number of testing samples.
Additionally, RMSE is also a classic and common metric in past research [13,22]. We

calculate the RMSE of the testing samples whose source number is estimated correctly.
RMSE can be obtained by

RMSE =

√√√√ 1
HQ

H

∑
h=1

[
Q

∑
q=1

(
θ̃h,q − θh,q

)2
]

, (20)

where H represents the number of samples whose source number is estimated correctly,
and Q represents the number of the source in a testing sample. θh,q and θ̃h,q denote the qth
estimated direction and ground-truth direction of the hth sample, respectively.

4.3. Determination of Th1 and Th2

In this part, the determination methods of Th1 and Th2 are described in detail. Since
the detection process can be regarded as a binary task and Th1 is an important threshold
to decide the detection results, F1 score is served as the criterion to select the optimal
parameter Th1. In binary classification tasks, the F1 score is widely used to analyze the
accuracy of machine learning models [23–26]. It takes both the precision and recall of the
model into account to provide an objective description of the method.

In order to obtain the F1 score for the detector network, the samples can be split into
four parts according to their ground truth and predicted labels, as shown in Table 2.

Table 2. The standard confusion matrix.

Predicted Positive Predicted Negative

Actual positive TP FN
Actual negative FP TN

In the detector network, the sample is considered positive if its source is in the
corresponding sub-region. According to [25], precision and recall are first calculated by

precision =
TP

TP + FP
, (21)
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recall =
TP

TP + FN
, (22)

where precision is the proportion of the positive predicted samples in the actual positive
samples, and recall is the proportion of the actual positive samples in all predicted positive
samples. It should be noted that since there are L = 79 detectors in our method, the number
of samples used to obtain the precision and recall are the overall number of samples of all
79 detectors. In this case, the overall performance of the detection module is assessed, and
the results will not be influenced by the extreme results of some detectors. Then, F1 score is
obtained by calculating the harmonic mean of precision and recall

F1 =
2× precision× recall

precision + recall
=

2× TP
2× TP + FP + FN

(23)

where the range of F1 is [0, 1]. If all the positive samples are wrongly predicted, F1 is
equal to 0 which is the minimum value. Additionally, when the samples are all correctly
predicted, F1 is equal to 1, which is the maximum value.

In the simulation, to select the best threshold Th1, we randomly generate 10,000 testing
samples. The samples contain two sources, which are not located in one sub-region, and
the SNR of these sources is configured to 15 dB. According to (23), we calculate the F1 for
each Th1 with the step of 0.05 from 0 to 1, and the results are shown in Figure 4.
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From Figure 4, we can observe that the F1 score increases and then decreases with the
increase of Th1. When Th1 is 0.25, F1 reaches the highest, which is 0.942. Thus, the Th1 is
fixed to 0.25 in the remaining simulations and real data experiments.

As for the threshold of angle merging Th2, since the high-resolution DOA estimation
is not considered, it is supposed to be lower than δ1. Therefore, Th2 is set to 2◦ in the
simulation and real data experiments.

4.4. Simulation Results
4.4.1. Sources in the Same SNR Scenarios

Two simulations are conducted under adverse conditions to assess the performance
of DNN-SW, including low SNR and array imperfections. In this part, the high dynamic
condition is not considered, which means that the SNR of all the sources is the same.

Since the DNN-SW can estimate the number and directions of sources simultaneously,
in this simulation, the two values are unknown, and both need to be obtained. To further
evaluate the proposed method, the comparison methods are applied. The existing methods
can rarely achieve the two tasks at the same time. Therefore, the whole task is divided



Electronics 2023, 12, 824 10 of 16

into the source number estimation part and the DOA estimation part for the comparison
methods. In the source number estimation part, two conventional methods are employed
for comparison, including AIC and MDL [27–31]. Then, in the DOA estimation part, FFT,
MUSIC, and ESPRIT are utilized. Furthermore, since MUSIC and ESPRIT are based on the
covariance matrix, the space smoothing algorithm is applied to generate the covariance
matrix before estimation [32].

Firstly, we consider two sources in the low SNR situation, and both targets have the
same SNR in the testing sample. Two sources impinge on this array from the directions of
−6.25◦ and 3.18◦. The SNR varies from 0 dB to 20 dB with the step of 2 dB. For each SNR,
the RMSE is obtained by averaging the results of 1000 Monte Carlo (MC) runs. The source
number estimation and DOA estimation results are shown in Figure 5, respectively. In (a),
we can observe that the Acc of three source number estimation methods all reach very high.
For MDL and DNN-SW, when SNR is larger than 4 dB, the Acc is constantly above 99.5%.
For AIC, the Acc is a little lower, which is about 98%, while it is more robust to SNR. The
results indicate that the proposed method can achieve advanced performance for source
number estimation. Furthermore, considering AIC is more robust and the difference of
RMSE based on the two methods is small due to the high Acc, and adequate MC runs, the
results of AIC are used to accomplish DOA estimation for FFT, MUSIC, and ESPRIT. As for
the DOA estimation results in (b), the results show that as the SNR increases, the RMSE
of all methods decreases. Among all the methods, DNN-SW performs best when SNR is
below 18 dB. The results indicate that compared with other methods, DNN-SW can achieve
better DOA estimation performance in low SNR conditions due to its strong data-fitting
capability.
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Figure 5. The DOA estimation performance with different SNRs. (a) Acc (b) RMSE.

Moreover, three kinds of array imperfections are considered, including gain inconsis-
tent, phase inconsistent, and position perturbation [14]. It is assumed that the gain-phase
inconsistency and position perturbation of different antennas are uniformly distributed
within 3η dB, 30η◦, and 0.15λη, respectively. η is an imperfect factor to measure the im-
perfect effect, and it varies from 0 to 1 with the step of 0.1. In this simulation, two sources
impinge on this array from the directions of −6.25◦ and 3.18◦. The SNR of these sources is
set to 15 dB. For each η, the RMSE is obtained by averaging the results of 1000 MC runs.
The results are shown in Figure 6. From (a), it can be observed that the three methods can
all estimate the source number accurately. The Acc of DNN-SW is above 99% when η is
0.8 and can reach 92% even η is 1, which means the source number estimation results of
DNN-SW are reliable. For MDL and AIC, the results are both satisfying, and they show a
similar law to the previous simulation. In this case, the number estimation results of AIC
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are still considered the basis for DOA estimation comparison methods. (b) gives the RMSE
of different methods, and DNN-SW consistently performs better than other methods when
the error increases. The results show that the deep learning method is more robust for array
imperfections because it has the capability of adaptively learning detailed information from
the input data.
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4.4.2. Sources in High Dynamic SNR Scenarios

In this part, we focus on the high dynamic SNR scenarios, which means the SNRs of
different sources are different. Since the results in Section 4.4.1 show that the deep learning
methods perform better under adverse conditions than conventional methods, in this
simulation, two deep learning methods for DOA estimation are applied as comparisons,
including DNN-NSW and Deep convolution network (DCN) [11]. The difference between
DNN-NSW and DNN-SW is that there is no overlapping part between adjacent sub-regions
in DNN-NSW. That is to say, in DNN-NSW, the step size of the sliding window δ2 is set
to 3◦, which is the same as the δ1. So, a source will only appear in one sub-region. The
remaining parameters and configurations of the two methods are the same. Furthermore,
due to DCN methods needing multiple snapshots, the number of snapshots is set to 50.

Firstly, we change the directions of the two sources to assess the DOA estimation
performance. The first source θ1 varies from −49.59◦ to 49.41◦ with the step of 1◦, and the
direction of the second source θ2 is set to θ1 + 6.25◦. The directions of the sources are all
off-grid. When the SNR of the two sources is both 10 dB, the estimation results of DCN and
DNN-SW are shown in Figure 7a, b, and c, respectively. We can observe that the three deep
learning methods can achieve satisfying performance in the ideal case. Figure 7d–f depicts
the results when the SNRs of two sources are 10 dB and 18 dB, respectively. The results
demonstrate that ∆SNR between two sources severely degrades the performance of DCN;
the source with lower SNR is rarely estimated. By contrast, DNN-SW can significantly
alleviate the problem due to the design of the sub-region network structure. The lower
SNR source is estimated in its sub-region, and the influence of the other sources can be
reduced. In addition, compared with DNN-NSW, we can infer that the sliding window can
improve the accuracy of estimating the number of sources and the performance of DOA
estimation.
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Figure 7. The DOA estimation of off-grid sources. First row: the SNR of the two sources is 15 dB.
Second row: the SNR of two sources is 10 dB and 18 dB. (a) DCN, Acc:100%, RMSE:0.061, (b) DNN-
NSW, Acc:100%, RMSE:0.149 (c) DNN-SW, Acc:100%, RMSE:0.128 (d) DCN, Acc:15%, RMSE:0.129,
(e) DNN-NSW, Acc:78%, RMSE:0.396 (f) DNN-SW, Acc:97%, RMSE:0.262.

Additionally, to investigate the effect of the difference of SNRs between two sources,
the direction of the two sources is fixed at 6.28◦ and 15.72◦, and the SNR of the sources
are configured as 10 dB and 10 dB + ∆SNR, respectively. In the simulation, ∆SNR varies
from 0 dB to 10 dB, and the RMSE for each ∆SNR is obtained by calculating the average
results of 1000 MC runs. As shown in Figure 7d, since DCN may miss the low SNR source,
the Acc of three methods is also discussed. The results are shown in Figure 8a; it can be
seen that DNN-SW can precisely estimate the source number even for high ∆SNR, while
DCN fails to estimate the source number when ∆SNR > 5 dB. As for the RMSE given in
Figure 8b, it can be observed that the RMSE of DNN-SW is much lower than DNN-NSW
due to the overlapping design and repeat estimation of the sources. As for DCN, it achieves
a more precise estimation when ∆SNR is small because the input contains information from
multiple snapshots. However, with the increase of ∆SNR, DNN-SW shows its advantages
due to the design of the sub-region network structure.
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4.5. Real Data Experiment Results

To further evaluate the practical application value of DNN-SW, the real data are col-
lected using MMWCAS-RF-EVM radar in the practical scenario, and the experiments are
conducted based on the real data. The specific configurations of the radar antennas are de-
scribed Figure 9. It has 12-transmit and 16-receive antennas, resulting in 86 non-overlapping
azimuth virtual arrays. In this experiment, there are 40 virtual arrays considered. The
data collection scenario is shown in Figure 10. Two different corner reflectors are fixed at
a distance of 6 m from the radar, and their directions relative to the radar are −7.2◦ and
4.8◦, respectively. In [13], the RMSE of ESPRIT is lower than 0.01 when the array element
is 16, the number of snapshots is 1000, and the SNR of sources is 15 dB. Based on this
result, in our experimental condition, the ground-truth directions of the corner reflectors
are calculated using 86 virtual arrays and 1000 snapshots by the ESPRIT methods, and the
RMSE will be lower than 0.01. Therefore, it is considered the ground truth in this real data
experiment.
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error is larger, and MUSIC performs best among them. As for the deep learning method, 
DCN, the higher source is estimated more accurately compared with most conventional 
methods, while the weaker source is missed. The results verify the effectiveness of DNN-
SW in the practical application and indicate that the structure of our method can improve 
performance in high dynamic scenarios. 
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Based on the measured reflected signal, the DOA estimation results of four methods
are shown in Figure 11 and Table 3. We can observe from the spectrum in Figure 11 that the
difference in the SNR of the two corner reflectors is 5.3 dB. In this case, DNN-SW performs
best whose RMSE is only 0.071. For the conventional methods, the estimation error is larger,
and MUSIC performs best among them. As for the deep learning method, DCN, the higher
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source is estimated more accurately compared with most conventional methods, while the
weaker source is missed. The results verify the effectiveness of DNN-SW in the practical
application and indicate that the structure of our method can improve performance in high
dynamic scenarios.
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Table 3. DOA estimation results of the real data.

Target 1 (−7.2◦) Target 2 (4.8◦)
RMSEEstimated Result Estimated Error Estimated Result Estimated Error

FFT −6.955◦ 0.245◦ 5.042◦ 0.242◦ 0.243
MUSIC −7.1◦ 0.1◦ 4.9◦ 0.1◦ 0.1
ESPRIT −7.2◦ 0◦ 5.0◦ 0.2◦ 0.141
DCN 1 −7.25◦ 0.05◦ / / /

DNN-SW 2 −7.2◦ 0◦ 4.7◦ 0.1◦ 0.071
1 Deep convolution network (DCN) was proposed in [11]. 2 Deep neural network with sliding window (DNN-SW)
is proposed in this paper.

5. Conclusions

In this paper, a deep neural network framework with the angular sliding window is
proposed for DOA estimation in highly dynamic scenarios. This method divides FOV into
a set of sub-regions. In each sub-region, the sources are separately estimated. A detector
network and an estimator network are designed for source detection and estimation. Based
on the assumption that there is at most one source in each sub-region, each network can
be trained with single-source data, which alleviates the requirement of training data and
improves DOA estimation performance in highly dynamic scenarios. Simulation results
verify the effectiveness of DNN-SW, and the results show that it can significantly estimate
the source direction in highly dynamic SNR scenarios. Furthermore, the experiment results
on real data show that the RMSE of the proposed method is 0.071, which is superior to FFT,
MUSIC, ESPRIT, and DCN.
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