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Abstract: In terms of the dynamic changes of battery model parameters in a single-model filtering
algorithm, the filter estimation accuracy can be poor, and filtering is scattered due to the different
internal state parameters of lithium-ion batteries in different aging states, which affects the state of
charge (SOC). In order to address these issues, an Interacting Multiple Model (IMM) algorithm was
proposed in this study, which adopted an Unscented Kalman Filter (UKF) to better approximate the
nonlinear characteristics of the state equation while better stabilizing the filter and having lower
computational requirements. Accordingly, the IMM was used to solve the problem of the accurate
estimation of the SOC under the dynamic change of model parameters. Moreover, an electrochemical
impedance spectrum was used to establish the electrochemical model, after which the lithium-ion
equivalent electrochemical circuit model was established, which improved the complexity problem
due to its high accuracy but complicated the calculation of the multi-order equivalent circuit model.
By conducting experiments and simulations, the algorithm of IMM-UKF was shown to achieve an
effective estimation of the battery SOC, even when the state parameters of lithium-ion batteries
were uncertain.

Keywords: charge state estimation; electrochemical impedance spectrum; interactive multi-model;
traceless Kalman filter

1. Introduction

Lithium-ion batteries have been widely used in many applications, such as electric
vehicles, portable devices, and so forth. Compared with traditional batteries, lithium-ion
batteries have a larger capacity, higher safety performance, and a longer service life [1]. The
state of charge (SOC) has been one of the most basic and important functions in the Battery
Management System (BMS), playing a decisive role in battery performance and safety,
while enabling the battery power and usage to be ascertained more quickly and clearly.
Accordingly, how to effectively estimate the power battery charge state is a very important
issue, which can help ensure the efficient and safe operation of power batteries [2].

Traditional SOC estimation methods are mainly divided into the ampere–time integra-
tion method, open-circuit voltage method, data-driven method, and the model method [3].
When using the ampere–time integration method, it is difficult to obtain the initial value
of the SOC, which may easily form cumulative errors and is not suitable for working
conditions [4]. The open-circuit voltage method requires the battery to be resting and in
equilibrium, which is not suitable for online measurement of the SOC [5]. The data-driven
method requires a large amount of training data, and estimation accuracy is greatly influ-
enced by the training sample and method [6]. Meanwhile, the modeling method considers
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the battery as a system, achieving the identification of the state space by modeling and
estimating the lithium-ion battery SOC by carrying out discrete recursion of the state space.
According to the different methods of parameters, identification can be divided into two ap-
proaches: the time-domain equivalent circuit model and frequency-domain equivalent
circuit model [7]. Among them, the time-domain equivalent circuit model is divided into
the internal resistance model (Rint model), the Davinan equivalent circuit model (Thevenin
model), and the multi-order Resistor-Capacitance (RC) model. However, the time-domain
equivalent circuit model has certain problems, such as low accuracy, unsuitability for
long time simulation, and having complex models [5]. The frequency-domain equivalent
circuit model, which is also known as the electrochemical impedance model, is an adaptive
model that is based on the electrochemical kinetic characteristics of a lithium-ion battery
system. This is characterized by the electrochemical impedance spectroscopy (EIS) in order
to correspond to circuit elements, which encompasses the electrochemical model and the
time-domain equivalent circuit model. The electrochemical impedance spectroscopy (EIS)
is a nondestructive parameter measurement and an effective method for determining the
dynamic behavior of the battery. The measurement of the EIS of the battery can be divided
into an online and offline measurement. The online measurement method mainly applies
a small amplitude sine wave voltage to the lithium-ion battery through the BMS, so that
the battery system produces a sine wave current response. The change of the ratio of the
excitation voltage to the response current is the impedance spectrum of the electrochemical
system. The offline measurement method uses a professional electrochemical impedance
meter to measure the battery impedance spectrum, which requires offline measurements
and has a high detection accuracy. The electrochemical impedance spectrum (EIS) is able to
clearly reflect the characteristics of the batteries’ spectrum, and thus, analyzes the dynamic
characteristics and kinetic processes inside the battery.

According to the literature [8], the relationship between the SOC and the impedance
phase with temperature has been established using the battery impedance phase at a
specific frequency as the SOC estimation parameter combined with a linear fitting algorithm.
Accordingly, it has shown to provide a novel perspective for the SOC estimation of lithium
iron phosphate batteries and can provide a theoretical basis for the application of EIS-based
SOC estimation algorithms in vehicles. However, the study had errors in the temperature
measurement, which led to large errors in the SOC estimation. In another study [9],
parameters in the second-order RC equivalent circuit model were identified using offline
parameter identification and online parameter identification with recursive least squares
and a forgetting factor, respectively. Moreover, the extended Kalman filter method was
used to achieve the estimation of a batteries’ SOC. However, it did not take into account the
effects of the external temperature and noise variations in the EKF algorithm on the SOC
estimation during the estimation. One study [10] developed and trained a neural network
model to estimate the state of charge of the battery using the results of the batteries’
discharge current and electrochemical impedance spectrum. However, its estimation
accuracy was dependent on the number of neurons in the hidden layer. Moreover, this
method attained an estimation of the SOC solely based on a single neural network, without
considering the problem of dynamic changes of the battery parameters due to aging during
the whole life-cycle of the battery. The parameters of the model change according to the
usage conditions (different aging degrees and working conditions).

In order to solve the bottleneck of a single electrochemical impedance spectrum model
algorithm in the SOC estimation, the Interacting Multiple Model (IMM) algorithm can better
describe the system’s uncertainty caused by dynamic changes in the model parameters. In
addition, the model can be added, subtracted, or changed at any time according to the actual
situation, with a strong adaptive variable structure capability. Currently, IMM has been
used in battery SOC estimation, and [11] two different parameters of the Davinan equivalent
circuit have been used to describe the dynamic characteristics of lithium-ion batteries,
which then utilized IMM-EKF and traditional EKF for a battery SOC estimation. The
corresponding results demonstrated that the accuracy of the SOC values estimated based



Electronics 2023, 12, 808 3 of 16

on the IMM-EKF algorithm is much higher than that of traditional EKF. Another study [12]
employed IMM combined with the Unscented Kalman Filter (UKF) and applied a genetic
algorithm in order to optimize the battery model with different parameter space states for
the battery SOC estimation, whose results were found to be more accurate. Additionally,
another study [13] showed that for issues pertaining to when a single-model cannot capture
the dynamic changes of the battery at different temperatures, a joint algorithm of IMM
and the Square Root Unscented Kalman Filter (SRUKF) was used to achieve an accurate
estimation of the battery SOC at different temperatures based on the first-order Davinan
equivalent circuit. One study [14] also demonstrated that the parameters of the second-
order RC battery equivalent model can be identified online using the recursive least squares
method with a forgetting factor, in which the identified parameters were simulated jointly
with the IMM-UKF algorithm to achieve an accurate estimation of the battery SOC at
different discharge multipliers. Moreover, in [15], the parameters of the stable fusion model
have also been determined based on the assumption of a normal distribution, for which the
Proportional-integral observer (PIO) and Proportional-integral-differential observer (PIDO)
fusion models jointly estimated the battery SOC, showing that the estimation results were
more accurate and noise-resistant under different aging width temperatures. In a separate
study [16], a first-order RC equivalent circuit model combined with the Preisach discrete
model was established, where the FRISCH scheme was used to estimate and filter noise.
Finally, the extended Kalman filter combined with the traceless Kalman filter was used
to achieve real-time parameter updates and an accurate estimation of the batteries’ single
SOC. The aforementioned results show that the accuracy and robustness of the battery
SOC estimation can be improved to a certain extent by using the traditional IMM model
combined with an improved algorithm of Kalman filter.

In summary, this paper proposes an IMM filtering algorithm based on the electrochem-
ical impedance spectrum and combines it with UKF to achieve the accurate estimation of
the Li-ion battery. As previously mentioned, this is done in order to address issues in which
the single-model filtering algorithm has to deal with dynamic changes of the parameters
of the equivalent circuit model of the battery, which can result in a poor single-model
filtering accuracy and a difficult filtering divergence due to the different states of the Li-ion
battery under various aging conditions of the equivalent circuit model, thereby affecting
the SOC estimation accuracy. UKF can estimate the charge state statistics of a Li-ion battery
in real time by introducing a Markov chain state transfer probability matrix. Moreover, it
can be combined with the electrochemical impedance spectrum model in the frequency
domain so as to reflect the internal dynamic characteristics of a Li-ion battery accurately
and intuitively. A filtering algorithm using UKF may also be able to better approximate
the nonlinear characteristics of the SOC estimation with moderate computational effort.
Accordingly, the final experiments and simulations show that the IMM-UKF algorithm can
achieve an effective estimation of the battery SOC while improving the convergence speed
of the filtering algorithm and ensuring the accuracy of the SOC estimation, even when the
state parameters of the lithium-ion battery are uncertain.

2. Battery Electrochemical Impedance Spectrum Circuit Model and
Parameter Identification

The battery model can be used to study the external characteristics of the battery
during operation, which also serves as the basis for the battery SOC estimation. Battery
models are mainly divided into equivalent circuit models and data-driven models [17].
Data-driven models based on data require a large amount of experimental data and are
extremely dependent on network parameter selections and training sample accuracy. In
addition, the training method can also have a significant impact on the errors. The time-
domain equivalent circuit model in the equivalent circuit model cannot systematically
reflect the operating characteristics of the battery electrode interface. Furthermore, the
higher the cell order, the greater the complexity of the model [18]. The frequency domain
equivalent circuit in the electrochemical impedance spectrum equivalent circuit modeling
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method does not appear in the measurement of the polarization phenomenon caused by
the perturbation signal. This occurs in order to ensure the linear relationship between
the potential and current so that the electrode works in a quasi-steady state, thereby
simplifying the measurement results. Moreover, as the electrochemical impedance spectrum
can reflect more information about the electrode process kinetics and electrode interface
structure [19], it can be used to analyze the battery performance. Thus, this study adopted
the electrochemical impedance spectrum model to estimate the battery SOC.

2.1. Equivalent Circuit Model of Electrochemical Impedance Spectrum

In order to improve the accuracy of the electrochemical impedance spectrum equiv-
alent circuit model for Li-ion batteries, it is first necessary to have an understanding of
the basic characteristics of the electrochemical impedance spectrum, as shown in Figure 1.
Here, the 1400 mAH lithium iron phosphate 18,650 lithium-ion battery electrochemical
impedance spectrum used in the present study is shown, which consists of a circular arc
and sloping line, where the arc reflects the polarization of the lithium-ion battery while the
sloping line reflects the ion diffusion of the electrode reaction of the lithium-ion battery.
An accurate electrochemical impedance spectrum equivalent circuit model should have a
reasonable description of both processes.
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An RC parallel circuit was used to fit the semicircular arc image in the electrochemical
impedance spectrum, as shown in Figure 2.
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Combined with the significance of the parameters of the resistive and capacitive
elements in the equivalent circuit of the electrochemical impedance spectrum, as shown in
Equations (1) and (2), the total impedance of the parallel circuit is expressed in Equation (3),
while the real impedance ZRe and imaginary impedance ZIm of the parallel circuit can be
obtained, as shown in Equations (4) and (5), respectively. Accordingly, the relationship
between the two is shown in Equation (6).

Z(jω) = R (1)
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Z(jω) =
1

jωC
(2)

Z(jω) =
1

1
R + jωC

=
1

1 + jωCR
(3)

ZRe =
R

1 + ω2C2R2 (4)

ZIm =
ωCR2

1 + ω2C2R2 (5)(
ZRe −

R
2

)2
+ Z2

Im =

(
R
2

)2
(6)

According to Figure 1, the electrochemical impedance spectrum of the lithium-ion
battery intersected with the real axis, demonstrating a resistance where the resistance
magnitude was the value of the real axis. Additionally, a semicircular arc can be equated
to the RC parallel equivalent circuit, where the diameter of the semicircular arc was the
resistance value of R in the RC circuit. The last straight line with a slope close to 45◦

was equated using Weber impedance. As a result, the equivalent circuit model of the
electrochemical impedance spectrum of the experimental Li-ion battery was approximated,
as shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

(3), while the real impedance ReZ  and imaginary impedance ImZ of the parallel circuit 
can be obtained, as shown in Equations (4) and (5), respectively. Accordingly, the rela-
tionship between the two is shown in Equation (6). 

( )Z j Rω =  (1)

1( )Z j
j C

ω
ω

=  (2)

1 1( ) 1 1
Z j

j CRj C
R

ω
ωω

= =
++

 
(3)

Re 2 2 21
RZ
C Rω

=
+

 (4)

2

Im 2 2 21
CRZ
C R

ω
ω

=
+

 (5)

2 2
2

Re Im2 2
R RZ Z   − + =   

   
 (6)

According to Figure 1, the electrochemical impedance spectrum of the lithium-ion 
battery intersected with the real axis, demonstrating a resistance where the resistance 
magnitude was the value of the real axis. Additionally, a semicircular arc can be equated 
to the RC parallel equivalent circuit, where the diameter of the semicircular arc was the 
resistance value of R in the RC circuit. The last straight line with a slope close to 45° was 
equated using Weber impedance. As a result, the equivalent circuit model of the electro-
chemical impedance spectrum of the experimental Li-ion battery was approximated, as 
shown in Figure 3. 

In Figure 3, ocvV  is the open-circuit voltage of the battery; 0R  is the ohmic internal 
resistance of the battery; 1R  characterizes the internal charge transfer resistance of the 
battery; 1C  characterizes the capacitance due to the internal charge transfer of the battery; 

tV  is the terminal voltage of the battery; LI  is the charging or discharging current of the 
battery; and WZ  is the Warburg impedance. 

 
Figure 3. Electrochemical impedance spectrum equivalent circuit diagram. 

In this figure, WZ  is the Warburg impedance (Warburg), which represents the im-
pedance caused by the charge diffusion process. It is an important characteristic to evalu-
ate the internal performance of the lithium-ion battery. When the impedance data are close 
to one, it indicates that the internal characteristics of the battery are better than others. 
However, the Warburg impedance has less influence on the charge transfer process than 
the charge transfer impedance and the ohmic impedance. Therefore, when the equivalent 
circuit model of the electrochemical impedance spectrum is combined with the traditional 
equivalent circuit model, the equivalent circuit element WZ  that represents the Warburg 
impedance can be ignored. 

Figure 3. Electrochemical impedance spectrum equivalent circuit diagram.

In Figure 3, Vocv is the open-circuit voltage of the battery; R0 is the ohmic internal
resistance of the battery; R1 characterizes the internal charge transfer resistance of the
battery; C1 characterizes the capacitance due to the internal charge transfer of the battery;
Vt is the terminal voltage of the battery; IL is the charging or discharging current of the
battery; and ZW is the Warburg impedance.

In this figure, ZW is the Warburg impedance (Warburg), which represents the impedance
caused by the charge diffusion process. It is an important characteristic to evaluate the
internal performance of the lithium-ion battery. When the impedance data are close to one,
it indicates that the internal characteristics of the battery are better than others. However,
the Warburg impedance has less influence on the charge transfer process than the charge
transfer impedance and the ohmic impedance. Therefore, when the equivalent circuit model
of the electrochemical impedance spectrum is combined with the traditional equivalent
circuit model, the equivalent circuit element ZW that represents the Warburg impedance
can be ignored.

2.2. Electrochemical Impedance Spectrum Equivalent Circuit Model Parameter
Identification Method

The fitting of the frequency response curve of the electrochemical impedance spectrum
is an important issue in EIS data processing. It can be fitted using the electrochemical
impedance spectrum fitting software ZSimpWin (version 3.5, Echem Software, Ann Arbor,
MI, USA). Since the electrochemical impedance spectrum examines the nonlinear relation-
ship between impedance and frequency, the software utilized the nonlinear least squares
method to correlate the electrochemical impedance spectrum of lithium-ion batteries [20].



Electronics 2023, 12, 808 6 of 16

The angular frequency ω, as well as m, and the reference variables C1, C2, C3, . . . , and
Cm were used to represent the impedance G, as shown in Equation (7), where G′(ω, Ck)
and G′′ (ω, Ck) represent the real and imaginary parts of the electrochemical impedance
spectrum, denoting an impedance.

G = G(ω, Gk) = G′(ω, Ck) + jG′′ (ω, Ck), k = 1, 2, 3, . . . , m (7)

The least-squares fit of the electrochemical impedance spectrum sought to find the best
estimate of the m parameters and minimize the sum of squares of the vector differences
between the measured and calculated impedance values S. S can then be expressed by
Equation (8).

S =
n

∑
i=1

(qi − Gi)
2 =

n

∑
i=1

(q′i − G′i)
2
+

n

∑
i=1

(q′′i − G′′i )
2, n > m (8)

The difference between the initial value and best estimate ∆k was initially solved, after
which the parameters were determined. According to the conditions when solving the
optimal solution of S, one can linearize S and build a system of equations for ∆k, as shown
in Equation (9), where the coefficients aki and bk in the system of equations are shown in
Equations (10) and (11), respectively.

a11∆1 + a12∆2 + a13∆3 + . . . + a1m∆m = b1
a21∆1 + a22∆2 + a23∆3 + . . . + a2m∆m = b2
a31∆1 + a32∆2 + a33∆3 + . . . + a3m∆m = b3
am1∆1 + am2∆2 + am3∆3 + . . . + amm∆m = bm

(9)

aki =
n

∑
i=1

(
∂G

′0
i

∂Ck

∂G0
i

∂Ci
+

∂G′′ 0i
∂Ck

∂G0
i

∂Ci

)
(10)

bk =
n

∑
i=1

[
(g′i − G

′0
i )

∂G
′0
i

∂Ck
+ (g′′i − G

′′ 0
i )

∂G′′ 0i
∂Ck

]
(11)

As per the system data measured in Figure 3 and by setting the initial values of the pa-
rameters, the difference in ∆k between the coefficients and the initial values in the impedance
expression as well as the optimal estimate were obtained. The Ck estimate was then obtained
by substituting ∆k into the complex function equation, as shown in Equation (12).

Ck = C0
k + ∆k, k = 1, 2, . . . , m (12)

This fitting method gradually reduced the deviation ∆k between the initial value of
the parameter and the best estimate by iterating continuously in order for the estimated
parameter value using this method to be closer to the true value. When ∆k was too small to
be ignored, the current estimated value was considered to be approximately equal to the
true value.

2.3. Verification Based on the Accuracy of the Electrochemical Impedance Spectroscopy Model

As shown in Figure 4, a 1400 mAh LiFePO4 18,650 battery was used to the experimental
object and selected the equivalent circuit model of the electrochemical impedance spectrum
to fit the curve. It can be calculated from the figure that the error of the electrochemical
impedance spectrum equivalent circuit model is 1.29%.
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3. Interactive Multi-Model Algorithm Based on the Electrochemical Impedance
Spectrum Model

Suppose the battery had r SOC estimation models, which can be described by a set,
i.e., {m1, m2, m3, . . . , mr}, where the system equation of state and measurement equation of
the jth model is:

X j
k = f j

k−1

(
X j

k−1, Φk−1

)
+ W j

k−1 = Aj
k−1X j

k−1 + Bj
k−1Φk−1 + wj

k−1, j = 1, 2, 3, . . . , n

Zk = hj
k

(
X j

k, Φk

)
+ vk = Cj

kX j
k + vk

(13)
where X j

k is the state variable of the system, Zk is the observed variable of the system, f

and h are nonlinear functions, respectively, W j
k is the process noise matrix of the system,

and vj
k is the measurement noise matrix of the system, and both conform to the Gaussian

distribution with variances Qj
k and Rj

k, respectively, and both are known. Meanwhile, each
model contained a separate UKF to track its state, in which the probability of each model
was adjusted in real time using the hidden Markov chain. In order to improve the adaptive
and self-learning capability of the algorithm, an unsupervised learning method was used to
estimate the parameters of the hidden Markov model and establish a time-varying hidden
Markov probability transfer matrix that can be corrected in real time, which was adopted
the BaumWelch algorithm and the estimated probability transfer matrix pij as [21].

pij =

k−1
∑

t=1
ξ

ij
t

k−1
∑

t=1
γi

t

(14)

γi
t is the probability of the model at the time, and ξ

ij
t is the probability that the model

was transferred from, at the time. To ensure the accuracy and real time nature of the model,
the probability transfer matrix at the time was used as the current transfer probability.

In Figure 3, the Warburg impedance could not be easily measured due to its variation
with frequency. Moreover, the resistance value was too small when compared with the
resistance to be negligible. As seen in Figure 3, the electrochemical impedance spectrum
equivalent circuit yielded the cell terminal voltage Vt as:

Vt = ILR0 + V1 + VOCV (15)

V1 and IL are positive when charging and negative when discharging.
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The voltages across capacitor C1 are:

.
V1 = − V1

R1C1
+

IL
C1

(16)

SOC can be calculated as:

SOC = SOC(0)− η

Qr

τ∫
0

IL(t)d(t) (17)

where SOC(0) is the initial state of SOC, η is the Coulomb efficiency, and Qr is the rated
capacity of the battery.

The open-circuit voltage Vocv of the battery was basically equal to the electric potential
of the battery, which is an important parameter that characterizes the energy of the battery.
In addition, a functional relationship exists with the batteries’ state of charge (state of
charge, SOC), which can be expressed as:

Vocv = f (SOC) (18)

This study used the constant current discharge method in order to fit the equation of
the 9th order matrix to Vocv and SOC as:

Vocv = a0 + a1SOC9 + a2SOC8 + a3SOC7 + a4SOC6 + a5SOC5 + a6SOC4 + a7SOC3 + a8SOC2 + a9SOC (19)

The obtained Vocv − SOC curve can be shown in Figure 5 [22]:
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Combining the discrete forms of (15), (16), and (17), the battery state equation and
measurement equation can be obtained as:[

SOCk
V1,k

]
=

[
1 0
0 e−T/τ1

]
×
[

SOCk−1
V1,k−1

]
+

[
−ηT/Qγ

R1

(
1− e−T/τ1

) ]× IL,k +

[
w1,k
w2,k

]
(20)

Vt,k =
[

VOCV−IL,k R
SOCk

−1
]
×
[

SOCk
V1,k

]
+ vk (21)

where τ1 = R1C1, Vocv = f (SOCk).
The state variable is Xk =

[
SOCk V1,k

]
, the control variable is IL,k, and the measure-

ment variable is Vt,k.
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In summary, and combined with the electrochemical impedance spectrum equivalent
circuit model in Section 2, the equation of state and the observation equation matrix
coefficients of the cell for any first model are thus:

Aj
k−1 =

[
1 0

0 e−T/τ
j
1

]
, Bj

k−1 =

[
−ηT/Qγ

Rj
1

(
1− e−T/τ

j
1

)], Cj
k =

[
VOCV−IL,k R

SOCk
−1
]

(22)

Comparing Equation (14), the coefficients Aj
k, Bj

k, Cj
k, and X j

k of the equation were then
determined, after which the estimated value of the SOC was calculated.

During the initialization of the equations, the initialization parameters included the
state transfer probability matrix p in the IMM, the probability matrix µ of the model,
coefficients A, B, C, the covariance matrix of the state, and the measurement equations,
which were incorporated into the SOC estimation algorithm of IMM-UKF.

The overall flowchart is shown in the following Figure 6.
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each model probability was updated at each cycle. The UKF filter estimator of each model 
estimated and corrected the posterior unknown process and measurement noises in real 
time, in order to adapt to the current environment while enhancing the convergence speed 
of the model. Additionally, the UKF was filtered so as to obtain the optimal estimate of 
the current lithium-ion battery SOC. Finally, the updated model probability was fed back 
to the input for the input to fuse the historical information of the output and reduce the 
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According to Figure 6, the parameters of the n models were first separately identified,
after which the associated state equations were initialized. The initial interaction of the
individual fault model information based on the IMM was then performed so that each
model probability was updated at each cycle. The UKF filter estimator of each model
estimated and corrected the posterior unknown process and measurement noises in real
time, in order to adapt to the current environment while enhancing the convergence speed
of the model. Additionally, the UKF was filtered so as to obtain the optimal estimate of
the current lithium-ion battery SOC. Finally, the updated model probability was fed back
to the input for the input to fuse the historical information of the output and reduce the
complexity of the optimal estimation method.

4. Experimental Study Based on Interactive Multi-Model SOC Estimation Model

Three kinds of experimental platforms were used: the Arbin BT-ML-30 V/10 A power
battery tester produced by Arbin USA, ZM3000E; the battery internal resistance tester
produced by Harbin Zeemoo Technology Co., Ltd.; and the CHI650D electrochemical
workstation produced by Shanghai Chenhua Instrument Co. This study used different
batteries in the Arbin experimental platform cycle aging test. The voltage measurement
range of the Arbin equipment was 0–30 V; the current measurement range was 0–10 A; and
the resolution of voltage and current measurement were able to reach 0.1 mV and 0.1 mA,
respectively. Meanwhile, the voltage scan range of CHI650D was 0.05–3 V, and the scan
rate was 0.5 mV/s. The specific experimental platform is shown in Figure 7.
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Figure 7. Battery experimental platform.

The experimental battery was a 18,650-type lithium-ion phosphate battery with a
nominal capacity of 1.4 Ah. In order to obtain a lithium-ion battery with different model
parameters, this study adopted the cycling test method in FreedomCar to cycle the battery
for aging. The new battery, the battery with 300 cyclings, and the battery with 500 cyclings
were then taken as the objects of the study, after which the batteries were discharged at a
constant current with a discharge multiplier of 1C for the three cycling states. The discharge
curves for the three cycling times are shown in Figure 8 [23].

Electronics 2023, 12, x FOR PEER REVIEW 10 of 16 
 

 

produced by Harbin Zeemoo Technology Co., Ltd.; and the CHI650D electrochemical 
workstation produced by Shanghai Chenhua Instrument Co. This study used different 
batteries in the Arbin experimental platform cycle aging test. The voltage measurement 
range of the Arbin equipment was 0–30 V; the current measurement range was 0–10 A; 
and the resolution of voltage and current measurement were able to reach 0.1 mV and 0.1 
mA, respectively. Meanwhile, the voltage scan range of CHI650D was 0.05–3 V, and the 
scan rate was 0.5 mV/s. The specific experimental platform is shown in Figure 7. 

 
Figure 7. Battery experimental platform. 

The experimental battery was a 18,650-type lithium-ion phosphate battery with a 
nominal capacity of 1.4 Ah. In order to obtain a lithium-ion battery with different model 
parameters, this study adopted the cycling test method in FreedomCar to cycle the battery 
for aging. The new battery, the battery with 300 cyclings, and the battery with 500 cyclings 
were then taken as the objects of the study, after which the batteries were discharged at a 
constant current with a discharge multiplier of 1C for the three cycling states. The dis-
charge curves for the three cycling times are shown in Figure 8 [23]. 

 
Figure 8. Discharge curve of the battery under three cycle times [23]. 

As shown in Figure 8, as the number of battery cycles rose, the discharge plateau of 
the battery became increasingly lower, the discharge capacity became smaller, and the 
battery health (state of health, SOH) reduced. Table 1 shows the battery capacity and SOH 

Figure 8. Discharge curve of the battery under three cycle times [23].

As shown in Figure 8, as the number of battery cycles rose, the discharge plateau
of the battery became increasingly lower, the discharge capacity became smaller, and the
battery health (state of health, SOH) reduced. Table 1 shows the battery capacity and SOH
values for the three cycling states. The models for the three cycling times were abbreviated
as Model 1, Model 2 and Model 3, which are shown in Table 1.

Table 1. Battery capacity and SOH values for the three cycle states.

Model Number of Cycles Capacity (mAh) SOH (%)

1 0 1400 100
2 300 1278 91.3
3 500 1095 78.2
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The resistance and capacitance parameters were identified for the three batteries under
SOH using the electrochemical impedance spectra, as shown in Figure 9. Moreover, the
identification method was that as described in Section 2.2, and the specific parameter
values were obtained, as shown in Table 2. According to Figure 9, the electrochemical
impedance spectra of the Li-ion battery shifted to the right with a rise in the number of
cycles, indicating that the rise in cycles of the Li-ion battery increased its ohmic internal
resistance and polarization resistance. As a result, three different models of lithium-ion
batteries for the SOC estimation were obtained.
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Table 2. Values of resistance and capacitance parameters at different SOH.

Model R0 (Ω) R1 (Ω) C1 (F)

1 0.0263 0.0042 0.1977
2 0.0275 0.0069 0.1696
3 0.0281 0.0095 0.1468

From Table 2, as the number of cycles rose, the internal resistance parameter of the
battery was shown to increase while the capacitance parameter decreased; hence, the
equivalent model of the battery also changed dynamically.

Based on the above three resistance–capacitance parameter models, the IMM-UKF
algorithm was used in order to establish the corresponding three battery equivalent mod-
els. The highest matching degree demonstrated that the model was the current actual
operating model.

The power demand value was then scaled down to the allowable output power
of a single battery, and the fully charged battery (SOC = 1) was then placed in a 25 ◦C
thermostat and left for 2 h. A programmable DC electronic load was used to simulate the
above demanded power sequence, of which the power of the programmable load was set
to “1” when the battery was discharged under working conditions. The battery discharge
current, terminal voltage, and battery SOC are shown in Figure 10.

The calculation results using a single-model and multi-model are shown in Figure 11.
The curve is the SOC estimation diagram of the sample battery in 238 cyclings. A compari-
son of the three single-model and multi-model estimates is shown in Figure 11a, in which
the estimated value of Model 3 better matched the true SOC value, while the estimated
values of Model 1 and Model 2 did not match the true SOC value that well. Therefore, the
three Model 3 estimates, the multi-model estimates, and the true SOC were then compared,
as shown in Figure 11b, where the majority of the blue boxes were enlarged.
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The multi-model estimation results in SOC estimation in Figure 11 was found to be
similar to the real SOC values, demonstrating that the algorithm can accurately and effec-
tively accomplish the SOC estimation for Li-ion batteries when the parameters dynamically
change under multiple models.

Meanwhile, the results of the multi-model estimation were noted to be gradually
close to overlapping with those of Model 3, indicating that the weights of Model 3 were
gradually close to one in multi-model estimation. Meanwhile, the gradual deviation of
Model 1 and Model 2 from the multi-model estimation indicated that the weights of Model 1
and Model 2 were gradually close to zero in multi-model estimation. Figure 12 shows the
conditional probabilities of the three models.

Based on the above analysis of the multi-model and single-model SOC estimation,
the conditional probabilities of Model 1 and Model 2 were shown to rapidly drop to
0 within 100 s after the start of the operation, while the conditional probability of Model 3
rapidly climbed to 0.95 within the same time. A further analysis was performed using the
multi-model and single-model SOC estimation errors, as illustrated in Figure 13.

As seen in Figure 13, regarding the three single-model SOC estimation and the multi-
model estimation errors, the estimation error of the SOC using the traceless Kalman filter
of Model 1 and Model 2 was larger, while using the multi-model traceless Kalman filter
algorithm reduced the error and increased accuracy, thereby improving the robustness of
the system. Meanwhile, the maximum estimation error of Model 1 was found to be 28.9%,
while the maximum estimation error of Model 2 was 6.5%, which was larger than the real
SOC value. In addition, the maximum estimation error of Model 3, which was observed to
be similar to the multi-model estimation, was 1%. The multi-model estimation had an error
of less than 1% due to the integration of information from multiple aging cells, which was
the smallest method among the three single-model SOC estimation errors.

According to the comparison, the estimation error of the UKF algorithm was noted
to be much larger than that of the IMM-UKF algorithm, demonstrating that the average
error was three times higher than that of the latter, with the maximum error also being
0.7% higher. This caused UKF to be in a divergent state for the vast majority of the filtering
time, thus affecting the estimation accuracy of the overall SOC. In contrast, IMM-UKF had
minimal limitations in estimating the SOC of different Li-ion batteries, with an average error
only 0.08% higher and a maximum error 0.43% higher after fusing other aging batteries’
information. Accordingly, this illustrates that the algorithm can guarantee the accuracy and
validity of the SOC estimation of Li-ion battery states.
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Figure 12. Weights curve of different battery models. (a) Weight curve of battery Model 1. (b) Weight
curve of battery Model 2. (c) Weight curve of battery Model 3.
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5. Conclusions

This study presented a novel SOC estimation method for IMM-UKF batteries based on
the electrochemical impedance spectrum equivalent circuit with an interactive multi-model
algorithm, which was then combined with the traceless Kalman filter to achieve an accurate
SOC estimation with dynamic changes in the model parameters. The electrochemical
impedance spectrum equivalent circuit equates the internal lithium-ion battery via the
impedance spectrum method, enabling the equivalent circuit to be more reflective of the
lithium-ion battery electrode process while making it more accurate and reducing errors.
As a result, this allows the entire UKF model set to be able to estimate a series of statistical
information in real time and realize the regulation of posteriori unknown SOC information.
The final experiments and simulations in this study demonstrated that IMM-UKF can
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accomplish an SOC estimation under multiple models with an average error of less than 1%
and a maximum error of only 1%. Meanwhile, compared with the SOC estimation results
in the single-model case, the IMM-UKF algorithm combined multiple cell information with
a significant decrease in both the average error and maximum error. Moreover, combined
with the number of iterations, the convergence speed of the IMM-UKF algorithm was shown
to be higher than that of the single-model UKF algorithm. Finally, when comparing Model 2
and IMM estimation, the weight value of the UKF algorithm in Model 2 was close to 0.95,
with the single not reaching 1, which was far inferior to the IMM-UKF algorithm in the same
state. The IMM-UKF algorithm can efficiently complete the SOC estimation of a lithium-ion
battery with different state parameters, which ensures the accuracy and validity of the SOC
estimation while improving convergence speed. Therefore, the findings of this study may
provide a strong theoretical basis for lithium-ion batteries in SOC state estimation.
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