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Abstract: Due to the complementary nature of graph neural networks and structured data in rec-
ommendations, recommendation systems using graph neural network techniques have become
mainstream. However, there are still problems, such as sparse supervised signals and interaction
noise, in the recommendation task. Therefore, this paper proposes a self-supervised graph attention
collaborative filtering for recommendation (SGACF). The correlation between adjacent nodes is
deeply mined using a multi-head graph attention network to obtain accurate node representations. It
is worth noting that self-supervised learning is brought in as an auxiliary task in the recommendation,
where the supervision task is the main task. It assists model training for supervised tasks. A multi-
view of a node is generated by the graph data-augmentation method. We maximize the consistency
between its different views compared to the views of the same node and minimize the consistency
between its different views compared to the views of other nodes. In this paper, the effectiveness
of the method is illustrated by abundant experiments on three public datasets. The results show its
significant improvement in the accuracy of the long-tail item recommendation and the robustness of
the model.

Keywords: recommendation system; collaborative filtering; graph neural networks; self-supervised
learning; multi-task learning

1. Introduction

The internet’s fast expansion and the admission of different sectors into the era of
digital economy have produced a tremendous amount of data. However, not all of these
data are valuable, and it becomes very difficult for users to obtain useful messages out of
a huge volume of data. To address the issue of information overload, recommendation
systems supply users with individualized requirements by mining effective information
on their behavioral data. Early recommendation algorithms mainly include collaborative
filtering-based recommendation [1,2], logistic regression-based recommendation, factoriza-
tion machines [3,4] based recommendation and recommendation combined with gradient
boosting decision tree [5]. Collaborative filtering is a popular paradigm and includes both
item collaborative filtering and user collaborative filtering algorithms. In order to be able
to better handle sparse data and improve the model’s generalization, the recommendation
based on matrix factorization [6] is derived from collaborative filtering. Compared to
collaborative filtering-based recommendations that utilize only the displayed or implicit
feedback information between users and items, logistic regression-based recommendations
are able to utilize and incorporate more user, item, and contextual features. Factorization
machine-based recommendation augments classical logistic regression with a second-order
component, giving the model the ability to incorporate features. To combine the advan-
tages of multiple models, Facebook [5] combines logistic regression and gradient boosting
decision tree to propose a combined GBDT+LR model.

Deep learning-based recommendation models have received a lot of attention as the
technology has advanced. Compared with traditional machine learning models, deep
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learning models are more expressive and can mine more latent patterns in data. The model
structure based on deep learning is very flexible. It may be dynamically altered based on
the business scenario and data characteristics to ensure that the model fits precisely with
the application scenario. Recommendation based on deep learning has become mainstream,
from the simple single-layer neural network model AutoRec [7] to the classical deep neural
network structure Deep Crossing [8], which mainly increases deep neural network layer
count and structural complexity. NeuralCF [9] alters the interaction of user and item vectors
and enriches the way features are intersected in deep learning. Weed&Deep [10] enhances
the model’s integrative capabilities by integrating two deep learning networks with distinct
traits and complementing strengths. NFM [11] utilizes neural networks to improve the
feature crossover capability of the second-order part.

In recent years, graph neural networks [12–15] have received a lot of interest from
academia and business due to the powerful representational power of graph structures.
Graph neural networks are a class of deep learning-based methods for processing graph
domain information, and recommendations combined with graph neural networks have
been widely studied due to their better representational power and interpretability. Col-
laborative filtering recommendation based on graph neural networks [16,17] builds the
user–item interaction as a user–item bipartite graph. It utilizes higher-order connectivity
on the bipartite graph to enrich the user and item vector representation. Recommender
with graph convolutional networks [16] provides a complete solution for including higher-
order neighbors in node representation learning. Although effective, there are still some
limitations: sparse supervised signals, long-tail problem and interaction noise. Most mod-
els are performed in a supervised learning paradigm for recommendation tasks [9,18],
where supervised signals are derived from observed user–item interactions. However, the
observed interaction information is extremely sparse compared to the entire interaction
space [19,20] and is not sufficient to learn feature-rich node representations. The long-tail
problem has resulted in a high degree of nodes (abundant number of connected edges)
dominating representation learning [21], and low degrees of nodes (scarcity of connected
edges, i.e., long-tailed items) are difficult to learn. Most of the feedback provided by users is
implicit (e.g., click and browse) as opposed to explicit (e.g., rate, purchase, and like). Thus,
observed interactions usually contain noisy data [22]. For example, users unintentionally
click or browse content that does not interest them, and aggregation methods in graph
convolutional networks are unable to distinguish these noisy data, making the learning of
node representations more susceptible to noisy data.

This paper addresses the above limitations by combining graph attention networks [23]
and self-supervised learning [24]. As a backbone network for supervised learning tasks,
the graph attention network is implemented. It can be implemented to assign different
learning weights to different neighboring nodes, which significantly decreases the problem
of bringing in noisy data to the aggregation process. Self-supervised learning is widely
utilized in the domains of computer vision and natural language processing [25,26], but is
currently relatively rare in the field of recommendation. At its core is a framework called
proxy tasks, which allows the utilization of unlabeled data itself to generate labels without
the need for manual data annotation. For example, Bert [27] masked some of the words in
the text utilizing a random mask and set a proxy task to predict them; RotNet [28] utilizes
the rotated image as the input to the training model, giving the model better representation
capabilities. In contrast to supervised learning, self-supervised learning permits changes in
the input data to leverage the unlabeled data space to achieve significant improvements in
downstream tasks. In this study, the benefits of self-supervised learning are included in
the recommendation representation learning to solve the constraints of the graph neural
network-based recommendation models mentioned above.

The self-supervised learning task contains two main parts: (1) data augmentation to
generate multi-views per node, and (2) contrastive learning is used to maximize consistency
between multiple views of the same node while minimizing consistency across views of
distinct nodes. In graph representation learning, the properties of the data have a strong
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impact on the representation results of the nodes, especially their structural properties.
Therefore, the data without labels can be built by altering the structure of the graph. To this
end, this paper utilizes three graph data-augmentation methods of node mask, edge mask,
and layer mask to change the graph structure and perform contrastive learning based on
graph attention networks. Self-supervised learning enhances node representation learning
by investigating the interactions within nodes. Thereby, self-supervised learning com-
plements graph neural network-based recommendation models. Node self-identification
provides auxiliary supervised signals that complement classical supervised learning from
observed interactions only. Graph data augmentation reduces the impact on model training
by reducing the edges of high-degree nodes.

In summary, this work proposes self-supervised graph attention collaborative filtering
for recommendation. It can effectively solve the problems of sparse supervised signals
and long tails in graph neural network-based recommendations and reduce the impact
from the drought-in interaction noise data. The following details the proposed method and
demonstrates its effectiveness through extensive experiments. Section 3 states the proposed
method in detail and contains two main tasks: supervised task and self-supervised task.
Sections 4 and 5 demonstrate the effectiveness of the proposed method through extensive
experiments on three public datasets.

2. Related Work

This subsection introduces three aspects related to this work: collaborative filtering-
based recommendation, graph neural network-based recommendation, and self-supervised
learning.

2.1. Collaborative Filtering-Based Recommendation

Collaborative filtering-based recommendation systems implement recommendation
tasks by calculating the similarity between users or items, which assume that users who
have interacted with the same item have similar interests. They can be generally clas-
sified into memory-based collaborative filtering recommendations [2] and model-based
collaborative filtering recommendations [29–31]. Memory-based collaborative filtering
recommendation usually utilizes the nearest neighbor idea to calculate similarity using
the historical interaction information of users or items. Common methods for similarity
include the Pearson correlation coefficient [32], cosine similarity [33], Jaccard similarity
coefficient, and Euclidean distance. The model-based collaborative filtering recommenda-
tion simulates users’ ratings of items by modeling, which uses machine learning or deep
learning techniques to construct models and employs a large amount of data trained for
the recommendation task.

2.2. Graph Neural Network-Based Recommendation

Although deep learning-based recommendation systems have achieved positive re-
sults, the prediction and training paradigms of these methods ignore the higher-order
structural information in the data. Therefore, there are still significant limitations. The
growth of graph neural networks in the past few years has presented a good idea for
overcoming the obstacles in recommendation systems. The graph neural network is based
on a user–item bipartite graph by an aggregation function enriched with node embedding
representations. By iterative propagation, each node can access higher-order neighbor
information instead of only first-order neighbor information as in previous methods. Graph
neural network-based approaches have become state of the art in recommender systems
due to their advantages in processing structured data and mining structural information.
SpectralCF [34] utilizes collaborative filtering with spectral graph convolution; GC-MC [35]
and NGCF [16] model graph convolutional networks on the original data space where
users and items interact, which is more effective in practical applications; NIA- GCN [36]
adds neighbor node interaction awareness to graph convolutional networks; DGCF [17]
decouples the user’s complex interaction intent, obtains fine-grained embedding represen-
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tation and tunes up the interpretability of the model; BGCF [37] treats the interaction graph
also as a random variable to mitigate the impact caused by the uncertainty of the user–item
interaction graph; and LR-GCCF [38] and LightGCN [39] analyze operations, such as fea-
ture transformation and nonlinear activation, in graph neural networks, simplifying them
to improve the performance of the model.

Although the above methods achieve relatively good results, the influence of noisy
data in the process of aggregating neighbors does not allow obtaining high-quality node
representations. Therefore, this work employs a multi-head graph attention network to
mine the correlation between neighboring nodes and obtain accurate node representations.
This work uses a supervised learning paradigm for model training, but sparse supervised
signals lead to a loss of performance. Therefore, self-supervised learning is incorporated as
an auxiliary task to enhance the supervised learning task.

2.3. Self-Supervised Learning

Self-supervised learning [25,27,40] mainly includes generative and contrastive self-
supervised learning. The goal of generative self-supervised learning is to learn a low-
dimensional vector representation for the input that can retain as much information as
possible. Contrastive self-supervised learning learns a comparative noise contrast estima-
tion [41,42] (NCE) aim, which might be global versus local, or global versus global. The
former focuses on constructing relationships between a sample’s local and global contex-
tual representations, whereas the latter compares explicitly the multi-views of different
samples. Self-supervised learning has been the subject of much related work in the fields of
computer vision [25] and natural language processing [27]. In contrast to image and text
data, self-supervised learning also helps to understand structural and attribute information
in graphical data. Thus, self-supervised learning is also applicable to graph-structured
data. For example, InfoGraph [43] and DGI [44] learn node representations on mutual
information among nodes and local structures; Hu [45] and others extend this approach by
training a graph convolution-based model to learn node representations; Kaveh [46] learns
node and graph representations via a contrastive paradigm, comparing representations of
one view with those of another; GCC [47] utilizes subgraph discrimination as a pre-training
task and then improves the representation capability of the graph neural network via
contrast learning.

There is not much recommendation-related work using self-supervised learning.
DSSR [48] performs self-supervised learning in the latent space to promote convergence for
sequential recommendations; Google [24] utilizes a multi-task framework, employing a
deep neural network with dual towers as encoders. This paper also utilizes a multi-task
framework, which differs from the graph-based recommendation and uses only ID as a
feature. HCCF [49] jointly captures local and global collaborative relationships through a
hypergraph-enhanced cross-view contrastive learning framework.

3. Proposed Method

This paper proposes the self-supervised learning graph attention-based collaborative
filtering recommendation (SGACF), whose architecture is shown in Figure 1. The frame-
work is divided into two components: supervised tasks and self-supervised tasks. The
supervised task serves as the main part of the framework, with the graph attention network
as the backbone network. The self-supervised task mainly constructs supervised signals
from the correlations within the input data and performs joint learning with the supervised
task as an auxiliary task. This chapter introduces the supervised task framework and
self-supervised tasks. It describes how data augmentation in self-supervised learning is
performed to generate multiple view representations, and then contrastive learning is
performed to construct the pretext task based on the generated representations. Finally, a
theoretical analysis of how self-supervised tasks enhance supervised learning is presented.
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Figure 1. Overall framework. The upper part is for the supervised task, and an H-graph attention
network does feature extraction with multiple lines in the network representing a multi-headed atten-
tion mechanism; the lower part is self-supervised learning as an auxiliary task, sharing parameters
with the network layer in the supervised task.

3.1. Supervised Learning

The primary flow of the supervised task is described in this subsection, as shown in
Figure 2. It is made up of three major parts: (1) the embedding layer provides initialized
vector representations of users and items; (2) the neighbor aggregation and embedding
propagation layer generates multiple refined embedding representations of nodes by aggre-
gating higher-order neighbor features and finally synthesizes the final vector representation
of nodes; and (3) the prediction layer models user–item interaction and generate the user’s
preference ratings for objects. Finally, the supervised loss is described.

3.1.1. Embedding Layer

First are the symbols that appear in the pre-defined text. The sets of users and items
are described by U and I , respectively. O+ = {yui|u ∈ U , i ∈ I} is considered as an
observed interaction, and yui indicates that user u has previously interacted with item i.
This paper builds the interaction between users and items as a user–item bipartite graph
G = (V , E), with the set of nodes V = U ∪ I containing all users and items and the set
of edges E = O+ representing the observed interactions. SGACF only utilizes user and
item IDs as features and maps them to low-dimensional embedding vectors through the
embedding layer. Therefore, in this paper, the set of users and items can be defined as the
set of user embedding vectors Eu and the set of item embedding vectors Ei after passing
them through the embedding layer as follows:

Eu = {eu|u ∈ U , eu ∈ Rd}; Ei = {ei|i ∈ I , ei ∈ Rd} (1)

where d is the size of the embedding vector. Compared to traditional recommendation
models that directly employ user and item ID embeddings for interaction modeling, this
paper utilizes the characteristics of graph structure to improve the embedding by embed-
ding propagation. This is able to retain the user’s own interest and also to explore the
potential interest of the user.
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Figure 2. Supervised learning framework. It consists of three main components: the embedding layer,
the neighbor aggregation and embedding propagation layer, and the prediction layer. y(user,item) is
the user’s preference score for the item .

3.1.2. Feature Propagation Layer

Users and items have generated interactions between them that can serve as feature
representations of each other. Therefore, the aggregation operation on the graph structure
is crucial to the node vector representation. Previous aggregation operations based on
graph convolutional networks neglected to distinguish the degree of influence between
adjacent nodes, resulting in a vector representation of nodes that does not satisfy the
needs of personalized recommendations. In this paper, graph attention networks are
utilized to accomplish the aggregation operation by calculating the self-attention coefficients
between neighboring nodes, which are then utilized for the linear combination of features
corresponding to them. The simplified formula is expressed as e′u/i = AGG(·), where e′u/i
denotes the new vector representation generated, and AGG(·) is the aggregation function.
The aggregation function is implemented below. First, to obtain sufficient representational
power, the input node embedding vectors are feature transformed to obtain a new set of
node embedding vectors. A shared parameterized weight matrix W ∈ Rd′×d is needed to
act on each node, where d′ is the size of the transformed vector representation. Then, the
attention coefficient is calculated between the neighboring nodes. The formula is as follows:

∂ui = a(Weu, Wei) (2)

where ∂ui denotes the importance of item i to user u. a denotes a shared attention mech-
anism. Item i is a first-order neighbor of user u. To make the attention coefficients easily
comparable across nodes, this paper utilizes the so f tmax function to normalize the impor-
tance of all i:

αui = so f tmaxi(∂ui) =
exp(∂ui)

∑k∈Nu exp(∂uk)
(3)

where Nu is the set of items that user u has interacted with. In the experiments, a is a
feedforward neural network using a weight vector −→w ∈ R2d′ parameterized by a single
layer and using the LeakyReLU nonlinear activation function (with negative input slope is
0.2). The complete formula for the attention coefficient is as follows:

αui =
exp(LeakyReLU(−→w T [Weu||Wei]))

∑k∈Nu exp(LeakyReLU(−→w T [Weu||Wek]))
(4)
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where ·T denotes transposition and || indicates a concatenation operation. Multi-headed
self-attention is required to steady the procedure of self-attention learning. Specifically, the
features output by K independent self-attentive mechanisms are averaged, and a nonlinear
operation is added. The specific formula is as follows.

e f inal
u = σ(

1
K

K

∑
k=1

∑
j∈Nu

αk
ujw

kej) (5)

where || denotes the concatenation operation, αk
uj denotes the coefficient of the kth atten-

tion mechanism output between user u and item i, and wk is the weight matrix of the
corresponding linear transformation.

The node representation is enhanced by a first-order neighbor propagation layer, and
then multiple graph attention network layers are used to obtain higher-order neighbor
features. Such higher-order neighbor features can dig into the potential interests of users
and can effectively improve the generalization of the model. Each node in the interaction
graph performs first-order propagation to update the node representation, and the second-
order neighbor features can be obtained by iteratively performing first-order propagation.
Thus, the synergistic signals of higher-order neighbors can be obtained through multiple
iterations. The specific formula is expressed as follows: e(1)u = AGG(e(0)u ,G)

e(h)u = AGG(e(h−1)
u ,G)

(6)

where e(0)u is the node vector representation after initialization, e(1)u is the node represen-
tation after aggregating first-order neighbors, and e(h)u is the vector representation after
aggregating h-order. The output vectors of multiple networks contain node vector rep-
resentations with different order neighbor features, which directly affect the final vector
representation of the nodes. Nodes with rich low-order neighbors are less dependent on
higher-order neighbor collaboration signals, and conversely, require more high-order neigh-
bor signals to enrich the vector representation. Therefore, averaging pooling is adopted to
merge the vector representations of nodes of different orders. The formula is as follows:

e f inal
u =

1
H + 1

H

∑
h=0

eh
u (7)

3.1.3. Prediction Layer

SGACF utilizes graph attention networks to obtain node vector representations of
users and items, and then embeds higher-order neighbor co-signals into its representation
according to the higher-order connectivity principle, and finally models the interaction
between users and items by inner product. Then, the preference of user u for item i is

ŷui = (e f inal
u )Te f inal

i (8)

where e f inal
u and e f inal

i are the final vector representations of users and items, ŷui is the
preference score of user u for item i.

3.1.4. Loss of Supervision Task

Pairwise Bayesian personalized ranking (BPR) [18] loss is extensively utilized for
recommendation tasks. Its assumption is that the preference behaviors of each user are
independent of each other, and the preferences of the same user for different items are
independent of each other. BPR takes into account the relative order of observed and
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unobserved user–items, and it assumes that observed interactions are more indicative of
user preferences and therefore are granted a higher ranking than unobserved interactions:

LBPR = ∑
(u,i+ ,i−)∈O

−lnσ(yui+ − yui−) (9)

where O = {(u, i+, i−)|(u, i+) ∈ O+, (u, i−) ∈ O−} denotes paired training data. i+ and
i− denote positive and negative samples, respectively. O+ denotes unobserved samples.
σ is the sigmoid activation function, and Adam [50] is applied to optimize the model to
update the model parameters.

ŷui = (e f inal
u )Te f inal

i (10)

3.2. Data Augmentation of Graph Structures

Data augmentation is a technique that allows limited data to produce more equivalent
data to extend the dataset. The main data-augmentation techniques commonly utilized in
the field of computer vision are geometric transformation, color adjustment, style transfer,
adding noise, etc., which can generate a huge amount of equivalent photos. As a result of the
non-Euclidean nature of the graph structure, it is hard to directly adapt data-augmentation
methodologies from the vision domain to the graph data domain. The user–item bipartite
graph is built on the basis of user–item interaction and contains collaborative signals.
Therefore, this paper utilizes a graph structure-based data-augmentation method, including
node mask (NM), edge mask (EM) and layer mask (LM) to create different node views. The
data-augmentation method is shown in Figure 3. The method of augmenting graph data
may be described symbolically as follows:

e(h)1 = AGG(e(h−1)
1 , s1(G)), e(h)2 = AGG(e(h−1)

2 , s2(G)), s1, s2 ∼ A (11)

where the operations s1 and s2 are executed on G to change the graph structure and create
two related views of node e(h)1 and node e(h)2 . Setting the probability of a node being
dropped as ρ, s1 and s2 can be modeled as follows.

3.2.1. Node Mask (NM)

The probability of nodes and connected edges mask is ρ. s1 and s2 are modeled
as follows:

s1(G) = (C′ � V , E), s2(G) = (C′′ � V , E) (12)

where C′, C′′ ∈ {0, 1}|V| are two mask vectors applied to node set V . It gathers some nodes
and their edges from random shaded nodes to generate two subgraphs. This method may
observe the dominant nodes in the graph structure, which improves the robustness of the
representation learning to structure.

3.2.2. Edge Mask (EM)

Setting the probability of an edge mask as ρ, s1 and s2 can be modeled as

s1(G) = (V , C1 � E), s2(G) = (V , C2 � E) (13)

where C1, C2 ∈ {0, 1}|E | are two mask vectors whose randomly masked edge set E generates
two subgraphs. Local neighbors of nodes affect representation learning, further mitigating
the sensitivity of representation learning to structure.
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Figure 3. Graph augmentation method. Top left is node mask, top right is edge mask, and bottom is
layer mask.

3.2.3. Layer Mask (LM)

The subgraphs generated by node mask and edge mask are shared across network
layers. To further improve the robustness of the model to the graph structure, random walk
performs edge mask for the graph structure of each layer of the network input data. The
mask probability is set for each layer with edge mask and the expression is as follows:

s1(G) = (V , C(h)
1 � E), s2(G) = (V , C(h)

2 � E) (14)

where C(h)
1 , C(h)

2 ∈ {0, 1}|E | are two mask vectors whose randomly masked edge of the
h-layer network.

3.3. Self-Supervised Contrastive Learning
3.3.1. Contrastive Learning

Contrastive learning is an implementation of self-supervised learning, mainly de-
signed to solve the problem of little or no labeling. Its classical paradigm is a combination
of an agent task and an objective function. This paper utilizes contrastive self-supervised
learning, which performs contrastive learning based on the views generated by the data-
augmentation methods described above. It utilizes information about commonalities
and differences between data pairs as supervised signals to assist in the learning of the
supervised task.

3.3.2. Loss of Self-Supervision Task

The main goal of contrastive learning is to increase the consistency of two jointly
sampled positive sample pairs while minimizing the consistency of two dependently
sampled negative sample pairs. Positive sample pairs ({(e′u, e′′u)|u ∈ U}) are two distinct
views of the same node after augmentation, and negative sample pairs ({(e′u, e′′o )|u, o ∈ U})
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are distinct views of distinct nodes after augmentation. This paper follows SimCLR and
utilizes the contrastive loss InfoNCE:

Luser
ssl = ∑

u∈U
−log

exp(s(e′u, e′′u)/τ)

∑o∈U exp(s(e′u, e′′o )/τ)
(15)

where s(·) is is the cosine similarity function. τ is the temperature coefficient. Similarly, the
item-side contrastive loss Litem

ssl can be obtained. Combining these two losses results in a
self-supervised loss L = Litem

ssl + Luser
ssl .

3.4. Joint Learning

The similarity between users and items is the top priority in the recommendation
domain. Contrastive learning is concerned with the similarity between user nodes and
their variant views, and item nodes and their variant views, and only plays a auxiliary role
in the training phase. Therefore, self-supervised learning is optimized as an auxiliary task
jointly with the supervised task to form multi-task learning:

L = Lsupervised + λ1Lsel f−supervised + λ2||θ||22 (16)

where θ is the parameter of supervised learning, and λ1 and λ2 are the contribution values
of hyperparameter control self-supervised loss and L2 regularization.

4. Experiment

The work conducts experiments on three publicly available datasets to evaluate the
effectiveness of the proposed method. The settings of the parameters in the model are
presented, and the performance is analyzed in comparison with other models.

4.1. Datasets and Metrics

This work is experimented on three datasets of Yelp2018, Gowalla and Amazon.
Yelp2018 is collected from the 2018 Yelp challenge and considers restaurants, shopping
centers and hotels as items. Gowalla is a check-in dataset, where each check-in of a user
serves as one piece of data in the dataset. Amazon-review is a widely utilized product
recommendation dataset, and the work selects amazon-book from the collection. To ensure
the quality of the dataset, a certain number of items are selected in the experiment, and
Yelp2018 keeps user data with no fewer than 25 interactions, and the other datasets keep
no fewer than 20 interactions.

Model performance evaluation for the top-k recommendation task typically utilizes
Recall@k and normalized discounted cumulative gain (NDCG@k), where k = 20. Recall
calculates the proportion of items in the recommendation list that have interacted with the
user to the number of positive samples in the test set. The higher the value of recall, the
better the model recommendation performance. The formula is presented below:

Recall =
1
|U | ∑

u∈U

|Mu ∩Mtest
u |

Mtest
u

(17)

where Mu is the recommendation list and Mtest
u is the positive sample of user u in the test

set. NDCG considers the factor of item location in the recommendation list, and the higher
the value, the better the recommendation effect. The formula is as follows:

NDCG =
1
|U | ∑

u∈U

∑K
p=1

rel(p)
log(p+1)

∑TP
p=1

1
log(p+1)

(18)

where rel(·) denotes the item correlation calculation, and TP denotes the items in the
recommendation list in order of correlation from largest to smallest.
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4.2. Parameter Settings

The experiment was implemented via PyTorch. The work was initialized using
Xavier [51], setting the size of the embedding vector to 64. The learning rate of the
model was set to 0.001, and the L2 regularization coefficient was set to 1× 10−4. The
self-supervised learning part parameters λ1, τ and ρ were fine-tuned in the following value
ranges {0.005, 0.01, 0.05, 0.1, 0.5, 1}, {0.1, 0.2, 0.5, 1.0} and {0, 0.1, ...0.5}, respectively. The
parameters in the comparison model were set by the original paper.

4.3. Experiment Analysis
4.3.1. Explore SGACF’s Performance on Datasets

This subsection of the paper explores the performance of SGACF and analyzes the
impact of graph augmentation and different orders on the model performance. Here, this
paper utilizes augmentation strategies based on graph structure: NM, EM, and LM. It
explores the performance of models with different orders from 1 to 4. The experimental
results are shown in Table 1.

Table 1. Explore SGACF performance on three datasets.

Layer Method
Gowalla Yelp2018 Amazon

Recall Ndcg Recall Ndcg Recall Ndcg

SGACF-NM 0.2714 0.2199 0.2150 0.1394 0.1633 0.0896
1 SGACF-EM 0.2711 0.2197 0.2144 0.1392 0.1674 0.0905

SGACF-LM 0.2711 0.2197 0.2144 0.1392 0.1674 0.0905

SGACF-NM 0.2733 0.2201 0.2112 0.1356 0.1658 0.0904
2 SGACF-EM 0.2749 0.2417 0.2163 0.1400 0.1696 0.0922

SGACF-LM 0.2728 0.2241 0.2152 0.1394 0.1690 0.0915

SGACF-NM 0.2720 0.2205 0.2146 0.1384 0.1688 0.0908
3 SGACF-EM 0.2753 0.2423 0.2171 0.1402 0.1698 0.0925

SGACF-LM 0.2741 0.2412 0.2155 0.1397 0.1696 0.0921

SGACF-NM 0.2735 0.2198 0.2107 0.1346 0.1660 0.0905
4 SGACF-EM 0.2750 0.2419 0.2166 0.1400 0.1695 0.0923

SGACF-LM 0.2730 0.2242 0.2148 0.1387 0.1692 0.0917
The bold indicates the best result.

Analysis of the results shows that the edge mask improves the model more significantly.
SGACF-EM outperforms SGACF-LM, and SGACF-LM outperforms SGACF-NM, which
may be the inherent ability of the edge mask to capture the graph structure. NM may be
thought of as a subset of EM in which certain node edges are masked. The performance
of SGACF-NM in the experiment is relatively unstable, from which it can be concluded
that mask high degree nodes lead to training instability. Analyzing from the aspect of
order, a too-low order leads to a lack of information in the vector representation learned
by the model, and too-high order leads to a convergence of node representations, which
cannot distinguish the vector representation of different nodes. From Table 1, it is clear
that taking the 3-order acquires better performance. In addition, self-supervised learning
can enhance the generalization ability of the model. That is, contrastive learning between
different nodes can alleviate the problem of the over-smoothing of node representations. To
obtain a clearer picture of the effect of the reaction order and graph augmentation method
on the performance, the results are visualized as shown in Figure 4.
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Figure 4. Impact of order and graph augmentation on performance.

4.3.2. Compared Method

To demonstrate the effectiveness of the model, the work compares the proposed
method with the following methods.

• NeuMF [9] combines traditional matrix decomposition and multi-layer perceptron to
extract both low- and high-dimensional features. The user’s preference score for the
item is obtained through the neural network instead of the inner product operation.

• CMN [52] proposes a unified hybrid model which capitalizes on the recent advances
in memory networks and neural attention mechanisms for collaborative filtering with
implicit feedback.

• SpectralCF [34] proposes a spectral-based convolution operation to construct a deep
recommendation model based on spectral collaborative filtering. The model can ex-
plicitly mine the higher-order neighborhood features hidden in the interaction graph.

• NGCF [16] utilizes multiple spatial domain graph-based convolutional networks to
mine the user’s potential interest to obtain multiple representations of the nodes, and
then utilizes a weighted summation aggregation function to compute the final vector
representation of the nodes.

4.3.3. Analysis of Results

This work was experimented with other comparison models on three datasets, and the
results are given in Table 2. The performance differences between the comparison models
and the model proposed in this paper are analyzed below.

Table 2. Performance comparison of SGACF with other comparative models.

Method
Gowalla Yelp2018 Amazon

Recall Ndcg Recall Ndcg Recall Ndcg

NeuMF 0.1402 0.1169 0.1193 0.1040 0.1195 0.0552
CMN 0.1746 0.1571 0.2010 0.1075 0.1606 0.0657
SpectralCF 0.1756 0.1672 0.1565 0.1209 0.0950 0.0547
NGCF 0.2673 0.2317 0.1993 0.1326 0.1499 0.0866
SGACF-EM 0.2753 0.2423 0.2171 0.1402 0.1698 0.0925

The bold indicates the best result.

• NeuMF learns only low-dimensional vector representations of users and items utiliz-
ing the embedding layer. The results are poor on all three datasets, indicating that
there is a considerable paucity of valuable information in the embedding vectors of
users and items.

• CMN outperforms other comparison models in terms of recall on the Yelp and Amazon
datasets. This is due to the utilization of the attention mechanism in the model
to obtain better performance by enhancing the representational ability of nodes in
heterogeneous networks.

• SpectralCF outperforms NeuMF on all three datasets, which indicates that the graph
neural network-based recommendation model outperforms the general deep learning-
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based model in terms of structure. Building the interaction between users and items
as a bipartite graph can better explore the potential interests of users and enrich the
embedding vectors of users and items.

• NGCF has better performance in comparison models. It defines the convolution
operation directly on the spatial domain, without depending on the graph convolution
theory. While improving flexibility, the performance of the spatial domain-based
graph convolution recommendation model outperforms other methods.

• In comparison to NGCF, SGACF-EM improves the NDCG on the Yelp and Amazon
datasets by 5% and 6%, respectively. SGACF utilizes a self-attention mechanism in the
process of aggregating neighboring features to quantify the neighboring features of
nodes according to their importance, thus improving the embedding representation of
users and items. In order to make the calculation of attention coefficients more stable,
the multi-headed self-attention mechanism is employed. The experimental results
fully verify the rationality and effectiveness of the method proposed in this paper.
CMN only utilizes the features of first-order neighbors, and SGACF mines higher-
order collaborative signals based on higher-order connectivity, which illustrates the
importance of higher-order connectivity principle in graph representation learning.
SpectralCF and NGCF utilize spectral-based graph convolution and spatial domain-
based graph convolution networks, respectively; both ignore the reliability of the
feature propagation process between neighboring nodes and are prone to bring in
noisy data. Moreover, in the training process of graph convolutional networks, the
high degree of nodes tends to dominate the representation learning of the model.
Therefore, SGACF joint self-supervised learning makes it easy for nodes with low
degree to learn.

4.3.4. Analysis of The Impact of Comparative Learning

Contrastive learning is an implementation of self-supervised learning, which is mainly
applied to solve the problem of little or no labeling of data. Therefore, its data-augmentation
part is the main core. Although a great volume of data is generated inside recommendation
domain, its data distribution shows a power–law distribution (i.e., long-tail problem). In the
process of model training, nodes with high degree play a dominant role in representation
learning, while nodes with low degree are very difficult to learn. Therefore, adding
contrastive learning to the recommendation model to solve the long-tail problem is effective.
Further, to make the model easy to train, the parameters are shared between graph neural
networks for supervised and self-supervised tasks.

5. Ablation Analysis

To demonstrate the effectiveness of the adopted technique, this paper conducts abla-
tion experiments on a multi-headed graph attention mechanism and a self-supervised task.

5.1. Impact of Multiple Attention Mechanism

This subsection analyzes the impact of the number of attention heads on performance
in SGACF-EM. The use of a single-headed graph attention network overly focuses attention
on its own position when encoding the current node features during the training process.
To obtain more reliable attention coefficients, a multi-headed graph attention network is
utilized to extract features from multiple perspectives. The experimental results are shown
in Table 3. The model achieves better performance when the number of heads is 2. When
the number of heads exceeds a certain number, the model effect is not improved, which is
due to the limitation of the characteristics of the data itself.
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Table 3. Effect of graph attention network with different number of heads on performance.

Heads
Gowalla Yelp2018 Amazon

Recall Ndcg Recall Ndcg Recall Ndcg

1 0.2726 0.2411 0.2154 0.1397 0.1677 0.0914
2 0.2753 0.2423 0.2171 0.1402 0.1698 0.0925
4 0.2715 0.2405 0.2128 0.1374 0.1660 0.0903
8 0.2681 0.2344 0.2087 0.1316 0.1627 0.0842

The bold indicates the best result.

5.2. Optimization of Models by Contrastive Learning

To investigate the effect of self-supervised learning on model performance, this subsec-
tion performs an ablation analysis of SGACF. Table 4 displays the experiment’s outcomes,
where joint self-supervised learning in the recommendation model significantly improves
the model’s performance. This is attributed to the fact that self-supervised contrastive learn-
ing effectively mitigates the problem of sparse supervisory signals in the recommendation
task by utilizing information about commonalities and differences between data pairs as
supervised signals to auxiliary supervised learning through a data-augmentation strategy.
Meanwhile, to explore the impact of self-supervised learning on the long-tail problem, in
this paper, items are divided into 10 groups of different ranks based on the number of
connected edges of individual nodes, and the total number of interactions in each group is
the same. The larger the groupID, the higher the number of connected edges of individual
nodes. This work compares the ability of SGACF-ED and SGACF-w/o to solve the long-tail
problem, both of which have their network layers set to 3. Recall is the sum of each group.
As shown in Figure 5, group 10 contributes a large proportion to recall, even though it
contains a small number of items. It is thus clear that SGACF-w/o tends to recommend
popular items, while long-tail items have fewer connected edges. It can be seen that the
performance improvement of SGACF is to accurately recommend long-tail items.

Figure 5. Performance comparison of different item groups SGACF-EM and SGACF-w/o.

Table 4. Impact of self-supervised learning on models.

Method
Gowalla Yelp2018 Amazon

Recall Ndcg Recall Ndcg Recall Ndcg

SGACF-w/o 0.2680 0.2341 0.2037 0.1113 0.1622 0.0894
SGACF-EM 0.2753 0.2423 0.2171 0.1402 0.1698 0.0925

The bold indicates the best result.

6. Conclusions and Future Work

This paper proposes a self-supervised graph attention collaborative filtering for recom-
mendation. It observes that graph convolution-based recommendation ignores the problem
of importance between neighboring nodes, and thus employs graph attention networks
to obtain reliable neighboring features. In this paper, self-supervised contrastive learning
is utilized to auxiliary supervised learning, thus addressing the limitations of supervised
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tasks in recommendation. The impact of three approaches to graph data augmentation
on model performance is analyzed from the perspective of graph structure. Extensive
experiments are conducted on three public datasets to demonstrate the advantages of
the methods proposed in this paper in mitigating the long-tail problem and reducing the
impact of interaction noise. To sum up, the contributions of this work are as follows: A
multi-head graph attention network is utilized to aggregate neighbor features from multiple
perspectives to reduce the impact of interaction noise on representation learning. Super-
vised tasks based on graph attention networks combined with self-supervised learning
enhance representation learning via observing the properties of nodes in the interaction
graph. Extensive experiments on three benchmark datasets demonstrate the effectiveness
of the proposed self-supervised graph attention collaborative filtering for recommendation.

This work achieves better results, adopting the joint training of self-supervised contrast
learning and supervised learning, but there are still limitations. The success of contrast
learning-based representation learning relies heavily on well-designed data-augmentation
strategies. In future research, we will focus on graph data-augmentation strategies in
contrast learning. We hope to make contrast learning in recommendation more robust
through data-augmentation strategies. For example, sampling-based data augmentation
transforms both the adjacency matrix and the feature matrix.
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23. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
24. Yao, T.; Yi, X.; Cheng, D.Z.; Xu, F.; Chen, T.; Menon, A.; Hong, L.; Chi, E.H.; Tjoa, S.; Kang, J.; et al. Self-supervised learning for

large-scale item recommendations. In Proceedings of the 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, 1–5 November 2021; pp. 4321–4330.

25. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9729–9738.

26. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language
representations. arXiv 2019, arXiv:1909.11942.

27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

28. Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018,
arXiv:1803.07728.

29. Hofmann, T. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 89–115. [CrossRef]
30. Miyahara, K.; Pazzani, M.J. Collaborative Filtering with the Simple Bayesian Classifier. In Proceedings of the 6th Pacific Rim

international conference on Artificial intelligence, Melbourne, Australia, 28 August–1 September 2002; pp. 679–689.
31. Ungar, L.H.; Foster, D.P. Clustering methods for collaborative filtering. In Proceedings of the AAAI Workshop on Recommendation

Systems, Madison, WI, USA, 26–27 July 1998; Volume 1, pp. 114–129.
32. Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J. Grouplens: An open architecture for collaborative filtering of netnews.

In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, 22–26 October
1994; pp. 175–186.

33. Chowdhury, G.G. Introduction to Modern Information Retrieval; Facet Publishing: London, UK, 2010.
34. Zheng, L.; Lu, C.T.; Jiang, F.; Zhang, J.; Yu, P.S. Spectral collaborative filtering. In Proceedings of the 12th ACM Conference on

Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 311–319.
35. Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263.
36. Sun, J.; Zhang, Y.; Guo, W.; Guo, H.; Tang, R.; He, X.; Ma, C.; Coates, M. Neighbor interaction aware graph convolution

networks for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 1289–1298.

37. Sun, J.; Guo, W.; Zhang, D.; Zhang, Y.; Regol, F.; Hu Y.; Guo, H.; Tang, R.; Yuan, H.; He, X.; et al. A framework for recommending
accurate and diverse items using bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 2030–2039.

38. Chen, L.; Wu, L.; Hong, R.; Zhang, K.; Wang, M. Revisiting graph based collaborative filtering: A linear residual graph
convolutional network approach. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12
February 2020; pp. 27–34.

http://dx.doi.org/10.1109/TSP.2018.2879624
http://dx.doi.org/10.1145/963770.963774


Electronics 2023, 12, 793 17 of 17

39. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, China, 25–30 July 2020; pp. 639–648.

40. Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buckatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.; Azar, M.G.; et al.
Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284.

41. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations
by mutual information estimation and maximization. arXiv 2018, arXiv:1808.06670.

42. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1597–1607.

43. Sun, F.Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised graph-level representation learning via
mutual information maximization. arXiv 2019, arXiv:1908.01000.

44. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Lio, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR 2019, 2, 4.
45. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for pre-training graph neural networks. arXiv

2019, arXiv:1905.12265.
46. Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the International

Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 4116–4126.
47. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. Gcc: Graph contrastive coding for graph neural

network pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 1150–1160.

48. Ma, J.; Zhou, C.; Yang, H.; Cui, P.; Wang, X.; Zhu, W. Disentangled self-supervision in sequential recommenders. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July
2020; pp. 483–491.

49. Xia, L.; Huang, C.; Xu, Y.; Zhao, J.; Yin, D.; Huang, J. Hypergraph contrastive collaborative filtering. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022;
pp. 70–79.

50. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
51. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Sardegna, Italy,
13–15 May 2010; pp. 249–256.

52. Ebesu, T.; Shen, B.; Fang, Y. Collaborative memory network for recommendation systems. In Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 515–524.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Collaborative Filtering-Based Recommendation
	Graph Neural Network-Based Recommendation
	Self-Supervised Learning

	Proposed Method
	Supervised Learning
	Embedding Layer
	Feature Propagation Layer
	Prediction Layer
	Loss of Supervision Task

	Data Augmentation of Graph Structures
	Node Mask (NM)
	Edge Mask (EM)
	Layer Mask (LM)

	Self-Supervised Contrastive Learning
	Contrastive Learning
	Loss of Self-Supervision Task

	Joint Learning

	Experiment
	Datasets and Metrics
	Parameter Settings
	Experiment Analysis
	Explore SGACF's Performance on Datasets
	Compared Method
	Analysis of Results
	Analysis of The Impact of Comparative Learning


	Ablation Analysis
	Impact of Multiple Attention Mechanism
	Optimization of Models by Contrastive Learning

	Conclusions and Future Work
	References

