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Abstract: Side-scan sonar (SSS) target recognition is an important part of building an underwater
detection system and ensuring a high-precision perception of underwater information. In this paper,
a novel multi-channel multi-location attention mechanism is proposed for a multi-modal phased
transfer side-scan sonar target recognition model. Optical images from the ImageNet database,
synthetic aperture radar (SAR) images and SSS images are used as the training datasets. The
backbone network for feature extraction is transferred and learned by a staged transfer learning
method. The head network used to predict the type of target extracts the attention features of SSS
through a multi-channel and multi-position attention mechanism, and subsequently performs target
recognition. The proposed model is tested on the SSS test dataset and evaluated using several metrics,
and compared with different recognition algorithms as well. The results show that the model has
better recognition accuracy and robustness for SSS targets.

Keywords: side-scan sonar image classification; attention mechanism; multi-modal transfer learning;
multi-channel; synthetic aperture radar

1. Introduction

Side-scan sonar (SSS) generates pseudo-color images of varying intensities by record-
ing the intensity of backscattered sound waves from the ocean floor. It has the characteristics
of wide coverage and high resolution and can not only map seabed topography but also
image underwater targets (wrecks, aircraft). It is the main sensor used in autonomous
underwater vehicles (AUV). In recent years, automatic target recognition (ATR) based on
SSS data is used to quickly and automatically classify underwater targets [1]. Real-time
detection and identification of submarine objects using low-cost and low-risk AUVs is an
issue of great interest to Navies around the world [2,3]. However, the signal-to-noise ratio
of sonar images is extremely low, and the target information is seriously polluted due to
the existence of ocean noise, reverberation noise and speckle noise [4–7]. In addition, with
the increase of the operating frequency of SSS, the absorption of sound energy by seawater
increases. Consequently, the sound absorption loss of sound waves in seawater is large and
the sonar images exhibit the low target contrast phenomenon [8,9], which directly affects
the target recognition performance.

The deep learning (DL) technology can convolve the input image through multiple
convolution kernels of different scales, filtering the image and realizing the feature ex-
traction of the input image. The focus of a deep learning object recognition system is to
design the structure of the convolutional neural network. The input image is extracted from
shallow to deep through the designed network structure, and the target is identified by the
classifier according to the features extracted by the final layer. It can be observed that for the
target recognition method based on the convolutional neural network (CNN) [10–13], the
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most important factor is to extract stable features. The instability of features can be reflected
in the problems of insufficient data samples and features susceptible to noise interference.
If the designed network is huge and the network parameters have high magnitudes, the
recognition network will have an overfitting problem [14]. This means that the recognition
performance of the network on the training and test sets will be very different, and the
features extracted under noise interference will have noisy features. Such features have
a negative impact on final recognition. Therefore, in order to obtain a good SSS target
recognition performance, it is necessary to mitigate the problem associated with insufficient
training samples and study the generation of stable features in the network design process.

1.1. Literature Review

Recent research on SSS target recognition has shown that the target recognition method
based on CNNs has outperformed traditional machine learning methods, including the
fuzzy logic method, K nearest neighbor, support vector machines, etc., [15–17]. With an
increasing scale, the recognition network can extract deeper features from images to ob-
tain richer feature information. Therefore, a research direction for target recognition is to
design a deeper recognition network model. Simonyan et al., Alex et al., He et al. and
Xu et al. proposed VGG [18], AlexNet [19], ResNet [20], and DesNet [21] methods, respec-
tively. On the basis, the ResNet152 and Desnet161 methods were proposed to increase the
number of network layers and improve the ability of feature extraction [22,23]. However,
the aforementioned methods require a large number of data samples in the process of
parameter learning. As it is difficult to obtain sample data for SSS data, the lack of training
samples limits the application of the methods proposed in [20–23] for SSS target recognition.
In contrast, sample transfer learning (STL) adopts the method of source data set to train the
main network body of the model, and target data set to fine-tune the head network, which
can effectively solve the problem of insufficient training samples. This research direction
has received a significant amount of attention recently. For example, Ye et al. applied the
VGG-11 and ResNet-18 models to the underwater target identification of SSS images and
adopted optical data pre-training and SSS data fine-tuning to improve the low recognition
rate caused by insufficient data samples [24]. Huo et al. used semi-synthetic and SSS data
to fine-tune the VGG parameters in order to further improve the sample identification accu-
racy [25]. Tang et al. detected shipwreck targets using SSS based on the trained DarkNet-53
network [26]. Fuchs et al. applied the transfer recognition method to the target recognition
of forward-looking sonar (FLS) [27]. Zhang et al. adopted the YOLOv5 model to detect FLS
targets [28].

All the above studies have proved the effectiveness of STL in overcoming the problem
of insufficient samples. These studies use different data sets and target data sets to pre-train
different backbone networks and fine-tune the head network according to different task
requirements, respectively, and finally achieve detection and recognition. However, the SSS
images have strong noise interference that is considerably different from the optical images.
This difference in distribution causes the features learned by the pre-trained network to
significantly limit the recognition accuracy of the head network. In order to overcome this
shortcoming, we should study the use of different modal data sets to train the network in
different stages, so as to alleviate the problem of insufficient recognition accuracy caused
by data differences.

Zhen et al. used synthetic aperture radar (SAR) data to train the middle layer of the
network. At the same time, the attention mechanism was utilized to make the features
extracted by the network more representative, which improved the anti-noise performance
and network recognition accuracy [29]. Although this method was effective, the attention
weights of different positions of the same channel were the same in the attention network
design. Furthermore, the attention weights of different channels of the same position
were also the same. This network design reduced the attention diversity in the network.
To address the aforementioned limitations, it is necessary to carry out research on multi-
channel multi-location attention networks.
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1.2. Novel Contributions

Aiming at the above research gaps, a new multi-channel multi-location attention
model (MMA) is proposed for SSS target recognition. In this model, the ResNet network is
used as the backbone network, and the ImageNet dataset and the SAR dataset are used
to train different stages of the backbone network to improve its data adaptability to SSS.
Finally, the MMA model and head recognition network are trained using the SSS dataset to
produce accurate and robust recognition results. The novel scientific contributions of this
study are as follows:

1. A deep learning model for SSS object recognition is proposed. The model structure
can learn the backbone network parameters in stages through a variety of data sets, reduce
the distribution difference between the ImageNet data and SSS data, and improve the
recognition accuracy for SSS targets. The effectiveness of the proposed recognition model
is verified on a measured SSS target dataset (https://toscode.gitee.com/wangjian1987011
8/ssd-dataset.git, accessed on 27 January 2023).

2. In the previous research on transfer target recognition, only the fully connected layer
of the head network was transferred and adjusted, which limited the learning scope. There
was no key feature extraction of the key positions and key channels of the SSS target. Unlike
previous research, a multi-channel and multi-position attention mechanism is proposed.
During the process of extracting SSS target features, different channel attention factors
can be set for channels at different positions, and positions can be set at different channel
attention factors. These diverse attention factors can achieve all-round acquisition of SSS
target features.

3. An integration strategy based on multimodal staged transfer is proposed to en-
hance the generalization performance of the model. Unlike the existing research, this
strategy can enable the backbone network to simultaneously have better classification
accuracy for multiple different modal data, so that the SSS target recognition has better
recognition performance.

2. Methods

The multi-modal multi-channel multi-position attention transfer recognition model
(3MATR) proposed in this paper consists of two stages: (1) multi-modal staged transfer
stage and, (2) SSS image attention recognition stage. Figure 1 shows the specific framework
of the proposed model.

 

 

New Parameters
Training

Transfer
Parameters

Share
Parameters

Basic ResNet152 Neural Network

Stage-I Multi-Modal Staged Transfer Stage-II SSS Attention Recognition

Attention Mechanism

Figure 1. Framework of the proposed 3MATR model.

https://toscode.gitee.com/wangjian19870118/ssd-dataset.git
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1. Stage-I: multi-modal staged transfer.

The training data set is divided into an optical ImageNet data set and the SAR data
set. The latter is used to train the front part of the backbone network (ResNet152), and the
former is used to train the middle part of the network. This stage enables the backbone
network to accurately identify noisy datasets.

2. Stage-II: multi-channel multi-location attention model target recognition.

The backbone network learned from multiple datasets is combined with the attention
mechanism network (AMN) and the recognition network to build an integrated learn-
ing model. The SSS data are used to learn the parameters of the network at this stage.
During the parameter learning process, attention is allocated to different positions of dif-
ferent channels to obtain the important features of the target. Finally, the SSS target is
accurately identified.

2.1. Multi-Modal Staged Transfer

The image size of the training data set is 224 × 224, and the backbone network adopts
the ResNet series network structure. Figure 2 shows the local structure. The constant
mapping in the ResNet structure can solve the vanishing gradient problem and model
degradation during the parameter learning process. In this study, the SAR and ImageNet
datasets are used to train the front and middle sections of ResNet152, respectively. The
ResNet152 network consists of multiple 3 × 3 and 1 × 1 convolution kernels. The former
kernel unit extracts the features of the image information, and the latter kernel can upgrade
and reduce the dimensionality of the feature channel through the integration of cross-
channel features. Figure 3 shows the ResNet152 network structure diagram.

g

 

weight layer

weight layer

relu

x

F(x)

H(x)=F(x)+x
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x
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Figure 2. Resnet local operation structure diagram.
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Figure 3. Detailed architecture diagram of the ResNet152 network.
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The ResNet152 model is widely used in target recognition problems. The backbone
network is composed of five parts: Conv1, Conv2_x(x = 1 . . . 3), Conv3_x(x = 1 . . . 8),
Conv4_x(x = 1 . . . 36), and Conv5_x(x = 1 . . . 3), where Conv1 and Conv2_x(x = 1 . . . 3)
form the front segment of the network using SAR data for parameter learning, and Conv3_x,
and Conv4_x form the middle segment of the network using ImageNet data for parameter
learning. Conv5_x(x = 1 . . . 3) and the remaining parts of the network use SSS data for
transfer parameter learning. In this way, the purpose of phased transfer learning is achieved.
Table 1 shows the details of the convolution kernel settings in ResNet152.

Table 1. Resnet152 network parameter settings.

Layer Name Output Size Resnet152

conv1 112 × 112 7 × 7.64, s = 2

3 × 3 max pool, s = 2
1 × 1.64
3 × 3.64

conv2_x(x = 1 . . . 3) 56 × 56

1 × 1.256

1 × 1.128
3 × 3.128conv3_x(x = 1 . . . 8) 28 × 28
1 × 1.512

1 × 1.256
3 × 3.256conv4_x(x = 1 . . . 36) 14 × 14
1 × 1.1024

1 × 1.512
3 × 3.512conv5_x(x = 1 . . . 3) 7 × 7
1 × 1.2048

1 × 1 average pool
Output

1000-d fc, softmax

2.2. Multi-Channel Multi-Location Attention Model

The convolution operation in the network uses convolution kernels of different sizes
to extract features of local areas, therefore, it cannot perceive the entire position space.
A larger position space can be perceived by using a deeper network structure. Although
this method perceives the entire location space, it splits the spatial information and can
easily lead to a loss of feature information. In this paper, we propose a method that
can collect global features and preserve positional relationships. This method can help
subsequent convolutional layers perceive the entire space and capture complex feature
relationships. At the same time, we propose a multi-channel and multi-location attention
mechanism, which can fully consider the channel attention factors of different positions
and the position attention factors of different channels. In this way, compact key features
can be obtained from complex global images, and the importance and robustness of the
proposed features can be enhanced. Next, we describe the architecture and theory of the
proposed method in detail.

2.2.1. Channel Attention Mechanism Considering Location (CAMCL)

The design of the CAMCL attention model proposed in this paper is based on the
QKV model [30–33] in the self-attention mechanism. Let the input image be X ∈ Rc×h×w,
denoting the input tensor of a spatiotemporal (2D) convolutional layer. The number of
channels is represented by c, and h and w represent the height and width of the spatial
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scale, respectively. The feature map of X through the convolution kernel is denoted by
A, B, V, where A, B, V are three different layers represented as follows:

A = φ
(
X; Wφ

)
B = θ(X; Wθ)

V = ϕ
(
X; Wϕ

) (1)

where Wφ, Wθ and Wϕ are the corresponding network parameters. The layers A, B and
V are expanded in the spatial dimension, where Bc×hw = [b1, b2, . . . bhw] and Vc×hw =
[v1, v2, . . . vhw]. In order to calculate the channel attention factor, this paper uses the matrix
product ABT to calculate the channel correlation matrix Gc×c, which is described as

Gc×c = [g1, g2, . . . gc] = ABT = [a1, a2, . . . ahw][b1, b2, . . . bhw]
T = [a1, a2, . . . ahw]


b1

T

b2
T

...
bhw

T



=


a1
a2
...
ac

[b1, b2, . . . bc

]
=


a1b1 a1b2 · · · a1bc
a2b1 a2b2 · · · a2bc

...
... · · ·

...
acb1 acb2 · · · acbc

 ai ∈ 1×hwbj ∈ hw×1

i, j = 1, 2, · · · c (2)

aibj

where aibj indicates the attention factor between channels i and j. The image is processed by
channel attention, which can be expressed as Zc×hw = Gc×cVc×hw. The image after channel
attention processing is obtained by reshaping Z in order to take into account the position
factor while performing channel attention. In Equation (2), bj(j = 1, . . . , hw) is transformed
into an effective position attention weight vector using so f tmax(). At the same time,
Vc×hw = [v1; v2, . . . , vc] also performs the transformation identical to A = [a1; a2, . . . ac].
Therefore, using Equation (2), the channel attention mechanism considering the location
factor can be expressed as follows:

Z̃c×hw = G̃c×cṼc×hw

=


a1so f t max(b1) a1so f t max(b2) · · · a1so f t max(bc)

a2so f t max(b1) a2so f t max(b2) · · · a2so f t max(bc)
...

... · · ·
...

acso f t max(b1) acso f t max(b2) · · · acso f t max(bc)




so f t max(v1)
so f t max(v2)

...
so f t max(vc)


ai ∈ 1×hwbj ∈ hw×1vk ∈ 1×hw

i, j, k = 1, 2, · · · c (3)

Figure 4 shows the calculation block diagram of the channel attention mechanism
considering the positions.
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Figure 4. CAMCL calculation flow chart.

2.2.2. Location Attention Mechanism Considering Channel (LAMCC)

In order to calculate the location attention factor, this paper uses the matrix multiplica-
tion AT B to calculate the location correlation matrix Fhw×hw = [ f1, f2, . . . , fhw] as follows:

Fhw×hw = [ f1, f2, . . . , fhw] = AT B = [a1, a2, . . . , ahw]
T [b1, b2, . . . , bhw]

=


a1

T

a2
T

...
ahw

T

[b1, b2, . . . , bhw] =


a1

Tb1 a1
Tbhw · · · a1

Tbhw
a2

Tb1 a2
Tbhw · · · a2

Tbhw
...

... · · ·
...

ahwb1 ahwbhw · · · ahwbhw


ai ∈ Rc×1bj ∈ Rc×1

i, j = 1, 2, · · · hw

(4)

where aT
i bj indicates the attention factor between locations i and j. The location attention

operation of an image can be expressed as Khw×c = Fhw×hw(Vc×hw)T , which can be re-
shaped to obtain the image after location attention processing. In order to consider the
channel attention factor while performing position attention, we adopt an idea similar to
CAMCL, and express Equation (4) as follows using the so f tmax() function:

K̃hw×c = F̃hw×hw
(

Ṽc×hw
)T

=


a1

Tso f tmax(b1) a1
Tso f tmax(b2) · · · a1

Tso f tmax(bhw)
a2

Tso f tmax(b1) a2
Tso f tmax(b2) · · · a2

Tso f tmax(bhw)
...

... · · ·
...

ahw
Tso f tmax(b1) ahw

Tso f tmax(b2) · · · ahw
Tso f tmax(bhw)




so f tmax(v1)
T

so f tmax(v2)
T

...
so f tmax(vhw)

T


ai ∈ Rc×1bj ∈ Rc×1vk ∈ Rc×1

i, j, k = 1, 2, · · · hw
(5)

Figure 5 shows the calculation block diagram of the location attention mechanism
considering the channel.
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2.3. Data Description
2.3.1. SSS Dataset

A target image dataset collected via imaging sonar is used to conduct the experi-
ments. The dataset used in the experiment includes three types of image targets as follows:
66 planes, 484 ships, and 578 other pictures. Figure 6 shows some example dataset images.
It can be observed that the image has strong noise interference, which causes considerable
difficulty in accurate target identification.

 
(a)                           (b) 

 plane
 ship
 other

578 samples 484 samples

66 samples

Sample Data Distribution Diagram

Figure 6. Side-scan sonar dataset samples. (a) Three classes of side-scan image targets; (b) Sample
distribution diagram.

2.3.2. Experimental Dataset Preprocessing

The data are randomly extracted for creating training and test datasets, where 70%
of the data are used as training data and the remaining 30% are used as test data. Table 2
shows the specific data allocation for each category. In order to reduce the influence of
random initialization of parameters on the recognition performance, values obtained over
repeated experiments are averaged and used for the final evaluation of the recognition
performance. The data types in the dataset are unbalanced, with the largest being the
578 samples of other target types and only 66 plane samples. The unbalanced data will
cause the classifier to favor categories with large sample sizes, and the recognition rates of
the small sample categories will be poor. At the same time, the total number of samples in
the data set is 1128, and the network trained using this dataset will exhibit overfitting.
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Table 2. Specific data allocation for each category.

Numbers
Categories

Plane Ship Other

Total 66 484 578
After dataset division (train set 70%, test set 30%)

Train 46 338 404
Test 20 146 174

In this experiment, in order to reduce the impact of unbalanced data and overfitting on
the evaluated algorithms, some basic data augmentation methods (flip, rotation, cropping)
are also applied to preprocess the data. These include center crop, left bottom crop, left top
crop, right bottom crop, right top crop, equal height stretch, equal width stretch, contrast
transformation, rotation (45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦), left and right flip. Figure 7
shows the image transformation result and Figure 8 shows the image data used in the
experiment. It can be observed from the figures that different types of images have different
appearances and distributions.

 (a) (b) (c) (d) (e) (f)

 (g) (h) (i) (j) (k) (l)

 (m) (n) (o) (p) (q) (r)

Figure 7. Image transformation result graph: (a) image sample; (b) center crop; (c) left bottom crop;
(d) left top crop; (e) right bottom crop; (f) right top crop; (g) equal height stretch; (h) equal width stretch;
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(i) contrast transformation gamma = 0.87; (j) contrast transformation gamma = 1.07; (k) rotation = 45◦;
(l) rotation = 90◦; (m) rotation = 135◦; (n) rotation = 180◦; (o) rotation = 225◦; (p) rotation = 270◦;
(q) rotation = 315◦; (r) left and right flip.

 

(a)

(b)

(c)

Figure 8. Datasets used in the experiments: (a) Grayscale optical image samples; (b) SAR image
samples; (c) SSS image samples.

2.4. Evaluation Metric

We use accuracy to evaluate the criterion for evaluating the model performance.
The training network in this paper uses the ResNet152 network. The network uses SAR
images and optical images to train the front section and back end of the backbone network,
respectively, and uses SSS images to train the head network. The batch size is 30, the
learning rate is 0.001, and model validation is performed 10 times using the cross-validation
method, The criterion for assessing model performance is the average overall accuracy
(OA), which is the percentage of all correct positive classifications and represents the overall
classification performance. The OA is calculated as in Equation (6).

OA =
∑C

i Nii

N
(6)

where Nii is the number of test samples that should have been classified as class i and are
classified as class i in the actual classification results, c refers to the categories of labels in
the test samples, and N is the total number of test samples.

2.5. Experimental Platform

Experiments are run on a Microsoft Windows 10 operating system with an NVIDIA
GTX TITAN-XP GPU and 64 GB of memory. Python 3.6.8 version is used to design the
network structure.

3. Results and Discussion

In this part, the robustness and effectiveness of the proposed method are verified
through comparative experiments and analysis. The method is compared with traditional
DL recognition methods to verify the improvement effect of the algorithm on the recognition
rate. In addition, this algorithm is compared with related transfer learning (TL) algorithms.

The OA index of the test data set is used to compare the state-of-the-art (SOTA)
methods with the method proposed in this paper and analyze the related performance of
the results. At the same time, data ablation experiments, CAMCL and LAMCC ablation
experiments are used to analyze the performance of the network structure, and the method
proposed in this paper is verified using the forward-looking sonar (FLS) data set for sample
diversity.

(1) Comparison of our method with traditional DL models

DenseNet, ResNet, VGGNet and other series methods are the most classical and
widely used network structures for target recognition. Therefore, this paper chooses these



Electronics 2023, 12, 791 11 of 18

methods for comparative analysis and lists their details and performance. Experimental
results are shown in Figure 9 and Figure 10.

(a) (b)

(c)

Figure 9. SSS target recognition results with DenseNet series networks: (a) DenseNet201 loss and
accuracy curves; (b) DenseNet121 loss and accuracy curves; (c) DenseNet169 loss and accuracy curves.

(a) (b)

(c)

Figure 10. SSS target recognition results of ResNet series networks: (a) ResNet50 loss and accuracy
curves; (b) ResNet101 loss and accuracy curves; (c) ResNet152 loss and accuracy curves.

As Table 3 shows, the model structures of VGGNet16 and VGGNet19 are simple
and easy to train; however, their actual recognition performance is not ideal, and their
recognition accuracy is only 92.56%. As shown in Figure 11, during the training process of
VGGNet16 and VGGNet19 models, the recognition accuracy curves exhibit instability and
jitter, as shown in Figure 11a,b. In particular, the VGGNet19 network shows a downward
trend with an increasing number of epochs, and the final recognition rate is only 60%,
as shown in Figure 11b. DenseNet (201, 121, 169) and ResNet (152, 101, 50) network
models have similar recognition accuracies, and the ResNet101 has the optimal recognition
accuracy, which is equal to 96.41%. At the same time, the recognition accuracy of the ResNet
network layer decreases slightly from 96.41% for 101 layers to 95.13% for 152 layers, and the
recognition accuracy of the DenseNet network layer decreases from 96.15% for 169 layers
to 95.02% for 201 layers. This is because as the number of network layers increases, the
features extracted by the network tend to be more abstract and detailed. As the SSS image
has a large noise interference, the extracted detailed features include noise features, which
directly affect the recognition performance of the network.
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Table 3. Comparison of different DL models for SSS image object recognition.

Methods Optimal OA (%)

DenseNet201 95.02
DenseNet121 95.13
DenseNet169 96.15

ResNet50 91.28
ResNet101 96.41
ResNet152 95.13
VGGNet16 92.56
VGGNet19 92.56

(a) (b)

Figure 11. SSS target recognition results of VGGNet series networks: (a) VGGNet16 loss and accuracy
curves; (b) VGGNet19 loss and accuracy curves.

(2) Comparison of methods for the classification of SSS images

A few SOTA methods for SSS target recognition have been proposed in [34–36]. These
methods use different data enhancement methods to increase the number of training
data samples through semi-synthetic data [36] and improve the learning and recognition
capabilities of the network, which increases the recognition accuracy significantly. Table 4
shows that using synthetic data and VGG19Net fine-tuning network method, the highest
target recognition accuracy of 97.76% can be achieved. The recognition accuracy of other
methods is reduced to varying degrees due to the insufficient number of network layers.

Table 4. Comparison of different methods for SSS image object recognition.

Methods Optimal OA (%)

Shallow CNN [34] 83.19
GoogleNet [35] 91.86

VGG11 fine-tuning + semisynthetic data [24] 92.51
VGG19 fine-tuning [25] 94.67

VGG19 fine-tuning + semisynthetic data [25] 97.76
SPDRDL [36] 97.38
Our Methods 98.72

As the time consumed by the synthetic data increases according to the complexity
of the synthetic model, the time consumed for processing the synthetic data is relatively
large. It takes a considerable amount of time to prepare the data before training the
recognition network. In underwater recognition tasks that do not require a long training
time, it is not appropriate to use synthetic data to train a network for tasks with low time
complexity, because the time consumed by the synthetic data will be calculated as a part of
the recognition time. The staged attention transfer recognition method proposed in this
paper can significantly improve the target recognition accuracy rate to 98.72% through
the target domain data attention enhancement method without any time loss caused by
additional sample generation. This recognition performance is the best compared to other
methods, showing an increase of 1%.
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(3) Comparison of different backbones for the classification of SSS image.

The ablation experiment method is used to pre-train a variety of backbone networks
using ImageNet data, and the transfer recognition method is used to fine-tune the pa-
rameters of the head network using SSS data to analyze the recognition performance.
In order to fully analyze the positive effect of transfer recognition on SSS target recognition,
we supplemented AlexNet, GoogleNet and other shallow network transfer recognition
methods based on the above traditional network model (ResNet, DenseNet, VGGNet) for
comparative analysis. Figures 12–14 show the recognition rate and loss curves of the partial
recognition network, and Table 5 shows the optimal recognition rate results with different
backbone network transfer recognition methods.

(a) (b)

Figure 12. SSS target transfer recognition results with ResNet series networks: (a) ResNet152 loss
and accuracy curves; (b) ResNet101 loss and accuracy curves.

(a) (b)

Figure 13. SSS target transfer recognition results with DenseNet series networks: (a) DenseNet121
loss and accuracy curves; (b) DenseNet169 loss and accuracy curves.

(a) (b)

Figure 14. SSS target migration recognition results with VGGNet16 network and the proposed
method. (a) VGGNet16 loss and accuracy curves; (b) proposed method loss and accuracy curves.

Table 5 shows that different backbone networks used to identify SSS targets produce
different results: VGGNet16, ResNet152, and Resnet101 have a recognition accuracy rate
higher than 98%, while ResNet18 and DenseNet169 have relatively low recognition accurate
rates of only 91.86% and 91.54%, respectively. This is because the number of network layers
is small for ResNet18: there are only 18 layers that are not sufficient for feature extraction.
For DenseNet121, DenseNet169 and DenseNet201, the values of OA are 96.41%, 91.54% and
89.23%, respectively. It can be concluded that as the number of network layers increases,
the recognition accuracy rate shows a decreasing trend. This phenomenon is caused by
a difference between the training data of the backbone network and the SSS data. As
the number of network layers increases, the network extracts more detailed and abstract
features. The SSS data have a significant amount of noise interference. This noise exists
in the details of the image. The deeper network extracts the noisy features during the
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extraction of the detailed features. These noisy features have a negative impact on the
target recognition performance. Therefore, as the network structure becomes more complex
and the number of network layers increases, the recognition rate tends to decline.

Table 5. Comparison of different backbones for SSS image object recognition.

Backbone Networks Optimal OA (%)

ResNet18 91.86
ResNet50 93.5
ResNet152 98.21
ResNet101 98.46

DenseNet121 96.41
DenseNet169 91.54
DenseNet201 89.23
VGGNet16 98.46
VGGNet19 94.67

AlexNet 94.14
GoogleNet 94.46
Proposed 98.72

The method proposed in this paper comprehensively considers the influence of the
number of network layers and network structure on the recognition performance and
uses ResNet152 as the backbone network to learn the network parameters and identify
the SSS targets. It obtains the best recognition accuracy rate of 98.72%. At the same time,
Figures 12–14 show that the recognition rate curves of the existing methods have a large
variance, whereas the variance of the recognition rate curve of the proposed method is
relatively small. This behavior indicates that the recognition performance of the method
proposed in this paper is more stable.

(4) Ablation experiments for backbone network trained on different data sets.

In order to verify the DL strategy problem, this paper uses SAR, ImageNet, and
SSS data to conduct ablation experiments on the sub-network structure of the backbone
network. Table 6 shows the experimental results.

Table 6. Ablation experiments for backbone network trained on different data sets.

Datasets
Backbone Conv1 Conv3_x Conv5_x Optimal

Conv2_x Conv4_x CAMCL LAMCC OA (%)
ImageNet ImageNet SSS 58.97

ImageNet/SAR/SSS SAR SAR SSS 77.95
Datasets ImageNet SAR SSS 96.92

SAR ImageNet SSS 98.72

Table 6 shows that the recognition performance of the backbone networks trained only
with ImageNet and SAR data set is poor, achieving OA values of only 58.97% and 77.95%.
The recognition performance of the backbone network trained with two data sets is better,
and the OA of the training strategy (ImageNet+SAR) is 1.8% lower than that proposed in
this paper (SAR+ImageNet).

(5) CAMCL and LAMCC ablation experiments.

In order to verify the performance of the CAMCL and LAMCC attention fusion
methods, this paper conducts attention mechanism ablation experiments. Experiments
were carried out on three methods: only CAMCL, only LAMCC, and CAMCL+ LAMCC
with ResNet152 as the backbone network.
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Table 7 shows that the optimal OA values for only CAMCL and only LAMCC are
97.69% and 97.18%, respectively. The optimal OA value for CAMCL+ LAMCC is 98.72%,
signifying an increase in the recognition rates by 1.03% and 1.54% respectively. There-
fore, the use of CAMCL and LAMCC attention fusion mechanisms is helpful to improve
recognition performance.

Table 7. CAMCL and LAMCC ablation experiments results.

Backbone
Attention Module

CAMCL LAMCC Optimal
OA(%)

X 97.69
ResNet152 X 97.18

X X 98.72

(6) Application of FLS Target Recognition.

The method proposed in this paper can not only recognize SSS targets but can also
be applied to FLS target recognition. In order to verify the effectiveness of the proposed
method with respect to a higher number of target recognition categories, this paper uses
Forward Looking Sonar (FLS) data for experiments. Among them, the total number of
samples is 3192, the number of target categories is 10, the number of training sets is 2231,
and the number of test sets is 961. Figure 15 shows the data sample diagram and Table 8
shows the experimental results.

 Carton Chain Hook Pipe Platform Propeller Sachet Tire Valve Wrench

Figure 15. Forward-looking sonar dataset samples diagram.

Table 8. Comparison of different DL models for FLS image object recognition.

Methods Optimal OA (%)

DenseNet201 89.07
DenseNet121 88.87
DenseNet169 89.91

ResNet50 89.49
ResNet101 88.14
ResNet152 88.03
VGGNet16 90.63
VGGNet19 85.22
Proposed 93.96

Table 8 shows that the recognition rates of the DenseNet201, DenseNet121 and
DenseNet169 are equal to 89.07%, 88.87% and 89.91%, respectively, which are slightly
higher than those obtained using the ResNet series algorithms. The recognition rates of
DenseNet and ResNet algorithms are above 88%. VGGNet16 achieves the best OA = 90.63%
among the reference algorithms, and VGGNet19 performs the worst with OA = 85.22%.
The method proposed in this paper is the best among all the comparison algorithms, which
shows its good FLS target recognition performance.
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4. Conclusions and Future Work

An important part of the sonar system that provides accurate target perception infor-
mation is the SSS underwater target recognition. In this study, a new 3MATR model was
provided for SSS target recognition, using the ResNet152 network as the backbone network
of the model. The strategy of phased transfer, ImageNet and SAR data were collectively
utilized to learn the parameters of the backbone network. In addition, the CAMCL and
LAMCC attention mechanisms were used to perform the final and accurate recognition of
SSS data in the head network. The proposed model was analyzed from different aspects
and its performance was compared with many existing identification algorithms. The
following conclusions were obtained:

1. The proposed multi-modal multi-channel multi-position attention mechanism
transfer recognition method effectively improved the SSS target recognition accuracy.
Its basic principle was to train different stages of the network through ImageNet, SAR,
and SSS data sets to enhance the anti-noise performance of the network against noisy
backgrounds, and simultaneously add an attention mechanism to extract key features in
the SSS training stage.

2. The 3MATR model provided advantages in SSS target recognition, which resulted in
significantly better recognition rates than other backbone networks. Its transfer recognition
performance was higher than other transfer learning target recognition methods.

The limitation of this method was the difference in data distributions for different
modalities in the transfer model. In future work, we envisage overcoming the differ-
ences in data distribution by improving the model and further improving the recognition
performance.
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